CRITICAL EXPONENT AND BLOW-UP RATE FOR THE ω-DIFFUSION EQUATIONS ON GRAPHS WITH DIRICHLET BOUNDARY CONDITIONS

WEICAN ZHOU, MIAOMIAO CHEN, WENJUN LIU

AbStract. In this article, we study the ω-diffusion equation on a graph with Dirichlet boundary conditions

$$
\begin{gathered}
u_{t}(x, t)=\Delta_{\omega} u(x, t)+e^{\beta t} u^{p}(x, t), \quad(x, t) \in S \times(0, \infty) \\
u(x, t)=0, \quad(x, t) \in \partial S \times[0, \infty) \\
u(x, 0)=u_{0}(x) \geq 0, \quad x \in V
\end{gathered}
$$

where Δ_{ω} is the discrete weighted Laplacian operator. First, we prove the existence and uniqueness of the local solution via Banach fixed point theorem. Then, by the method of supersolutions and subsolutions we prove that the ω-diffusion problem has a critical exponent p_{β} : when $p>p_{\beta}$, the solution becomes global; while when $1<p<p_{\beta}$, the solution blows up in finite time. Under appropriate hypotheses, we estimate the blow-up rate in the L^{∞}-norm. Some numerical experiments illustrate our results.

1. Introduction

In this article we are concerned with the blow-up properties of the problem

$$
\begin{gather*}
u_{t}(x, t)=\Delta_{\omega} u(x, t)+e^{\beta t} u^{p}(x, t), \quad(x, t) \in S \times(0, \infty), \\
u(x, t)=0, \quad(x, t) \in \partial S \times[0, \infty) \tag{1.1}\\
u(x, 0)=u_{0}(x) \geq 0, \quad x \in V
\end{gather*}
$$

where $p>1, \beta>0, u_{0}(x)$ is nonnegative and nontrivial, and V is the set of vertices of a graph $G(V, E, \omega)$. In general, we can split the set of vertexes V into two disjoint subjects S and ∂S such that $V=S \cup \partial S$, which are called the interior and the boundary of V, respectively. We write $(x, y) \in E$ when two vertices x, y are adjacent and connected by an edge. Throughout this paper, all the graphs in our concern are assumed to be simple, finite, connected, undirected and weighted. Besides, $\Delta_{\omega} u(x, t)$ is defined as

$$
\sum_{y \in V} \omega(x, y)(u(y, t)-u(x, t)), \quad \forall x \in V
$$

[^0]where $\omega: V \times V \rightarrow \mathbb{R}$ denotes the weighted function, which has the following properties:
(1) $\omega(x, x)=0$, for any $x \in V$,
(2) $\omega(x, y)=\omega(y, x)$, for any $x, y \in V$,
(3) $\omega(x, y)=0$, if and only if $(x, y) \notin E$.

A function on a graph is understood as a function defined just on the set of vertices of the graph. The integration of a function $f: V \rightarrow \mathbb{R}$ on a graph G is defined by

$$
\int_{V} f=\sum_{x \in V} f(x)
$$

As usual, the set $C(V \times(0, \infty))$ consists of all function u defined on $V \times(0, \infty)$ which satisfies $u(x, t) \in C(0, \infty)$ for each $x \in V$.

The ω-diffusion equation of the form $u_{t}(x, t)=\Delta_{\omega} u(x, t)$ and its variations can be used to model diffusion process. Recently, more diffusion equations are taken into account to graphs [2, 11, 14]. In [3, 8, 18], the extinction and positivity of the solution of the ω-diffusion equation with absorption and its variations was considered. In [4], the decay rates for evolution equations of the averaging operator $\partial t-\Delta_{F}$ were studied. In [5], the quenching phenomena for a non-local diffusion equation with a singular absorption was discussed. Meanwhile, Xin et al [19] considered the blow-up for the ω-heat equation with Dirichlet boundary conditions and a reaction term $u^{p}(x, t)$ on graphs

$$
\begin{gather*}
u_{t}(x, t)=\Delta_{\omega} u(x, t)+u^{p}(x, t), \quad(x, t) \in S \times(0, \infty), \\
u(x, t)=0, \quad(x, t) \in \partial S \times(0, \infty), \tag{1.2}\\
u(x, 0)=u_{0}(x), \quad x \in V .
\end{gather*}
$$

They proved that when $p>1$, the solution of problem 1.2 blows up in finite time under some suitable conditions and when $p \leq 1$, every solution is global.

Blow-up phenomenon has been widely studied in various evolution equations [1, 6, 7, 9, 12, 13, 15, 16, 17, 21, 22. Meier [10, considered the problem

$$
\begin{gather*}
u_{t}=\Delta u(x, t)+e^{\beta t} u^{p}(x, t), \quad(x, t) \in \Omega \times(0, \infty), \\
u(x, t)=0, \quad(x, t) \in \partial \Omega \times[0, \infty), \tag{1.3}\\
u(x, 0)=u_{0}(x), \quad x \in \Omega,
\end{gather*}
$$

and proved that the critical exponent is $p_{\beta}=1+\frac{\beta}{\lambda_{1}}$, where λ_{1} is the first Dirichlet eigenvalue of the Laplacian in Ω. Zhang and Wang 20] studied the nonlocal diffusion equations with Dirichlet boundary condition

$$
\begin{gather*}
u_{t}=\int_{\mathbb{R}^{N}} J(x-y)(u(y, t)-u(x, t)) \mathrm{d} y+e^{\beta t} u^{p}(x, t), \quad(x, t) \in \Omega \times(0, \infty) \\
u(x, t)=0, \quad(x, t) \notin \Omega \times[0, \infty) \tag{1.4}\\
u(x, 0)=u_{0}(x) \geq 0, \quad x \in \Omega
\end{gather*}
$$

where $p>1, \beta>0$ and the kernel $J \in C^{1}\left(\mathbb{R}^{N}\right)$ satisfies $J \geq 0$ in B_{1} (the unit ball); $J=0$ in $\mathbb{R}^{N} \backslash B_{1}$ with $\int_{B_{1}} J(z) \mathrm{d} z=1$. They showed that the critical exponent is coincident with that of $[10]$.

