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PRACTICAL STABILITY OF LINEAR SWITCHED IMPULSIVE
SYSTEM WITH TIME DELAY

SHAO’E LI, WEIZHEN FENG

Abstract. This article concerns the study of practical stability of linear
switched impulsive systems with time delay. By using Lyapunov functions

and the extended Halanay inequality, we establish sufficient conditions for the

practical stability and uniform practical stability of a linear switched impulsive
system with time delay. The last section provides some illustrative examples.

1. Introduction

Recently, there has been considerable research on switched impulsive systems
with time delay. However, most of them is about Lyapunov stability [10, 11], but
not practical stability. Li [5] clarified the different definitions of practical stability,
and gave some criteria for the practical stability of switched impulsive system with-
out time delay. The book [13] provides conditions on practical stability of various
systems, including ordinary differential equations, impulsive differential equations,
functional differential equations. But there has been little study on practical sta-
bility of switched impulsive systems with time delay. In this article we fill this
gap.

First, we introduce Halanay inequality (see Lemma 3.1). From this inequality, we
gain of a upper estimate on a function u(t), which decrease exponentially with time.
Then this estimate can be applied to the study of exponential stability, bounded-
ness, practical stability, etc. As in [1, 2, 6, 7, 8, 9], utilizing an extended Halanay
inequality, we study Lyapunov stability and attractivity for delay differential sys-
tems, impulsive systems with delay, switched systems with delay and difference
equations.

To adapt the extended Halanay inequality to linear switched impulsive system
with time delay, we establish multiple Lyapunov functions and revise some condi-
tions of the extended Halanay inequality. Also by utilizing the comparison method
and the method of segmentation, we settle the problem of discontinuity caused by
impulses and switches. Then we give sufficient conditions for practical stability of
linear switched impulsive system with time delay, where the influence of delays,
impulses, and switches is considered. We strive to conclude the coupling relation
of the delay, impulses and the dwell-time. What is more, we distinguish between
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the restriction on the dwell-time of every activation for good subsystems and that
for bad subsystems, where the good subsystem denotes the one which is practically
stable, and the bad one just the opposite. Lastly, we provide some illustrative
examples and the simulations.

2. Preliminaries

It is convenient to establish some notation here. Let R+ denote the set of all
nonnegative real numbers, Rn the n-dimensional real space equipped with Euclidean
norm | · |. Denote by N+ the set of all positive integers, and N = N+ ∪ {0}. Let
Λ = {1, 2, . . . ,m}, where m ∈ N+. If M = (mij)n×m is a matrix, we write the norm

of M as |M | =
√∑

1≤i≤n,1≤j≤mm
2
ij , and the transposition of M as MT . Denote by

λmax(M) the greatest eigenvalue of M , and λmin(M) the minimum eigenvalue. Set
x(t+) = lims→t+ x(s). Let r > 0, and PC([−r, 0]) be the Banach space of piecewise
continuous functions with supremum norm ‖ · ‖. If x ∈ PC([t0,+∞)), let

ẋ(t) = lim
h→0−

x(t+ h)− x(t)
h

.

Consider m subsystems with delay,

ẋ(t) = fi(t, x(t), x(t− r)), i = 1, 2, . . . ,m, m ∈ N+,

xt0 = ϕ
(2.1)

the switches

S = {(τk, ik) : ik ∈ Λ = {1, 2, . . . ,m}, τk > 0, k ∈ N+}, (2.2)

and the impulses

x(t+k ) = Ik(x(tk)), k = 1, 2, . . . , (2.3)

where x ∈ Rn, ϕ ∈ C([−r, 0],R), fi ∈ C(R+×Rn×Rn,Rn), i ∈ Λ, Ik ∈ C(Rn,Rn),
k ∈ N+. Here τk > 0 denotes switching intervals. For any t0 ∈ R+, tk = t0+

∑k
i=1 τi

denotes switching instants, which satisfies limk→+∞ tk = +∞. We assume that
fi(t, 0) = 0, Ik(0) = 0 for any t ≥ 0, k ∈ N+, i ∈ Λ.

According to (2.1)-(2.3), we write switched impulsive systems with time delay
as:

ẋ(t) = fik(t, x(t), x(t− r)), t ∈ (tk−1, tk]

x(t+k ) = Ik(x(tk)), k = N+

xt0 = ϕ.

(2.4)

Remark 2.1. We assume throughout this paper that solution of (2.4) is unique
and of global existence [4, 11].

Definition 2.2. Given (λ,A) with 0 < λ < A, system (2.4) is said to be

(i) λ-A-practically stable, if ‖ϕ‖ < λ implies |x(t, t+0 , x0)| < A for all t ≥ t0,
and some t0 ∈ R+.

(ii) λ-A-uniformly practically stable, if ‖ϕ‖ < λ implies |x(t, t+0 , x0)| < A, for
all t ≥ t0, and every t0 ∈ R+.
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3. Lemmas

In this section, we provide some results that are needed in Section 4.

Lemma 3.1 (Halanay inequality [2]). If r ≥ 0, a > b > 0, u(t) is a continuous
function satisfying u(t) ≥ 0, and

D+u(t) ≤ −au(t) + b sup
−r≤θ≤0

u(t+ θ), t ≥ t0,

then u(t) ≤ sup−r≤θ≤0 u(t0 +θ)e−µ(t−t0), t ≥ t0, where µ > 0 and µ−a+ beµr = 0.

Lemma 3.2. Consider (λ,A) with 0 < λ < A. If 2a+ b2 < −1, then the system

ẋ(t) = ax(t) + bx(t− r)
xt0 = ϕ

(3.1)

is λ-A-practically stable.

Proof. Let x(t) denote the solution of (3.1), and define V (t) = x2(t). Then

V̇ (t) = 2x(t)ẋ(t)

= 2x(t)[ax(t) + bx(t− r)]
≤ (2a+ b2)x2(t) + x2(t− r)
≤ (2a+ b2)V (x(t)) + sup

θ∈[−r,0]

V (t+ θ).

By the Halanay inequality and 2a+ b2 < −1,

V (x(t)) ≤ sup
θ∈[−r,0]

V (t0 + θ) e−u(t−t0), t ≥ t0,

where u > 0 and u+ 2a+ b2 + eur = 0. Consequently, when ‖ϕ‖ < λ,

|x(t)| = V 1/2(t) ≤ sup
θ∈[−r,0]

V 1/2(t0 + θ) < λ < A.

The proof is complete. �

Lemma 3.3 ([6]). Consider the system

D+f(t) ≤ pf(t) + qf̄(t), t ∈ [t0,+∞)\{tk, k ∈ N+}
f(tk) ≤ dkf(t−k ), k ∈ N+,

(3.2)

where
tk ∈ R+, tk+1 > tk, k ∈ N, lim

k→+∞
tk = +∞,

p ∈ R, q ≥ 0, r > 0, δ > 1,

f ∈ PC(R,R+), f̄(t) = sup{f(s) : t− r ≤ s ≤ t}.