Motivated by above research, we consider the critical exponent for problem 1.1). We first study the local existence of the solution via Banach fixed point theorem.

Then, we deal with the existence of the critical exponent of problem (1.1) by the method of supersolutions and subsolutions. Meanwhile, we prove that the nonnegative and nontrivial solution blows up in finite time and give the blow-up rate on L^{∞}-norm. Finally, we take two examples to support our results.

This paper is organized as follows. In Section 2, we consider the local existence of the solution. In Section 3, we share many important properties of problem (1.1), such as critical exponent or blow-up rate. In the end, we take two examples to check our results theoretically in Section 4.

2. Local existence of solution

In this section we prove the existence of local a solution for problem 1.1) via Banach fixed point theorem. We first define the following Banach space:

$$
X_{t_{0}}=\left\{u(x, t): u(x, t) \in C\left(V \times\left[0, t_{0}\right]\right) ; u(x, t) \equiv 0, \forall x \in \partial S\right\}
$$

with the norm

$$
\|u\|_{X_{t_{0}}}=\max _{t \in\left[0, t_{0}\right]} \max _{x \in S}|u(x, t)|
$$

where $t_{0}>0$ is a fixed constant. And then, we consider the operator $D: X_{t_{0}} \rightarrow X_{t_{0}}$ for the fixed $v_{0}(x)$ which is defined on V

$$
D_{v_{0}}[v](x, t)= \begin{cases}v_{0}(x)+\int_{0}^{t} \Delta_{\omega} v(x, \tau) \mathrm{d} \tau+\int_{0}^{t} e^{\beta t} v^{p}(x, \tau) \mathrm{d} \tau, & x \in S, \\ 0, & x \in \partial S\end{cases}
$$

In the following lemmas, we prove that the operator $D_{v_{0}}: X_{t_{0}} \rightarrow X_{t_{0}}$ is well defined and strictly contractive under some suitable conditions.

Lemma 2.1. The operator $D_{v_{0}}$ is well defined, mapping $X_{t_{0}}$ to $X_{t_{0}}$. Moreover, let u_{0}, v_{0} be defined on V and $u, v \in X_{t_{0}}$, then, there exists a positive constant $C=C\left(p, \omega(x, y),\|u\|_{X_{t_{0}}},\|v\|_{X_{t_{0}}}, \beta,|V|\right)$ such that

$$
\begin{equation*}
\left\|D_{u_{0}}[u]-D_{v_{0}}[v]\right\|_{X_{t_{0}}} \leq \max _{x \in V}\left|u_{0}(x)-v_{0}(x)\right|+C t\|u-v\|_{X_{t_{0}}} \tag{2.1}
\end{equation*}
$$

where $|V|$ denotes the number of the nodes of the graph G.
Proof. We first show that the operator $D_{v_{0}}$ maps $X_{t_{0}}$ to $X_{t_{0}}$. On the one hand, for any $(x, t) \in S \times\left[0, t_{0}\right]$, we have

$$
\begin{align*}
\left|D_{v_{0}}[v](x, t)-D_{v_{0}}[v](x, 0)\right| & =\left|\int_{0}^{t} \Delta_{\omega} v(x, \tau) \mathrm{d} \tau+\int_{0}^{t} e^{\beta \tau} v^{p}(x, \tau) \mathrm{d} \tau\right| \tag{2.2}\\
& \leq\left(2 \max _{(x, y) \in E}\left|\omega(x, t)\|V \mid\| v\left\|_{X_{t_{0}}}+e^{\beta t_{0}}\right\| v \|_{X_{t_{0}}}^{p}\right) t .\right.
\end{align*}
$$

From this inequality, we know that the operator $D_{v_{0}}$ is continuous at $t=0$. Similarly, for any $\left(x, t_{1}\right),\left(x, t_{2}\right) \in S \times\left[0, t_{0}\right]$, we have

$$
\begin{align*}
& \left|D_{v_{0}}[v]\left(x, t_{1}\right)-D_{v_{0}}[v]\left(x, t_{2}\right)\right| \\
& =\left|\int_{t_{1}}^{t_{2}} \Delta_{\omega} v(x, \tau) \mathrm{d} \tau+\int_{t_{1}}^{t_{2}} e^{\beta \tau} v^{p}(x, \tau) \mathrm{d} \tau\right| \tag{2.3}\\
& \leq\left(2 \max _{(x, y) \in E}\left|\omega(x, t)\|V \mid\| v\left\|_{X_{t_{0}}}+e^{\beta t_{0}}\right\| v \|_{X_{t_{0}}}^{p}\right)\left|t_{2}-t_{1}\right|\right.
\end{align*}
$$

which shows that $D_{u_{0}}$ is continuous in time for any $t \in\left[0, t_{0}\right]$. On the other hand, the convolution $\sum_{y \in V} \omega(x, y)(u(y, t)-u(x, t))$ is uniformly continuous. So it is
easy to see that the operator $D_{v_{0}}$ is continuous as the function of x. Hence, the operator $D_{v_{0}}$ maps $X_{t_{0}}$ to $X_{t_{0}}$.

Next, we prove 2.1]. For any $(x, t) \in S \times\left[0, t_{0}\right]$, we have

$$
\begin{align*}
&\left|D_{u_{0}}[u](x, t)-D_{v_{0}}[v](x, t)\right| \\
& \leq \max _{x \in S}\left|u_{0}(x)-v_{0}(x)\right|+\int_{0}^{t}\left|\Delta_{\omega}(u(x, \tau)-v(x, \tau))\right| \mathrm{d} \tau \\
&+\int_{0}^{t} e^{\beta \tau}\left|u^{p}(x, \tau)-v^{p}(x, \tau)\right| \mathrm{d} \tau \tag{2.4}\\
& \leq \max _{x \in S}\left|u_{0}(x)-v_{0}(x)\right|+2 \max _{(x, y) \in E}|\omega(x, t)||V|\|u-v\|_{X_{t_{0}}} t \\
&+e^{\beta t_{0}} p \xi^{p-1}\|u-v\|_{X_{t_{0}}} t \\
&=\max _{x \in S}\left|u_{0}(x)-v_{0}(x)\right|+C\|u-v\|_{X_{t_{0}}} t,
\end{align*}
$$

where $\xi=\max \left\{\|u\|_{X_{t_{0}}},\|v\|_{X_{t_{0}}}\right\}$ and

$$
C=2 \max _{(x, y) \in E}\left|\omega(x, t)\|V \mid\| u-v \|_{X_{t_{0}}}+e^{\beta t_{0}} p \xi^{p-1} .\right.
$$

The arbitrariness of $(x, t) \in S \times\left[0, t_{0}\right]$ gives the desired estimate 2.1.
Lemma 2.2. Suppose t_{0} to be small enough, then $D_{v_{0}}$ is strictly contractive in the ball $B\left(u_{0}, 2\left\|u_{0}\right\|_{L^{\infty}(V)}\right)$.

Proof. Let $u_{0}=v_{0}$, 2.1 ensures that $D_{v_{0}}$ is a strict contraction in the ball $B\left(u_{0}, 2\left\|u_{0}\right\|_{L^{\infty}(V)}\right)$ provided that t_{0} is small enough. In fact, for any $u, v \in$ $B\left(u_{0}, 2\left\|u_{0}\right\|_{L^{\infty}(V)}\right)$, we have

$$
\|u\|_{X_{0}} \leq 3\left\|u_{0}\right\|_{L^{\infty}(V)}, \quad\|v\|_{X_{t_{0}}} \leq 3\left\|u_{0}\right\|_{L^{\infty}(V)}
$$

and thus, we obtain

$$
\left\|D_{u_{0}}[u](x, t)-D_{u_{0}}[v](x, t)\right\|_{X_{t_{0}}} \leq C_{1} t_{0}\|u-v\|_{X_{t_{0}}}
$$

where

$$
C_{1}=e^{\beta t_{0}} p\left(1+3\left\|u_{0}\right\|_{L^{\infty}(V)}^{p-1}\right)+2 \max _{(x, y) \in E}|\omega(x, t) \| V|
$$

Therefore, if t_{0} is small enough such that $C_{1} t_{0}<\frac{1}{2}$, we obtain that $D_{v_{0}}$ is a strict contraction in the ball $B\left(u_{0}, 2\left\|u_{0}\right\|_{L^{\infty}(V)}\right)$. We complete the proof.

Theorem 2.3. If $p>1$, then problem (1.1) has a unique solution in $[0, T)$ for some $T>0$ to be sufficiently small.

Proof. By the Banach fixed point theorem, Lemma 2.1 and Lemma 2.2, we can easily obtain the existence and the uniqueness of solution to (1.1) in the time interval $\left[0, t_{0}\right]$. Thus, if $\|u\|_{X_{t_{0}}}<\infty$ and initial data is taken as $u\left(x, t_{0}\right)$, then, the solution can be extended to some interval $\left[0, t_{1}\right)$, where $t_{1}>t_{0}$. Therefore, there exists a $T>0$, which is sufficiently small, such that problem (1.1) has a unique solution in $[0, T)$.

3. Global existence and blow-up phenomenon

To study the global existence and blow-up properties, we have the following statements.

Definition 3.1. A nonnegative function $\bar{u}(x, t) \in C^{1}(V \times[0, T))$ is a supersolution of problem (1.1) if it satisfies

$$
\begin{gather*}
\bar{u}(x, t) \geq \sum_{y \in V} \omega(x, y)(\bar{u}(y, t)-\bar{u}(x, t))+e^{\beta t} \bar{u}^{p}(x, t), \quad(x, t) \in S \times[0, T) \\
\bar{u}(x, t) \geq 0, \quad(x, t) \in \partial S \times[0, T) \tag{3.1}\\
\bar{u}(x, 0) \geq u_{0}(x), \quad x \in V
\end{gather*}
$$

Similarly, we can define the subsolution $\underline{u}(x, t)$ by reversing the inequalities.
Now, we introduce the comparison principle for the nonnegative solutions of 1.1 which plays an important role in the proof of the existence of the critical exponent.

Theorem 3.2. Let $\bar{u}(x, t), \underline{u}(x, t)$, be supersolution and subsolution of (1.1), respectively. Meanwhile, there exists a point $y \in S$ such that $\omega(x, y) \neq 0$ for any $x \in S$. Then, for any $(x, t) \in V \times[0, T)$, we have $\bar{u}(x, t) \geq \underline{u}(x, t)$.