(3.3)

Assume that

p+ qδ <
ln δ
σ
, where σ = sup{tn+1 − tn : n ∈ N} <∞; (3.4)

0 < λ <
ln δ
σ
− p− qδeλr. (3.5)

Then let f ∈ PC(R,R+) be the solution of (3.2), and define

g(t) =

{
f(t)eλ(t−t0), t > t0,

f(t), t0 − r ≤ t ≤ t0.
(3.6)
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If tn ≤ t∗ < t∗ < tn+1 for some n ∈ N, and δg(t) ≥ g(s) for any s ∈ [t0− τ, t∗] and
t ∈ [t∗, t∗], then δ > g(t∗)/g(t∗).

Now, we adapt the conclusion of Lemma 3.3 to the linear switched impulsive
system with time delay.

Lemma 3.4 (Extended inequality). Replace (3.2) in Lemma 3.3 by

D−f(t) ≤ pikf(t) + qik f̄(t), t ∈ (tk−1, tk]

f(t+k ) ≤ dkf(tk), k ∈ N+,
(3.7)

where ik ∈ Λ, k ∈ N+, pib = p, qib = q, and b is a given positive integer. Let f(t) be
the solution of (3.7). And suppose there is a λ > 0 such that (3.3), (3.5) and (3.6)
hold. If tb−1 ≤ t∗ < t∗ ≤ tb, and δg(t) ≥ g(s) for all s ∈ [tb − r, t∗], t ∈ (t∗, t∗].
Then δ > g(t∗)/g(t+∗ ).

Proof. For any t ∈ [t0,+∞), we can find a ut ∈ [t − r, t] such that f̄(t) = f(ut).
Note that eλ(t−t0) ≤ 1, for every t ∈ [t0 − r, t0]. Then,

f(t)eλ(t−t0) ≤ g(t), t ∈ [t0 − r,+∞). (3.8)

Consider t ∈ (t∗, t∗], then

D−g(t) = (D−f(t))eλ(t−t0) + λf(t)eλ(t−t0)

≤ (pibf(t) + qib f̄(t))eλ(t−t0) + λf(t)eλ(t−t0)

= (pf(t) + qf̄(t))eλ(t−t0) + λf(t)eλ(t−t0)

= (λ+ p)f(t)eλ(t−t0) + qf(ut)eλ(ut−t0)eλ(t−ut), t ∈ (t∗, t∗].

(3.9)

From (3.8), (3.9) and the assumption in the lemma, we have

D−g(t) ≤ (λ+ p)f(t)eλ(t−t0) + qg(ut)eλ(t−ut)

≤ (λ+ p)g(t) + qδg(t)eλτ

= (λ+ p+ qδeλτ )g(t), t ∈ (t∗, t∗].

(3.10)

By (3.10) and (3.5), we have∫ t∗

t∗

dg(t)
g(t)

≤
∫ t∗

t∗

(λ+ p+ qδeλτ )dt = (λ+ p+ qδeλτ )(t∗ − t∗) < ln δ.

Note that g(t∗) 6= g(t+∗ ), if t∗ = tb. Then∫ t∗

t∗

dg(t)
g(t)

= ln g(t∗)− ln g(t+∗ ) = ln(
g(t∗)
g(t+∗ )

).

It follows that δ > g(t∗)/g(t+∗ ). �

Lemma 3.5 (Comparison theorem). Consider two systems:

ẋ(t) = fik(t, x(t), x(t− r)), t ∈ (tk−1, tk]

x(t+k ) = ckx(tk), k ∈ N+

xt0 = ϕ1,

(3.11)
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and
ẏ(t) = gik(t, y(t), y(t− r)) := aiky(t) + biky(t− r), t ∈ (tk−1, tk]

y(t+k ) = dky(tk), k ∈ N+

yt0 = ϕ2,

(3.12)

where aik ∈ R; x, y, r, ck, dk, bik ∈ R+; fik(t, u, v), gik(t, u, v) : R+ × R+ × R+ → R
are continuous functions with k ∈ N+ and ik ∈ Λ. Here ϕ1, ϕ2 ∈ C([−r, 0],R+),
fi(t, 0, 0) = 0, i ∈ Λ. If for every u, v ∈ R+, t ∈ (tk, tk+1] and s ∈ [−r, 0], we have

fik(t, u, v) ≤ gik(t, u, v), ck ≤ dk, ϕ1(s) ≤ ϕ2(s),

then, x(t) ≤ y(t) for each t > t0, where x(t) and y(t) are the solutions of (3.11)
and (3.12) respectively.

Proof. (I) when t ∈ (t0, t1], we have x(t) ≤ y(t) by comparison theorem of functional
differential equation [7].

(II) Assume that x(t) ≤ y(t), where t ∈ (tj , tj+1] an j = 0, 1, 2, . . . , k − 1. Then,
we need to prove

x(t) ≤ y(t), t ∈ (tk, tk+1]. (3.13)

Firstly, we claim that x(t) ≤ y(t) for each t ∈ (tk, tk+1], if

fik+1(t, u, v) < gik+1(t, u, v), ck ≤ dk, x(s) ≤ y(s),

for t ∈ (tk, tk+1], s ∈ (tk − r, tk]. Otherwise, there is t̄ ∈ (tk, tk+1], such that
x(t̄) > y(t̄). Define

t∗ = inf{t : x(t) > y(t), t ∈ (tk, tk+1]}.

Because x(t) and y(t) are continuous on (tk, tk+1], and x(t+k ) = ckx(tk) ≤ dky(tk) =
y(t+k ), we have

x(t∗) = y(t∗), x(t) ≤ y(t), t ∈ [tk − r, t∗],

where t∗ ∈ [tk, tk+1). Hence, ẋ(t∗) ≥ ẏ(t∗). On the other hand, if t∗ ∈ (tk, tk+1),

fik+1(t∗, x(t∗), x(t∗ − r)) < gik+1(t∗, x(t∗), x(t∗ − r)) ≤ gik+1(t∗, y(t∗), y(t∗ − r)).

Namely, ẋ(t∗) < ẏ(t∗), if t∗ ∈ (tk, tk+1). Also if t∗ = tk, we can have ẋ(t∗) < ẏ(t∗)
similarly. This contradiction proves the result in this case.

Then we need to study system (3.12) on (tk, tk+1]. Taking tk as the initial time,
we rewrite system (3.12) as

ẏ(t) = g(t, y(t), y(t− r)), t ∈ (tk, tk+1]

y(t+k ) = dky(tk)
ytk = ϕ3,

(3.14)

where g(t, y(t), y(t − r)) = aik+1y(t) + bik+1y(t − r), ϕ3(s) = y(tk + s), s ∈ [−r, 0].
Denote by ỹ(t) the solution of (3.14). Obviously, y(t) = ỹ(t) if t ∈ [tk − r, tk+1].
If g in (3.14)is replaced by g + 1

n for any n ∈ N+, then we rewrite the solution as
yn(t) respectively. By the results of previous paragraph, we conclude that

x(t) ≤ yn(t), t ∈ (tk, tk+1].

So, to prove (3.13), we need only to prove that

yn(t)→ y(t), as n→ +∞, (3.15)
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for every t ∈ (tk, tk+1]. Define zn(t) = yn(t)− ỹ(t), then

żn(t) = aik+1zn(t) + bik+1zn(t− r) +
1
n
, t ∈ (tk, tk+1]

zntk = ϕ4(s),

where ϕ4(s) = 0, s ∈ [−r, 0]. By [3, Theorem 2.2 Chap. 2]], we have zn(t) → 0 as
n → +∞, for each t ∈ (tk, tk+1]. Namely, (3.15) is true. So, x(t) ≤ y(t), for each
t ∈ (tk, tk+1]. By mathematical induction, x(t) ≤ y(t), if t > t0. �

Lemma 3.6 ([8]). Consider the system

ẋ(t) = a(t)x(t) + b(t)x(t− r),
xt0 = φ,

(3.16)

where a(t), b(t) ∈ C(R+, R), r > 0 is a constant. Assume − 1
2r ≤ a(t) + b(t + r) ≤

−rb2(t+ r). Let x(t) = x(t, t0, φ) be the solution of (3.16) on [t0,+∞). Then

|x(t)| ≤ ‖φ‖
(

1 +
∫ t0+r/2

t0

|b(u)|du
)
e

R t
t0
a(s)ds

, t ∈ (t0, t0 + r/2);

|x(t)| ≤
√

6V (t0)e
1
2

R t−r/2
t0

[a(s)+b(s+r)]ds
, t ∈ [t0 + r/2,+∞).

where V (t0) =
[
x(t0) +

∫ t0
t0−r b(s+ r)x(s)ds

]2 +
∫ 0

−r
∫ t0
t0+s

b2(z + r)x2(z) dz ds.

Corollary 3.7. If we add an impulse x(t+0 ) = d0x(t0) at the initial time t0, and
replace the initial function φ by ϕ ∈ PC(−r, 0) in Lemma 3.5, then the conclusion
becomes

|x(t)| ≤ max{|x(t+0 )|, ‖ϕ‖}
(

1 +
∫ t0+r/2

t0

|b(u)|du
)
e

R t
t0
a(s)ds

, t ∈ (t0, t0 + r/2);

|x(t)| ≤
√

6V (t+0 )e
1
2

R t−r/2
t0

[a(s)+b(s+r)]ds
, t ∈ [t0 + r/2,+∞),

where

V (u) =
[
x(u) +

∫ u

u−r
b(s+ r)x(s)ds

]2 +
∫ 0

−r

∫ u

u+s

b2(z + r)x2(z) dz ds.

Remark 3.8. Since the proof of Lemma 3.6 is not dependent on the continuity of
the initial function, we can prove Corollary 3.7 similarly.

4. Practical stability results

Now, we are ready to give results on practical stability of the systems, includ-
ing one-dimensional systems and n-dimensional ones. Firstly, consider the one-
dimensional system with constant coefficients. That is, fik(t, x(t), x(t − r)) =
aikx(t) + bikx(t− r) in (2.4).

ẋ(t) = aikx(t) + bikx(t− r), t ∈ (tk−1, tk]

x(t+k ) = dkx(tk), k ∈ N+

xt0 = ϕ,

(4.1)

where aik , bik ∈ R, r, dk, t0 ∈ R+, ik ∈ Λ, k ∈ N+, ϕ ∈ C([−r, 0],R).
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The subsystem of (4.1) is
ẋ(t) = aix(t) + bix(t− r)

xt0 = ϕ,
(4.2)

where i ∈ Λ. If 2ai + b2i < −1, then the subsystem is practical stable by Lemma
3.2, and we call it a good subsystem. Otherwise, we can not guarantee practical
stability of it. So we call it a bad subsystem. In order to guarantee practical
stability of (4.1), it is sensible that there would be stricter restriction on the dwell
time of bad subsystems than on that of good ones, as Theorem 4.1 shows. For
convenience, we assume that the first m1 subsystems are good subsystems, and the
rest are bad ones.

Theorem 4.1. Consider (λ,A) with 0 < λ < A. If there exist constants δ1, δ2 > 1
and β > 0 which satisfy

δ̃k =

{
δ1, if ik ≤ m1

δ2, if ik > m1;
β <

ln δi
σi
− pi − δieβr, i = 1, 2;

k∏
j=0

(δ̃j+1d̃
2
j )e
−β(tk−t0) ≤ (

A

λ
)2, k ∈ N,

where m1 ∈ Λ, Λ1 := {1, 2, . . . ,m1}, Λ2 := {m1 + 1,m1 + 2, . . . ,m},
2ai + b2i < −1, i ∈ Λ1; 2ai + b2i ≥ −1, i ∈ Λ2;

p1 = max{2ai + b2i : i ∈ Λ1}, p2 = max{2ai + b2i : i ∈ Λ2};
σ1 = sup{tk − tk−1 : ik ∈ Λ1}, σ2 = sup{tk − tk−1 : ik ∈ Λ2};

d̃0 = 1, d̃k = max{dk, (δ̃k+1)−1/2}, k ∈ N+,

then system (4.1) is λ-A-uniformly practically stable.

Proof. Let x(t) be the solution of (4.2) and set the function V (t) = x2(t). Then
the derivative of V (t) with respect to each subsystem is:

˙V (t) = 2x(t) ˙x(t)

= 2x(t)[ax(t) + bx(t− r)]
≤ (2ai + b2i )x(t)2 + x(t− r)2

≤ (2ai + b2i )V (t) + sup
θ∈[−r,0]

V (t0 + θ).

For any t0 ∈ R+, ‖ϕ‖ < λ, we have:

sup
t∈[t0−r,t0]

V (t) = ‖ϕ‖2 < λ2;

V (t+k ) = x2(t+k ) = d2
kx

2(tk) = d2
kV (tk), k ∈ N+.

Define

g1(t) =

{
V (t)eβ(t−t0), t ∈ (t0,+∞]
V (t), t ∈ [t0 − r, t0].

Case 1: For any k ∈ N+, dk ≥ (δ̃k+1)−1/2.
(I) Consider the condition t ∈ (t0, t1]. Then we have

V (t+0 ) = d2
0V (t0) < δ̃1d

2
0 sup
t0−r≤s≤t0

V (s) := α0,
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where d0 = 1. Note that

g1(t) < δ̃1d
2
0 sup
t0−r≤s≤t0

V (s) = α0

for each t ∈ [t0−r, t0] and g1(t) is continuous on [t0−r, t1]. We claim that g1(t) ≤ α0,
for any t ∈ [t0 − r, t1]. If not, there is a t̃1 ∈ (t0, t1] such that g1(t̃1) > α0. Define

t∗1 = inf{t ∈ (t0, t̃1] : g1(t) > α0},
t1∗ = sup{t ∈ [t0, t∗1] : g1(t) ≤ d2

0 sup
t0−r≤s≤t0

V (s)}

Hence, t0 ≤ t1∗ < t∗1 < t1 and δ̃1g1(t) ≥ g1(s) for all s ∈ [t0 − r, t∗1], t ∈ [t1∗, t∗1]. By
Lemma 3.4, δ̃1 >

g(t∗1)
g(t1∗) = δ̃1. This contradiction proves that

g1(t) ≤ α0, V (t) ≤ α0e
−β(t−t0), t ∈ (t0, t1].

(II) Assume that V (t) ≤ αie−β(t−t0) for each t ∈ (ti, ti+1], where

αi =
i∏

j=0

(δ̃j+1d
2
j ) sup
t0−r≤s≤t0

V (s), i = 0, 1, . . . , k − 1.