Proof. Denote $v=\underline{u}-\bar{u}$, and choose $T_{1}<T$. In $V \times\left[0, T_{1}\right]$, we have

$$
\begin{align*}
\frac{\partial v(x, t)}{\partial t} & \leq \Delta_{\omega} v(x, t)+e^{\beta t}\left(\underline{u}^{p}(x, t)-\bar{u}^{p}(x, t)\right) \tag{3.2}\\
& =\Delta_{\omega} v(x, t)+p e^{\beta t} \xi^{p-1}(x, t) v(x, t)
\end{align*}
$$

where $\xi(x, t)$ is bounded in $V \times\left[0, T_{1}\right]$.
Let $v_{+}=\max \{v, 0\}$. Multiplying both sides of 3.2 by v_{+}and integrating on V, we have

$$
\begin{equation*}
\frac{1}{2}\left(\int_{V} v_{+}^{2}(x, t)\right)_{t} \leq \int_{V} \Delta_{\omega} v(x, t) v_{+}(x, t)+\int_{V} p e^{\beta t} \xi^{p-1} v_{+}^{2}(x, t) \tag{3.3}
\end{equation*}
$$

for all $(x, t) \in V \times\left[0, T_{1}\right]$, due to the fact that $v_{+}=0$ on ∂S. Now, set $I(t)=\{x \in$ $V: \underline{u}>\bar{u}\}$. A direct use of definition of $\Delta_{w} u(x, t)$ yields

$$
\begin{align*}
\int_{V} \Delta_{\omega} v(x, t) v_{+}(x, t)= & \int_{I(t)} \Delta_{\omega} v(x, t) v_{+}(x, t) \\
= & \sum_{x \in I(t)} \sum_{y \in V} \omega(x, y)(v(y, t)-v(x, t)) v_{+}(x, t) \\
= & \sum_{x \in I(t)} \sum_{y \in I(t)} \omega(x, y)(v(y, t)-v(x, t)) v_{+}(x, t) \tag{3.4}\\
& +\sum_{x \in I(t)} \sum_{y \in V \backslash I(t)} \omega(x, y)(v(y, t)-v(x, t)) v_{+}(x, t)
\end{align*}
$$

We first note that

$$
\begin{align*}
& \sum_{x \in I(t)} \sum_{y \in I(t)} \omega(x, y)(v(y, t)-v(x, t)) v_{+}(x, t) \\
= & \frac{1}{2} \sum_{x \in I(t)} \sum_{y \in I(t)} \omega(x, y)(v(y, t)-v(x, t)) v(x, t) \\
& +\frac{1}{2} \sum_{x \in I(t)} \sum_{y \in I(t)} \omega(x, y)(v(x, t)-v(y, t)) v(y, t) \tag{3.5}\\
= & -\frac{1}{2} \sum_{x \in I(t)} \sum_{y \in I(t)} \omega(x, y)(v(y, t)-v(x, t))^{2} \leq 0
\end{align*}
$$

Then, notice that if $x \in I(t)=\{x \in V: \underline{u}>\bar{u}\}$ and $y \in V \backslash I(t)=\{y \in V: \bar{u} \geq \underline{u}\}$, then

$$
\underline{u}(x, t)>\bar{u}(x, t), \quad \bar{u}(y, t) \geq \underline{u}(y, t),
$$

so we have

$$
\underline{u}(y, t)-\underline{u}(x, t) \leq \bar{u}(y, t)-\bar{u}(x, t) .
$$

Then

$$
\begin{equation*}
\sum_{x \in I(t)} \sum_{y \in V \backslash I(t)} \omega(x, y)(v(y, t)-v(x, t)) v_{+}(x, t) \leq 0 \tag{3.6}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\int_{V} \Delta_{\omega} v(x, t) v_{+}(x, t) \leq 0 \tag{3.7}
\end{equation*}
$$

and

$$
\begin{align*}
\int_{V} p e^{\beta t} \xi^{p-1} v_{+}^{2}(x, t) & =\sum_{x \in V} p e^{\beta t} \xi^{p-1} v_{+}^{2}(x, t) \tag{3.8}\\
& \leq p e^{\beta T_{1}} \xi^{p-1} \sum_{x \in V} v_{+}^{2}(x, t)=C \sum_{x \in V} v_{+}^{2}(x, t)
\end{align*}
$$

where $C=p e^{\beta T_{1}} \xi^{p-1}$. From (3.3), (3.7) and (3.8), we have

$$
\left(\int_{V} v_{+}^{2}(x, t)\right)_{t} \leq 2 C \int_{V} v_{+}^{2}(x, t)
$$

Since $v_{+}(\cdot, 0)=0$, we arrive at $v_{+}(x, t)=0$ in $V \times\left[0, T_{1}\right]$. Due to the arbitrariness of T_{1}, we obtain

$$
\bar{u}(x, t) \geq \underline{u}(x, t), \quad \forall(x, t) \in V \times[0, T)
$$

The proof is complete.
Then, we study the existence of the critical exponent for problem 1.1.
Definition 3.3. p_{β} is called the critical exponent of problem 1.1, if it satisfies:
(1) when $p>p_{\beta}$, there is a nonnegative and nontrivial global solution u of equation 1.1;
(2) when $1<p<p_{\beta}$, the nontrivial solution u of (1.1) blows up in finite time.