Below we prove V (t) ≤ αke−β(t−t0) for each t ∈ (tk, tk+1]. Note that

V (t+k ) = d2
kV (tk) ≤ d2

kαk−1e
−β(tk−t0) < δ̃k+1d

2
kαk−1e

−β(tk−t0) := αke
−β(tk−t0).

Thus, g1(t+k ) ≤ d2
kαk−1 < αk. Because {αk} is nondecreasing, we have g1(t) ≤ αk

for each t ∈ [tk−r, tk]. We claim that g1(t) ≤ αk, if t ∈ [tk−r, tk+1]. Otherwise, by
the continuity of g1(t) on (tk, tk+1], there is a t̃k ∈ (tk, tk+1] such that g1(t̃k) > αk.
Define

t∗k = inf{t ∈ (tk, t̃k] : g1(t) > αk},
Ek = {t ∈ (tk, t∗k] : g1(t) ≤ d2

kαk−1},

tk∗ =

{
tk, if Ek = ∅
supEk, if Ek 6= ∅.

Hence, tk ≤ t1∗ < t∗1 ≤ tk+1 and δ̃k+1g1(t) ≥ g1(s) for any s ∈ [tk − r, t∗k] and
t ∈ (tk∗, t∗k]. By Lemma 3.4, δ̃k+1 >

g(t∗k)

g(t+k∗)
= δ̃k+1. This leads to a contradiction.

So,
g1(t) ≤ αk, V (t) ≤ αke−β(t−t0), t ∈ (tk, tk+1].

By mathematical induction, V (t) ≤ αke
−β(t−t0) for every t ∈ (tk, tk+1] and k ∈ N.

Since dk = d̃k = max{dk, (δ̃k+1)−1/2}, we have

|x(t)| = V 1/2(t) ≤ [αke−β(tk−t0)]1/2 <
[
λ2

k∏
j=0

(δ̃j+1d̃
2
j )e
−β(tk−t0)

]1/2
≤ A,

for every t ∈ (tk, tk+1], k ∈ N.
Case 2: There is some k0 ∈ N+, such that dk0 < (δ̃k0+1)−1/2. We establish a new
system

ẏ(t) = (2aik + b2ik)y(t) + y(t− r), t ∈ (tk−1, tk]

y(t+k ) = d̃2
ky(tk), k ∈ N+

yt0 = ϕ2,

(4.3)
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where d̃k = max{dk, (δ̃k+1)−1/2}. By Lemma 3.5 and the results of Case 1,

|x(t)| = V 1/2(t) ≤ y1/2(t) < A.

So, system (4.1) is λ-A-uniformly practically stable. �

Corollary 4.2. Consider (λ,A) with 0 < λ < A. Assume that there exist constants
δ > 1 and β > 0 satisfying:

β <
ln δ
σ
− p− δeβr;

δk+1
k∏
j=0

d̃2
je
−β(tk−t0) ≤ (

A

λ
)2, k ∈ N,

where p = max{2ai+b2i : i ∈ Λ}, d0 = 1, d̃k = max{dk, (δ̃k+1)−1/2}, σ = sup{tk+1−
tk : k ∈ N}. Then system (4.1) is λ-A-uniformly practically stable.

Below we study the one-dimensional system with variable coefficients. Namely,
fik(t, x(t), x(t− r)) = aik(t)x(t) + bik(t)x(t− r) in (2.4).

ẋ(t) = aik(t)x(t) + bik(t)x(t− r), t ∈ (tk−1, tk]

x(t+k ) = dkx(tk), k ∈ N+

xt0 = ϕ,

(4.4)

where aik(t), bik(t) : R+ → R are continuous functions, dk, r, t0 ∈ R+, k ∈ N+.

Theorem 4.3. Consider (λ,A) with 0 < λ < A. If there exist t0 ∈ R+ and σ > 0
such that

2aik(t) + b2ik(t) + 1 ≤ −σ < 0, t ∈ (tk−1, tk],
k∏
i=1

d̃i ≤
A

λ
, k ∈ N+,

where d̃i = max{di, 1}, then system (4.4) is λ-A-practically stable.

Proof. For any ϕ ∈ C([−r, 0],R) and ‖ϕ‖ < λ, denote by x(t) the solution of (4.4).
Set the function V (t) = x2(t). Then the derivative of V (t) with respect to each
subsystem is:

V̇ (t) = 2x(t) ˙x(t)

= 2x(t)[ai(t)x(t) + bi(t)x(t− r)]
≤ [2ai(t) + b2i (t)]x(t)2 + x(t− r)2

≤ [2ai(t) + b2i (t)]V (t) + sup{V (s) : s ∈ [t− r, t]}.

Hence, V̇ (t) ≤ (2aik(t) + b2ik(t))V (t) + sup{V (s) : s ∈ [t − r, t]}, for each t ∈
(tk−1, tk], k ∈ N+. Define

G = sup{V (s) : s ∈ [t0 − r, t0]} = sup{ϕ2(s) : s ∈ [−r, 0]} < λ2.

For any given ε ∈ (1, 2), we have:
(I) Note that V (t) is continuous on (t0− r, t1] and V (t0) ≤ G < εG := α0. Then

we are to prove that V (t) < α0, for each t ∈ (t0, t1]. If not, there is a t̄0 ∈ (t0, t1]
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such that V (t) < α0 for each t ∈ (t0, t̄0) and V (t̄0) = α0. Hence, V̇ (t̄0) ≥ 0. But,

V̇ (t̄0) ≤ (2ai1(t̄0) + b2i1(t̄0))V (t̄0) + sup
s∈[t̄0−r,t̄0]

V (s)

= [2ai1(t̄0) + b2i1(t̄0) + 1]α0

≤ −σα0 < 0.

This contradiction proves V (t) < α0 for t ∈ (t0, t1].
(II) Assume that

V (t) <
j−1∏
i=0

d̃2
i εG := αj−1

for each t ∈ (tj−1, tj ] and j = 1, 2, . . . , k, where d̃0 = 1. Note that V (t) is continuous
on (tk, tk+1] and V (t+k ) ≤ (d̃kx(tk))2 = d̃2

kV (tk) < d̃2
kαk−1 = αk. Then we need to

prove

V (t) <
k∏
i=1

d̃2
i εG := αk, t ∈ (tk, tk+1]. (4.5)

If not, there exists a t̄k ∈ (tk, tk+1] such that V (t) < αk for each t ∈ (tk, t̄k) and
V (t̄k) = αk. Hence, V̇ (t̄k) ≥ 0. {αk} is nondecreasing, so V (t) ≤ αk for each
t ∈ [t0 − r, t̄k]. It follows that

V̇ (t̄k) ≤
(

2aik+1(t̄k) + b2ik+1
(t̄k)

)
V (t̄k) + sup

s∈[t̄k−r,t̄k]

V (s)

= [2aik+1(t̄k) + b2ik+1
(t̄k) + 1]αk

≤ −σαk < 0.

This contradiction proves (4.5). By mathematical induction, we have

V (t) < αk =
k∏
i=0

d2
i · εG.

for any t ∈ (tk, tk+1], k ∈ N. Furthermore,

V (t) ≤
k∏
i=0

d2
iG <

k∏
i=0

d2
iλ

2 ≤ A2, ∀t ∈ (tk, tk+1], k ∈ N.

Namely, |x(t)| < A for t ∈ [t0,+∞). So system (4.4) is λ-A-practically stable. �

Remark 4.4. We can loosen the restriction on dk in Theorem 4.3, if the dwell time
τk is big enough, k ∈ N+. As shown is Theorem 4.5.

Theorem 4.5. Consider (λ,A) with 0 < λ < A. Assume that there are constants
t0 ∈ R+ and σ > 0 such that

2aik(t) + b2ik(t) + 1 ≤ −σ < 0, t ∈ (tk−1, tk];

and suppose

τk > r,

k∏
i=1

d̃2
i e
−u(tk−t0−kr) ≤ A2

λ2
, k ∈ N+,

where τk = tk − tk−1, d̃i = max{di, 1}, u − (1 + σ) + eur = 0. Then system (4.4)
is λ-A-practically stable.
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Proof. For any ϕ ∈ C([−r, 0],R) and ‖ϕ‖ < λ, denote by x(t) the solution of (4.4).
Set the function V (t) = x2(t). Then the derivative of V (t) with respect to each
subsystem is:

V̇ (t) = 2x(t) ˙x(t)

= 2x(t)[ai(t)x(t) + bi(t)x(t− r)]
≤ [2ai(t) + b2i (t)]x(t)2 + x(t− r)2

= [2ai(t) + b2i (t)]V (t) + V (t− r).

Obviously, we have

V (t+k ) = [dkx(tk)]2 = d2
kV (tk), k ∈ N+,

2aik(t) + b2ik(t) + 1 ≤ −σ < 0, t ∈ (tk−1, tk].

Hence,

V̇ (t) ≤ −(1 + σ)V (t) + V (t− r), t ∈ (tk−1, tk]

V (t+k ) = d2
kV (tk), k ∈ N+

Vt0 = ϕ2.

Define

G = sup{V (s) : s ∈ [t0 − r, t0]} = sup{ϕ2(s) : s ∈ [−r, 0]} < λ2.

Below we prove that V (t) ≤
∏k
i=0 d̃

2
iGe

−u(t−t0−kr) for t ∈ (tk, tk+1], where d̃0 = 1,
and u− (1 + σ) + eur = 0.

(I) If t ∈ (t0, t1], we establish a comparison system:

Ẇ0(t) = −(1 + σ)W0(t) +W0(t− r), t ∈ (t0, t1]

W0(t+0 ) = d̃2
0V (t0)

W0t0 = d̃2
0ϕ

2,

where d̃0 = 1. From Lemma 3.5, we have V (t) ≤W0(t) for t ∈ (t0, t1]. Furthermore,

W0(t) ≤ d̃2
0Ge

−u(t−t0), t ∈ (t0, t1],

by Halanay inequality. So, V (t) ≤ d̃2
0Ge

−u(t−t0) for each t ∈ (t0, t1].
(II) Assume that V (t) ≤

∏j−1
i=0 d̃

2
iGe

−u(t−t0−(j−1)r) for each t ∈ (tj−1, tj ] and
j = 1, 2, . . . , k. Below we prove that

V (t) ≤
k∏
i=1

d̃2
iGe

−u(t−t0−kr), t ∈ (tk, tk+1]. (4.6)

Consider (4.4) on (tk, tk+1], and take tk as the initial time. Then we establish a
comparison system

Ẇk(t) = −(1 + σ)Wk(t) +Wk(t− r), t ∈ (tk, tk+1]

Wk(t+k ) = d̃2
kV (tk)

Wktk = d̃2
kV

2(t− tk).
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By Lemma 3.5, V (t) ≤ Wk(t) for every t ∈ (tk, tk+1]. And Wk(t) is continuous on
[tk − r, tk+1], because tk − tk−1 > r. From Halanay inequality,

Wk(t) ≤
{
d̃2
k ·

k−1∏
i=0

d̃2
iGe

−u(tk−t0−kr)
}
e−u(t−tk)

=
k∏
i=1

d̃2
iGe

−u(t−t0−kr), t ∈ (tk, tk+1].

Hence,

V (t) ≤
k∏
i=1

d̃2
iGe

−u(t−t0−kr), t ∈ (tk, tk+1].

By mathematical induction,

V (t) ≤
k∏
i=1

d̃2
iGe

−u(t−t0−kr) < λ2
k∏
i=1

d̃2
i e
−u(tk−t0−kr) ≤ A2, t ∈ (tk, tk+1], k ∈ N.

Namely, |x(t)| < A, t ∈ [t0,+∞). The proof is complete. �

Remark 4.6. In Theorem 4.3, it requests that aik(t) ≤ 0 if t ∈ (tk−1, tk]; However,
Theorems 4.7 and 4.9 establish criterions, where aik(t) do not have to be negative.

Theorem 4.7. Consider (λ,A) with 0 < λ < A. Assume that there exist constants
t0 ∈ R+ and δ > 0 such that:(

1 +
∫ t0+r/2

t0

|bi1(u)|du
)
e

R t
t0
ai1 (s)ds ≤ A

λ
, t ∈ (t0, t0 + r/2];

[
1 +

∫ t0

t0−r
|bi1(s+ r)|ds

]2
+
∫ 0

−r

∫ t0

t0+s

b2i1(z + r) dz ds ≤ A2

6λ2
;

− 1
2r
≤ gik(t) ≤ −rb2ik(t+ r), t ∈ (tk−1, tk];

dk ≤
δ

Ahk(tk)
, tk − tk−1 ≥ 2r, k ∈ N+;

for any k ∈ N+,

max{dk · hk(tk), hk(tk − r)}
(

1 +
∫ tk+ r

2

tk

|bik+1(u)|du
)
e

R t
tk
aik+1 (s)ds ≤ 1,

t ∈ (tk, tk +
r

2
];[

δ +A

∫ tk

tk−r
|bik+1(s+ r)|hk(s)ds

]2
+A2

∫ 0

−r

∫ tk

tk+s

b2ik+1
(z + r)h2

k(z) dz ds ≤ A2

6
;

where gi(t) = ai(t) + bi(t + r), hk(t) = e
1
2

R t−0.5r
tk−1

[aik (s)+bik (s+r)]ds
, i ∈ Λ, k ∈ N+.

Then system (4.4) is λ-A-practically stable.

Proof. For any ϕ ∈ C([−r, 0],R), ‖ϕ‖ < λ, let x(t) be the solution of (4.4). For
each k ∈ N+, we define a function:

Vk(u) =
[
x(u) +

∫ u

u−r
bik(s+ r)x(s)ds

]2
+
∫ 0

−r

∫ u

u+s

b2ik(z + r)x2(z) dz ds,
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u ∈ (tk−1, tk]. (I) when t ∈ (t0, t1], by Lemma 3.6,

|x(t)| ≤ ‖ϕ‖(1 +
∫ t0+r/2

t0

|bi1(u)|du)e
R t
t0
ai1 (s)ds

< λ(1 +
∫ t0+r/2

t0

|bi1(u)|du)e
R t
t0
ai1 (s)ds

≤ A, t ∈ (t0, t0 + r/2];

|x(t)| ≤
√

6V (t0)e
1
2

R t−r/2
t0

ai1 (s)+bi1 (s+r)ds

=
{

6
[
x(t0) +

∫ t0

t0−r
bi1(s+ r)x(s)ds

]2
+ 6

∫ 0

−r

∫ t0

t0+s

b2i1(z + r)x2(z) dz ds
}1/2

h1(t)

<
{

6[λ+ λ

∫ t0

t0−r
|bi1(s+ r)|ds]2 + 6

∫ 0

−r

∫ t0

t0+s

b2i1(z + r)λ2 dz ds
}1/2

h1(t)

≤ Ah1(t), t ∈ (t0 + r/2, t1].