The following theorems imply that if $p>1$, problem 1.1 admits a critical exponent $p_{\beta}=1+\frac{\beta}{\lambda_{1}}$, where λ_{1} is the principle eigenvalue of the eigenvalue problem

$$
\begin{align*}
-\Delta_{\omega} \varphi(x) & =\lambda_{1} \varphi(x), \quad x \in S \\
\varphi(x) & =0, \quad x \in \partial S \tag{3.9}
\end{align*}
$$

Theorem 3.4. Suppose $p>p_{\beta}=1+\frac{\beta}{\lambda_{1}}$ and the initial value $u_{0} \leq z_{0} \phi_{1}(x)$, then the solution of (1.1) is global and positive. Here $\phi_{1}(x)$ which corresponds to λ_{1} is the positive eigenfunction with $\left\|\phi_{1}(x)\right\|_{L^{\infty}}=1$ and z_{0} is a constant satisfying $0<z_{0}<\left(\lambda_{1}-\frac{\beta}{p-1}\right)^{\frac{1}{p-1}}$.
Proof. Let $v(x, t)=\phi_{1}(x) e^{-\lambda_{1} t}$, then it is the solution of the problem

$$
\begin{gather*}
\frac{\partial v(x, t)}{\partial t}=\Delta_{\omega} v(x, t), \quad(x, t) \in S \times(0, \infty) \\
v(x, t)=0, \quad(x, t) \in \partial S \times[0, \infty) \tag{3.10}\\
v(x, 0)=\phi_{1}(x), \quad x \in V
\end{gather*}
$$

In addition, let $z(t)$ be the solution of the initial-value problem

$$
\begin{gather*}
\frac{\mathrm{d} z}{\mathrm{~d} t}=e^{\beta t}\|v(\cdot, t)\|_{L^{\infty}}^{p-1} z^{p}(t) \tag{3.11}\\
z(0)=z_{0}>0
\end{gather*}
$$

where z_{0} is a constant satisfying $z_{0}<\left(\lambda_{1}-\frac{\beta}{p-1}\right)^{\frac{1}{p-1}}$. Solve the ODE problem of (3.11) with $\|v(\cdot, t)\|_{L^{\infty}}^{p-1}=e^{-\lambda_{1}(p-1) t}$, then we have

$$
z(t)=\left(z_{0}^{1-p}-\frac{p-1}{(p-1) \lambda_{1}-\beta}\left(1-e^{\left(\beta-(p-1) \lambda_{1}\right) t}\right)\right)^{\frac{1}{1-p}}
$$

which is bounded uniformly for $t \in[0, \infty)$.
Now, let $\bar{u}(x, t)=z(t) v(x, t)$ for $(x, t) \in S \times(0, \infty)$, then

$$
\begin{align*}
\frac{\partial \bar{u}(x, t)}{\partial t} & =\frac{\mathrm{d} z(t)}{\mathrm{d} t} v(x, t)+z(t) \frac{\partial v}{\partial t} \\
& =e^{\beta t}\|v(\cdot, t)\|_{L^{\infty}}^{p-1} z^{p}(t) v(x, t)+z(t) \Delta_{\omega} v(x, t) \tag{3.12}\\
& \geq \Delta_{\omega} \bar{u}(x, t)+e^{\beta t} v^{p} z^{p}(t) \\
& =\Delta_{\omega} \bar{u}(x, t)+e^{\beta t} \bar{u}^{p}(x, t),
\end{align*}
$$

and

$$
\begin{equation*}
\bar{u}(x, t)=0, \quad \forall(x, t) \in \partial S \times[0, \infty) \tag{3.13}
\end{equation*}
$$

furthermore,

$$
\begin{equation*}
\bar{u}(x, 0)=z_{0} \phi_{1}(x) \geq u_{0}(x) . \tag{3.14}
\end{equation*}
$$

From (3.12), (3.13) and (3.14), we obtain that $\bar{u}(x, t)$ is a supersolution of problem 1.1. By Theorem 3.2, we conclude that (1.1) admits a global positive solution provided that the initial value u_{0} is small.

Theorem 3.5. Suppose that $u_{0}(x)$ is nonnegative and nontrivial. If $1<p<p_{\beta}=$ $1+\frac{\beta}{\lambda_{1}}$, then the corresponding solution to 1.1 on graph G blows up in the sense of $\lim _{t \rightarrow T^{*-}} \sum_{x \in S} u(x, t) \varphi(x)=+\infty$ and the blow-up time T^{*} satisfies

$$
T^{*}=\frac{\ln \left(1-\frac{\beta-(p-1) \lambda_{1}}{1-p} G_{0}^{1-p}\right)}{\beta-(p-1) \lambda_{1}}
$$

Proof. Consider the eigenvalue problem

$$
\begin{gather*}
-\Delta_{\omega} \varphi(x)=\lambda_{1} \varphi(x), \quad x \in S \\
\varphi(x)=0, \quad x \in \partial S \tag{3.15}\\
\|\varphi(x)\|_{L^{\infty}}=1
\end{gather*}
$$

where λ_{1} is the principle eigenvalue of the eigenvalue problem. Multiplying $\varphi(x)$ on the both sides of 1.1 and summing on S, we have

$$
\begin{equation*}
\sum_{x \in S} u_{t}(x, t) \varphi(x)-\sum_{x \in S} \Delta_{\omega} u(x, t) \varphi(x)=\sum_{x \in S} e^{\beta t} u^{p}(x, t) \varphi(x) \tag{3.16}
\end{equation*}
$$

Let $G(t)=\sum_{x \in S} u(x, t) \varphi(x)$, then $G^{\prime}(t)=\sum_{x \in S} u_{t}(x, t) \varphi(x)$, and

$$
\begin{align*}
& \sum_{x \in S} \Delta_{\omega} u(x, t) \varphi(x) \\
&= \sum_{x \in S} \sum_{y \in V} \omega(x, y)(u(y, t)-u(x, t)) \varphi(x) \\
&= \sum_{x \in S} \sum_{y \in S} \omega(x, y)(u(y, t)-u(x, t)) \varphi(x)-\sum_{x \in S} \sum_{y \in \partial S} \omega(x, y) u(x, t) \varphi(x) \\
&=-\frac{1}{2} \sum_{x \in S} \sum_{y \in S} \omega(x, y)(u(y, t)-u(x, t))(\varphi(y)-\varphi(x)) \\
&-\sum_{x \in S} \sum_{y \in \partial S} \omega(x, y) u(x, t) \varphi(x) \tag{3.17}\\
&= \sum_{x \in S} \sum_{y \in S} \omega(x, y)(\varphi(y)-\varphi(x)) u(x, t)-\sum_{x \in S} \sum_{y \in \partial S} \omega(x, y) u(x, t) \varphi(x) \\
&= \sum_{x \in S} \sum_{y \in V} \omega(x, y)(\varphi(y)-\varphi(x)) u(x, t) \\
&= \sum_{x \in S} \Delta_{\omega} \varphi(x) u(x, t)=-\lambda_{1} G(t) .
\end{align*}
$$

Moreover, applying Jensen's inequality, we obtain

$$
\begin{equation*}
\sum_{x \in S} e^{\beta t} u^{p}(x, t) \varphi(x) \geq e^{\beta t}\left(\sum_{x \in S} u(x, t) \varphi(x)\right)^{p}=e^{\beta t} G^{p}(t) \tag{3.18}
\end{equation*}
$$

Substituting (3.17) and 3.18 into 3.16, we have

$$
\begin{equation*}
G^{\prime}(t) \geq-\lambda_{1} G(t)+e^{\beta t} G^{p}(t) \tag{3.19}
\end{equation*}
$$

Thus, using the comparison for the linear ODE, we have

$$
\begin{equation*}
G^{1-p}(t) \leq\left(G_{0}^{1-p}-\frac{1-p}{\beta-\lambda_{1}(p-1)}+\frac{1-p}{\beta-\lambda_{1}(p-1)} e^{\left(\beta-(p-1) \lambda_{1}\right) t}\right) e^{(p-1) \lambda_{1} t} \tag{3.20}
\end{equation*}
$$

and then

$$
\begin{equation*}
G^{p-1}(t) \geq \frac{1}{\left(G_{0}^{1-p}-\frac{1-p}{\beta-\lambda_{1}(p-1)}+\frac{1-p}{\beta-\lambda_{1}(p-1)} e^{\left(\beta-(p-1) \lambda_{1}\right) t}\right) e^{(p-1) \lambda_{1} t}} \tag{3.21}
\end{equation*}
$$

Since $1<p<p_{\beta}=1+\frac{\beta}{\lambda_{1}}$, we have $\frac{1-p}{\beta-(p-1) \lambda_{1}}<0$ and $G^{1-p}(0)-\frac{1-p}{\beta-(p-1) \lambda_{1}}>0$. Thus, $G(t)=\sum_{x \in S} u(x, t) \varphi(x)$ cannot be global.

From the right side of 3.21 , we have the blow-up time is

$$
T^{*}=\frac{\ln \left(1-\frac{\beta-(p-1) \lambda_{1}}{1-p} G_{0}^{1-p}\right)}{\beta-(p-1) \lambda_{1}}
$$

Next we have a blow-up rate in the L^{∞}-norm.
Theorem 3.6. Let $1<p<p_{\beta}$ and $u(x, t)$ be a solution of problem 1.1) which blows up at time T, then

$$
\begin{equation*}
\lim _{t \rightarrow T^{-}}(T-t)^{\frac{1}{p-1}} \max _{x \in V} u(x, t)=\left(\frac{e^{-\beta T}}{p-1}\right)^{\frac{1}{p-1}} \tag{3.22}
\end{equation*}
$$

Proof. Let $U(t)=u(x(t), t)=\max _{x \in V} u(x, t)$. On the one hand,

$$
\begin{equation*}
U^{\prime}(t)=\sum_{y \in V} \omega(x, y)(U(y, t)-U(x, t))+e^{\beta t} U^{p}(x, t) \tag{3.23}
\end{equation*}
$$

Integrating over (t, T), we obtain

$$
\frac{1}{1-p}\left(U^{1-p}(T)-U^{1-p}(t)\right) \leq \frac{1}{\beta}\left(e^{\beta T}-e^{\beta t}\right)
$$

then

$$
\max _{x \in V} u(x, t)=U(t) \geq\left(\frac{\beta}{p-1}\right)^{\frac{1}{p-1}}\left(e^{\beta T}-e^{\beta t}\right)^{-\frac{1}{p-1}}
$$

so

$$
\begin{equation*}
\lim _{t \rightarrow T^{-}}(T-t)^{\frac{1}{p-1}} \max _{x \in V} u(x, t) \geq \lim _{t \rightarrow T^{-}}\left(\frac{(T-t) \frac{\beta}{p-1}}{e^{\beta T}-e^{\beta t}}\right)^{\frac{1}{p-1}}=\left(\frac{e^{-\beta T}}{p-1}\right)^{\frac{1}{p-1}} \tag{3.24}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
u_{t}(x, t) & =\sum_{y \in V} \omega(x, y)(u(y, t)-u(x, t))+e^{\beta t} u^{p}(x, t) \\
& \geq-k u(x, t)+e^{\beta t} u^{p}(x, t) \tag{3.25}\\
& =u^{p}(x, t)\left(e^{\beta t}-k u^{1-p}(x, t)\right),
\end{align*}
$$

where $k=\max _{x \in S} \sum_{y \in V} \omega(x, y)$. In particular, we have

$$
\begin{align*}
U^{\prime}(t) & \geq U^{p}(x, t)\left(e^{\beta t}-k U^{1-p}(x, t)\right) \\
& \geq U^{p}(x, t)\left(e^{\beta t}-k \frac{p-1}{\beta}\left(e^{\beta T}-e^{\beta t}\right)\right) . \tag{3.26}
\end{align*}
$$