So, |x(t)| < A, if t ∈ (t0, t1].
(II) Assume that |x(t)| < A, if t ∈ (tj , tj + r

2 ], and |x(t)| < Ahj+1(t), if t ∈
[tj + r

2 , tj+1], where j = 0, 1, . . . , k − 1. Then we need to prove that

|x(t)| < A, t ∈ (tk, tk +
r

2
]; |x(t)| < Ahk+1(t), t ∈ [tk +

r

2
, tk+1]. (4.7)

From Corollary 3.7,

|x(t)| ≤ max
{
dkx(tk), sup

s∈[tk−r,tk]

{x(s)}
}(

1 +
∫ tk+r/2

tk

|bik+1(u)|du
)
e

R t
tk
ak+1(s)ds

< Amax{dkhk(tk), hk(tk − r)}
(

1 +
∫ tk+r/2

tk

|bik+1(u)|du
)
e

R t
tk
aik+1 (s)ds

≤ A, t ∈ (tk, tk + r/2];

|x(t)|2 ≤ 6Vk+1(t+k )e
R t−r/2
tk

aik+1 (s)+bik+1 (s+r)ds

= 6
{[
x(t+k ) +

∫ tk

tk−r
bik+1(s+ r)x(s)ds

]2
+
∫ 0

−r

∫ tk

tk+s

b2ik+1
(z + r)x2(z) dz ds

}
h2
k+1(t)

< 6
{[
δ +

∫ tk

tk−r
|bik+1(s+ r)|Ahk(s)ds

]2
+
∫ 0

−r

∫ tk

tk+s

b2ik+1
(z + r)A2h2

k(z) dz ds
}
h2
k+1(t)

≤ A2h2
k+1(t), t ∈ (tk + r/2, tk+1].

Hence, (4.7) holds. By mathematical induction, |x(t)| < A, t ≥ t0. Namely, system
(4.4) is λ-A-practically stable. �
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Corollary 4.8. Consider (λ,A) with 0 < λ < A. Assume that ai(t) = ai, bi(t) =
bi, where ai, bi ∈ R, i ∈ Λ. If there is a δ > 0 and the following assumptions are
satisfied:

(1 +
1
2
|bi1 |r)eai1u ≤

A

λ
, u ∈ (0,

1
2

];
3
2
b2i1r

2 + 2|bi1 |r + 1 ≤ A2

6λ2
;

− 1
2r
≤ ci ≤ −rb2i , i ∈ Λ; dk ≤

δ

Awk(tk)
, τk ≥ 2r, k ∈ N+;

for any k ∈ N+ and u ∈ (0, 1
2 ], (1 + 1

2 |bik+1 |r)e
1
2 cik (τk−1.5r)+uaik+1 ≤ 1;[

δ +A|bik+1 |
∫ tk

tk−r
wk(s)ds

]2
+A2b2ik+1

∫ tk

tk−r
(z − tk + r)w2

k(z)dz ≤ A2

6
;

where ci = ai + bi, wk(t) = e
1
2 cik (t−tk−1−0.5r), τk = tk − tk−1, i ∈ Λ, k ∈ N+, then

system (4.4) is λ-A-uniformly practically stable.

Theorem 4.9. Consider (λ,A) with 0 < λ < A. Assume that there are constants
t0 ∈ R+, β > 0 and δ > 0 such that

(i) |bik(t)| ≤ ruik(t) for t ∈ (tk−1, tk]; dk ≤ δ
A ;

(ii)
(
1 + r2ui1(t0)

)
g1(t) ≤ A

λ for t ∈ (t0, t1];
(iii)

[
δ +Ar2uik+1(t+k )

]
gk+1(t) ≤ A for t ∈ (tk, tk+1], k ∈ N+; where

ui(t) =
e

R t
0 ai(s)ds

1 + r
∫ t+β
t

e
R u
0 ai(s)dsdu

, gk(t) = e
R t
tk−1

[aik (s)+ruik (s)]ds
, i ∈ Λ, k ∈ N+.

Then system (4.4) is λ-A-practically stable.

Proof. For any ϕ ∈ C([−r, 0],R), ‖ϕ‖ < λ, let x(t) be the solution of (4.4). Define

Vi(t) = |x(t)|+ rui(t)
∫ t

t−h
|x(s)|ds, i ∈ Λ.

For any k ∈ N+ and t ∈ (tk−1, tk], we have

u̇ik(t) =
aik(t)e

R t
0 aik (s)ds

1 + r
∫ t+β
t

e
R u
0 aik (s)dsdu

− er
R t
0 aik (s)ds

(1 + r
∫ t+β
t

e
R u
0 aik (s)dsdu)2

×
(
e

R t+β
0 aik (s)ds − e

R t
0 aik (s)ds

)
= aik(t)uik(t)− ru2

ik
(t)(e

R t+β
t

aik (s)ds − 1)

≤ aik(t)uik(t) + ru2
ik

(t);

V̇ik(t)

≤ [aik(t) + ruik(t)]|x(t)|+ ru̇ik(t)
∫ t

t−h
|x(s)|ds+ (|bik(t)| − ruik(t))|x(t− r)|

≤ [aik(t) + ruik(t)]
(
|x(t)|+ ruik(t)

∫ t

t−h
|x(s)|ds

)
− [aik(t) + ruik(t)]r

× uik(t)
∫ t

t−h
|x(s)|ds+ r · [aik(t)uik(t) + ru2

ik
(t)]
∫ t

t−h
|x(s)|ds

≤ [aik(t) + ruik(t)]V (t).
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So, |x(t)| ≤ Vik(t) ≤ Vik(t+k )e
R t
tk

[aik (s)+ruik (s)]ds, t ∈ (tk−1, tk].
(I) If t ∈ (t0, t1], then

|x(t)| ≤ V (t+0 )e
R t
t0
ai1 (s)+rui1 (s)ds

=
(
|x(t0)|+ rui1(t0)

∫ t

t0−r
|x(s)|ds

)
g1(t)

<
(
λ+ rui1(t0)

∫ t

t0−r
λds
)
g1(t) ≤ A.

(II) Assume that |x(t)| < A, if t ∈ (ti − 1, ti], i = 1, 2, . . . , k. If t ∈ (tk, tk+1],
then

|x(t)| ≤ V (t+k )e
R t
tk
aik+1 (s)+ruik+1 (s)ds

=
(
|x(t+k )|+ ruik+1(tk)

∫ t

tk−r
|x(s)|ds

)
gk+1(t)

<
(
A
δ

A
+ ruik+1(tk)

∫ t

tk−r
Ads

)
gk+1(t) ≤ A.