Integrating as before over (t, T), we have

$$
U^{1-p}(t) \geq \frac{(p-1)(\beta+k(p-1))}{\beta^{2}}\left(e^{\beta T}-e^{\beta t}\right)-\frac{k(p-1)^{2}}{\beta}(T-t) e^{\beta T}
$$

then

$$
U(t) \leq\left(\frac{(p-1)(\beta+k(p-1))}{\beta^{2}}\left(e^{\beta T}-e^{\beta t}\right)-\frac{k(p-1)^{2}}{\beta}(T-t) e^{\beta T}\right)^{\frac{1}{1-p}},
$$

so

$$
\begin{equation*}
\lim _{t \rightarrow T^{-}}(T-t)^{\frac{1}{p-1}} \max _{x \in V} u(x, t) \leq\left(\frac{e^{-\beta T}}{p-1}\right)^{\frac{1}{p-1}} \tag{3.27}
\end{equation*}
$$

From (3.24) and (3.27), we complete the proof.

4. Examples and numerical experiments

In this section, we give two examples to illustrate our results from section 3 . First, we consider the special graph G_{1} for problem (1.1). The graph G_{1} has two nodes x_{1} and x_{2}, where x_{1} is boundary and x_{2} is interior. Then, problem (1.1) can be rewritten as

$$
\begin{gather*}
u_{t}\left(x_{2}, t\right)=-\omega u\left(x_{2}, t\right)+e^{\beta t} u^{p}\left(x_{2}, t\right), \quad t>0 \tag{4.1}\\
u\left(x_{2}, 0\right)=u_{0}>0
\end{gather*}
$$

where $\omega, \beta>0$ and $p>1$ are real constants.

Figure 1. Graph G_{1}
Equation (4.1) is the well-known Bernoulli equation. The explicit solution of (4.1) is

$$
\begin{equation*}
u\left(x_{2}, t\right)=\left(e^{\omega(p-1) t}\left(u_{0}^{1-p}-\frac{1-p}{\beta-(p-1) \omega}+\frac{1-p}{\beta-(p-1) \omega} e^{(\beta-\omega(p-1)) t}\right)\right)^{\frac{1}{1-p}} \tag{4.2}
\end{equation*}
$$

Consider $1<p<p_{\beta}$ and $\omega=\lambda_{1}$, then $\frac{1-p}{\beta-(p-1) \omega}<0$, so we can get that

$$
u_{0}^{1-p}-\frac{1-p}{\beta-(p-1) \omega}+\frac{1-p}{\beta-(p-1) \omega} e^{(\beta-\omega(p-1)) t}
$$

is decreasing on t. Notice that $u_{0}>0$ and $\frac{1-p}{\beta-(p-1) \omega}<0$, then the solution $u(t)$ will blow up in finite time. The blow-up time on L^{∞}-norm to problem 4.1) is

$$
T=\frac{\ln \left(1-\frac{(\beta-\omega(p-1)) u_{0}^{1-p}}{1-p}\right)}{\beta-\omega(p-1)}
$$

Then we have the limit,

$$
\lim _{t \rightarrow T^{-}}(T-t)^{\frac{1}{p-1}} u\left(x_{2}, t\right)=\left(\frac{e^{-\beta T}}{p-1}\right)^{\frac{1}{p-1}} .
$$

We remark that if $\frac{1-p}{\beta-(p-1) \omega}>0$ and $u_{0}^{1-p}-\frac{1-p}{\beta-(p-1) \omega}>0$, then the only solution (4.2) to problem (4.1) is global.

Now, we consider a complicated graph G_{2} which has six nodes, where x_{1}, x_{4} and x_{6} are boundary and x_{2}, x_{3} and x_{5} are interior. Moreover, we only consider the weight function $\omega=1$. Thus, the problem can be rewritten as

$$
\begin{gather*}
u_{t}\left(x_{2}, t\right)=u\left(x_{3}, t\right)+u\left(x_{5}, t\right)-3 u\left(x_{2}, t\right)+e^{\beta t} u^{p}\left(x_{2}, t\right), \\
u_{t}\left(x_{3}, t\right)=u\left(x_{2}, t\right)+u\left(x_{5}, t\right)-3 u\left(x_{3}, t\right)+e^{\beta t} u^{p}\left(x_{3}, t\right), \\
u_{t}\left(x_{5}, t\right)=u\left(x_{2}, t\right)+u\left(x_{3}, t\right)-3 u\left(x_{5}, t\right)+e^{\beta t} u^{p}\left(x_{5}, t\right), \tag{4.3}\\
u\left(x_{2}, 0\right)=\alpha>0, \\
u\left(x_{3}, 0\right)=\zeta>0, \\
u\left(x_{5}, 0\right)=\gamma>0 .
\end{gather*}
$$