By mathematical induction, |x(t)| < A, t ≥ t0. The proof is complete. �

Corollary 4.10. Assume that aik(t) ≡ 0, k ∈ N+. And suppose there exist con-
stants t0 ≥ 0, and β, δ > 0, such that

|bik(t)| ≤ h

1 + βr
; dk ≤

δ

A
;

(
1 +

r2

1 + βr

)
e
r(t1−t0)

1+βr ≤ A

λ
;
(
δ +

Ar2

1 + βr

)
e
r(tk+1−tk)

1+βr ≤ A, k ∈ N+.

Then system (4.4) is λ-A-practically stable.

Lastly, we consider the n-dimensional system with constant coefficients. That
is, fik(t, x(t), x(t− r)) = Aikx(t) +Bikx(t− r) in (2.4).

ẋ(t) = Aikx(t) +Bikx(t− r), t ∈ (tk−1, tk]

x(t+k ) = dkx(tk), k ∈ N+

xt0 = ϕ,

(4.8)

where x ∈ Rn, dk ∈ R+, ϕ ∈ C([−r, 0],R), Ai and Bi are n× n matrices, k ∈ N+,
i ∈ Λ.

Theorem 4.11. Consider (λ,A) with 0 < λ < A. Assume that there is a η > 0,
such that the linear matrix inequality with respect to symmetric matrices {Pi >
0}mi=1 (

ATi Pi + PiAi + (1 + η)Pi PiBi
BTi Pi −Pi

)
< 0, i ∈ Λ (4.9)

is solvable. And suppose that there exist constants δ > 1 and β > 0 such that

β <
ln δ
σ

+ 1 + η − δeβr, d2
k ≥

1
δ
,

δk+1χk
k∏
i=0

d2
iλmax(Pi1)e−β(tk−t0) ≤ λmin(Pik+1)

A2

λ2
, k ∈ N,
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where d0 = 1, σ = sup{tn+1 − tn : n ∈ N} < +∞, χ = max
{λmax(Pi)
λmin(Pj)

: i, j ∈ Λ, i 6=
j
}

. Then system (4.8) is λ-A-uniformly practically stable.

Proof. By (4.9), we have

ATi Pi + PiAi + PiBiP
−1
i BTi Pi + (1 + η)Pi < 0, i ∈ Λ.

For any ϕ ∈ C([−r, 0],R), ‖ϕ‖ < λ and t0 ≥ 0, let x(t) be the solution of (4.8).
Establish a function Vi = x(t)TPix(t) with respect to the i-th subsystem of (4.8),
and define V i(t) = sup−r≤θ≤0 Vi(t+ θ), i ∈ Λ. It follows that

V̇i(t) = 2xT (t)Piẋ(t)

= 2xT (t)Pi(Aix(t) +Bix(t− r))
≤ xT (t)(ATi Pi + PiAi + PiBiP

−1
i BTi Pi)x(t) + xT (t− r)Pix(t− r)

≤ −(1 + η)Vi(t) + V i(t), t ≥ t0.

At the switching time,

Vik+1(t+k ) = xT (t+k )Pik+1x(t+k ) = d2
kx

T (tk)Pik+1x(tk) = d2
kVik+1(tk), k ∈ N+.

If t ∈ [t0 − r, t0], it is easy to verify that Vi1(t) ≤ λmax(Pi1)|x(t)|2. Hence,

V i1(t0) ≤ λmax(Pi1)‖ϕ‖2 < λ2 · λmax(Pi1).

(I) If t ∈ (t0, t1], we claim that

Vi1(t) ≤ δd0V i1(t0)e−β(t−t0) := α0e
−β(t−t0). (4.10)

If not, define

g0(t) =

{
Vi1(t)eβ(t−t0), t ∈ (t0, t1]
Vi1(t), t ∈ [t0 − r, t0].

Then, there is a t̃0 ∈ (t0, t1], such that g0(t̃0) > α0. Define

t∗0 = inf{t ∈ (t0, t1] : g0(t) > α0};
t0∗ = sup{t ∈ [t0, t∗0] : g0(t) ≤ V i1(t0)}.

Then t0 ≤ t0∗ < t∗0 < t1, and δg0(t) ≥ α0 ≥ g0(s) for any s ∈ [t0−r, t∗0], t ∈ [t0∗, t∗0].
From Lemma 3.4, δ > g0(t∗0)

g0(t0∗) = δ. This contradiction proves (4.10).
(II) Assume that Vij+1(t) ≤ αje

−β(t−t0), where t ∈ (tj , tj+1], j = 0, 1, . . . , k − 1,
and

αj = δj+1χj
j∏
i=0

d2
i · V i1(t0).

Below, we are to prove Vik+1(t) ≤ αke
−β(t−t0) for every t ∈ (tk, tk+1]. Note that

Vik+1(t) ≤ χVij+1(t) ≤ χαje−β(t−t0), if t ∈ (tj , tj+1], j = 0, 1, . . . , k − 1.

Vik+1(t+k ) = d2
kVik+1(tk) ≤ χd2

kVik(tk) ≤ χd2
kαk−1e

−β(tk−t0).

Define

gk(t) =

{
Vik+1(t)eβ(t−t0), t ∈ (t0, tk+1]
Vik+1(t), t ∈ [t0 − r, t0].
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Because αi ≤ αj for any i ≤ j, we have gk(t) ≤ δ(d2
kχαk−1) := αk, if t ∈ [tk− r, tk].

We claim that gk(t) ≤ αk for each t ∈ (tk, tk+1]. Otherwise, there is a t̃k ∈ (tk, tk+1],
such that gk(t̃k) > αk. Define

t∗k = inf{t ∈ (tk, t̃k] : gk(t) > αk};
Ek = {t ∈ (tk, t∗k] : gk(t) ≤ αk−1d

2
kχ};

tk∗ =

{
tk, if Ek = ∅
supEk, if Ek 6= ∅.

Hence, tk ≤ tk∗ < t∗k ≤ tk+1, and δgk(t) ≥ αk ≥ gk(s), for any s ∈ [tk − r, t∗k],
t ∈ (tk∗, t∗k]. By Lemma 3.4, δ > gk(t∗k)

gk(t+k∗)
= δ. This contradiction proves gk(t) ≤ αk,

for each t ∈ (tk, tk+1]. That is, Vik+1(t) ≤ αke
−β(t−t0), if t ∈ (tk, tk+1]. By

mathematical induction,

Vik+1 ≤ αke−β(t−t0), t ∈ (tk, tk+1], k ∈ N.

It is easy to verify that λmin(Pik+1)|x(t)|2 ≤ Vik+1(t). Furthermore,

|x(t)| ≤
√

1
λmin(Pik+1)

Vik+1(t)

≤
[ 1
λmin(Pik+1)

δk+1χk
k∏
i=0

d2
i e
−β(tk−t0)V i1(t0)

]1/2
<
[ δk+1χk

λmin(Pik+1)

k∏
i=0

d2
i e
−β(tk−t0)λmax(Pi1)λ2

]1/2
≤ A, t ∈ (tk, tk+1], k ∈ N.

So, system (4.8) is λ-A-uniformly practically stable. �

Corollary 4.12. Consider (λ,A) with 0 < λ < A. Suppose that there exist con-
stants η > 0, δ > 1, and β > 0, such that the linear matrix inequality with respect
to symmetric matrices {Pi > 0}mi=1(

ATi Pi + PiAi + (1 + η)Pi PiBi
BTi Pi −Pi

)
< 0, i ∈ Λ, (4.11)

has a common solution Pi = P , i ∈ Λ; and the following assumptions are satisfied:

β <
ln δ
σ

+ 1 + η − δeβr, d2
k ≥

1
δ
,

δn+1
n∏
k=0

d2
kλmax(P )e−β(tn−t0) ≤ λmin(P )

A2

λ2
, n ∈ N,

where d0 = 1, σ = sup{tn+1 − tn : n ∈ N}. Then system(4.8) is λ-A-uniformly
practically stable.

Remark 4.13. According to [2], the system is exponentially stable if (4.9) is true.
Then, Theorem 4.11 and Corollary 4.10 tells us that the switched system with delay
can keep practically stable under some impulse perturbation, if the subsystem are
of some good quality, such as exponential stability. That is to say, the restriction
on impulses is loose in this case.
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5. Examples

In this section, several examples are given to illustrate our theorems.

Example 5.1. Consider system (4.1), where

ẋ(t) = a1x(t) + b1x(t− r) = −x(t) +
1
2
x(t− 0.25);

ẋ(t) = a2x(t) + b2x(t− r) =
3
8
x(t) +

1
2
x(t− 0.25);

S = {(0.25, 2), (2, 1), (0.25, 2), . . . };

dk =

{√
5e0.1

4 if k is even
√

6e0.0125

3 if k is odd.

Given λ = 1, A = 1.8, we set p1 = −1.75, p2 = 1, δ1 = 1.5, δ2 = 3.2, σ1 = 2,
σ2 = 0.25, β = 0.1. According to Theorem 4.1, it is easy to verify that the system
is λ-A-uniformly practically stable (see Figure 1(a)).

(a) (b)

Figure 1. (a) t0 = 0, ϕ = 0.99; (b) ϕ = 0.95

Example 5.2. Consider system (4.4), where

ẋ(t) = a1(t)x(t) + b1(t)x(t− r) = (−0.6 +
sin4(t)

8
)x(t) +

1
2

sin2(t)x(t− π

6
),

ẋ(t) = a2(t)x(t) + b2(t)x(t− r) = (−0.6 +
cos4(t)

8
)x(t) +

1
2

cos2(t)x(t− π

6
);

S = {(π
2
, 1), (

π

2
, 2), (

π

2
, 1), (

π

2
, 2), . . . }; d1 = 1.5, dk =

k2

k2 − 1
, k ≥ 2.

Given λ = 1, A = 3, we set t0 = 7π
4 , σ = 0.075. According to Theorem 4.3, it is

easy to verify that the system is λ-A-practically stable (see Figure 1(b)).

Example 5.3. Consider system (4.4), where

ẋ(t) = a1(t)x(t) + b1(t)x(t− r) = − sin(πt)x(t) +
1
4
e

cos(πt)−1
π x(t− 1

2
),

ẋ(t) = a2(t)x(t) + b2(t)x(t− r) = − sin(2πt)x(t) +
1
4
e

cos(2πt)−1
2π x(t− 1

2
);
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S = {(2, 1), (2, 2), (2, 1), (2, 2), . . . }; dk =
9
20
, k ∈ N+.

Given λ = 1, A = 2, we set t0 = 0, δ = 0.9, β = 2. Then

u1(t) =
e

R t
0 − sin(πs)ds

1 + 1
2

∫ t+2

t
e

R u
0 − sin(πs)dsdu

=
e[cos(πt)−1]/π

1 + 1
2

∫ t+2

t
e[cos(πu)−1]/πdu

≥ e[cos(πt)−1]/π

1 + 1
2 (e0 + e

−1
π )

≥ 1
2
e

cos(πt)−1
π =

1
r
b1(t).

u1(t) =
e[cos(πt)−1]/π

1 + 1
2

∫ t+2

t
e[cos(πu)−1]/πdu

≤ e[cos(πt)−1]/π

1 + 1
2 (e

−2
π + e

−1
π )

≤ 0.6142e
cos(πt)−1

π ≤ 5
8
e

cos(πt)−1
π .

u2(t) =
e

R t
0 − sin(2πs)ds

1 + 1
2

∫ t+2

t
e

R u
0 − sin(2πs)dsdu

=
e[cos(2πt)−1]/(2π)

1 + 1
2

∫ t+2

t
e[cos(2πu)−1]/(2π)du

≥ e[cos(2πt)−1]/(2π)

1 + 1
2 (e0 + e

−1
2π )

≥ 1
2
e

cos(2πt)−1
2π =

1
r
b2(t).

u2(t) =
e[cos(2πt)−1]/(2π)

1 + 1
2

∫ t+2

t
e[cos(2πu)−1]/(2π)du

≤ e[cos(2πt)−1]/(2π)

1 + 1
2 (e

−2
2π + e

−1
2π )

≤ 100
179

e
2 cos(πt)−1

2π .

Consequently, if t ∈ (t0, t1],(
1 + r2ui1(t0)

)
e

R t
t0
ai1 (s)+rui1 (s)

ds ≤ [1 +
1
4
× 5

8
]e

R 2
0

1
2×

5
8 e

cos(πs)−1
π ds

≤ 37
32
e

5
16 (e0+e

−1
π )

≤ 2 =
A

λ
;
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if t ∈ (tk, tk+1], k ∈ N+,[
δ +Ar2u1(t+k )

]
e

R t
tk

[a1(s)+ru1(s)]ds

≤ [0.9 + 2× 1
4
× 0.6142]e

R tk+2
tk

1
2×

5
8 e

cos(πs)−1
π ds

≤ (0.9 + 0.3071)e
5
16 (e0× 2

3 +e
−1
2π × 1

3 +e
−1
π × 1

3 +e
−3
2π × 2

3 )

≤ 2 = A.

[
δ +Ar2u2(t+k )

]
e

R t
tk

[a2(s)+ru2(s)]ds ≤ [0.9 + 2× 1
4
× 100

179
]e

R tk+2
tk

1
2×

100
179 e

cos(2πs)−1
2π ds

≤ (0.9 +
50
179

)e
50
179 (e0+e

−1
2π )

≤ 2 = A.

And dk = 9/20 = δ/A yields dk ≤ δ/A. According to Theorem 4.9, it is easy to
verify that the system is λ-A-practically stable (see Figure 2).

(a) (b)

Figure 2. (a) ϕ = 0.99; (b) ϕ = 0.8

Example 5.4. Consider system (4.8), where

A1 =
(
−1 0
0 −2

)
, A2 =

(
−4 0
0 −3

)
, B1 =

(
0 0
0 1

)
, B2 =

(
2 0
0 2

)
.

S = {(2, 1), (2, 2), (2, 1), (2, 2), . . . }; d1 =
20e0.3

11
, dk =

e0.3

√
1.1

, k ≥ 2.

r = 1. Given λ = 1, A = 2, we set η = 0.9, δ = 1.1, σ = 2, β = 0.3, P1 =

P2 =
(

1 0
0 1

)
. According to Theorem 4.11, it is easy to verify that the system is

λ-A-practically stable.
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