Figure 2. Graph G_{2}

Let $U=\left(u\left(x_{2}, t\right), u\left(x_{3}, t\right), u\left(x_{5}, t\right)\right)^{\mathrm{T}}$, and the coefficient matrix is

$$
A=\left(\begin{array}{ccc}
-3 & 1 & 1 \\
1 & -3 & 1 \\
1 & 1 & -3
\end{array}\right) .
$$

Thus, 4.3 can be rewritten as

$$
\begin{gather*}
U_{t}=A * U+e^{\beta t} U^{p} \\
U_{0}=(\alpha, \zeta, \gamma)^{\mathrm{T}} \tag{4.4}
\end{gather*}
$$

Because of nonlinearity, it is hard to handle system 4.4 by exact analysis technique. Instead, we calculate the solution by difference method. Then the explicit scheme is

$$
\begin{gather*}
\frac{U^{n+1}-U^{n}}{\Delta t}=A * U^{n}+\left(U^{n}\right)^{p} \tag{4.5}\\
U^{0}=(\alpha, \zeta, \gamma)^{\mathrm{T}}
\end{gather*}
$$

where $U^{n}=\left(u\left(x_{2}, n \Delta t\right), u\left(x_{3}, n \Delta t\right), u\left(x_{5}, n \Delta t\right)\right)^{\mathrm{T}}$ and Δt is the time step. Moreover, we set $\alpha=0.4, \zeta=0.6, \gamma=0.7, \beta=3$ and $p=2$, respectively. The numerical experiment result is shown in Figure 3. We observe that the solution blows up in finite time.

Acknowledgments. This work was partly supported by the National Natural Science Foundation of China (Grant No. 11301277, 41475091) and the Qing Lan Project of Jiangsu Province.

References

[1] S.-Y. Chung, C. A. Berenstein; ω-harmonic functions and inverse conductivity problems on networks, SIAM J. Appl. Math. 65 (2005), no. 4, 1200-1226.
[2] S.-Y. Chung, Y.-S. Chung, J.-H. Kim; Diffusion and elastic equations on networks, Publ. Res. Inst. Math. Sci. 43 (2007), no. 3, 699-726.
[3] Y.-S. Chung, Y.-S. Lee, S.-Y. Chung; Extinction and positivity of the solutions of the heat equations with absorption on networks, J. Math. Anal. Appl. 380 (2011), no. 2, 642-652.
[4] L. M. Del Pezzo, C. A. Mosquera, J. D. Rossi; Existence, uniqueness and decay rates for evolution equations on trees, Port. Math. 71 (2014), no. 1, 63-77.
[5] R. Ferreira; Quenching phenomena for a non-local diffusion equation with a singular absorption, Israel J. Math. 184 (2011), 387-402.

Figure 3. Blow-up phenomenon for the equation 4.3
[6] R. Ferreira, M. Pérez-Llanos; Blow-up for the non-local p-Laplacian equation with a reaction term, Nonlinear Anal. 75 (2012), no. 14, 5499-5522.
[7] L. H. Kong, J. H. Wang, S. L. Zheng; Uniform blow-up profiles for heat equations with coupling nonlocal sources of asymmetric mixed type nonlinearities, Acta Math. Sci. Ser. B Engl. Ed. 32 (2012), no. 3, 1126-1140
[8] Y.-S. Lee, S.-Y. Chung; Extinction and positivity of solutions of the p-Laplacian evolution equation on networks, J. Math. Anal. Appl. 386 (2012), no. 2, 581-592.
[9] H. A. Levine; Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $P u_{t}=-A u+F(u)$, Arch. Rational Mech. Anal. 51 (1973), 371-386.
[10] P. Meier; On the critical exponent for reaction-diffusion equations, Arch. Rational Mech. Anal. 109 (1990), no. 1, 63-71.
[11] J.-H. Park, J.-H. Kim, S.-Y. Chung; The p-Schrödinger equations on finite networks, Publ. Res. Inst. Math. Sci. 45 (2009), no. 2, 363-381.
[12] M. Pérez-Llanos, J. D. Rossi; Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term, Nonlinear Anal. 70 (2009), no. 4, 1629-1640.
[13] F. Tahamtani, M. Shahrouzi; Asymptotic stability and blow up of solutions for a Petrovsky inverse source problem with dissipative boundary condition, Math. Methods Appl. Sci. 36 (2013), no. 7, 829-839.
[14] H. Takeuchi; The spectrum of the p-Laplacian and p-harmonic morphisms on graphs, Illinois J. Math. 47 (2003), no. 3, 939-955.
[15] M. X. Wang; Blow-up rate estimates for semilinear parabolic systems, J. Differential Equations 170 (2001), no. 2, 317-324.
[16] Y. Wang, J. Chen, B. Zhou; Blowup analysis for a nonlocal reaction diffusion equation with potential, WSEAS Trans. Math. 12 (2013), no. 7, 2224-2880.
[17] S.-T. Wu; Blow-up of solutions for a system of nonlinear parabolic equations, Electron. J. Differential Equations 2013, No. 216, 9 pp.
[18] Q. Xin, C. Mu, D. Liu; Extinction and positivity of the solutions for a p-Laplacian equation with absorption on graphs, J. Appl. Math. 2011, Art. ID 937079, 12 pp.
[19] Q. Xin, L. Xu, C. Mu; Blow-up for the ω-heat equation with Dirichlet boundary conditions and a reaction term on graphs, Appl. Anal. 93 (2014), no. 8, 1691-1701.
[20] G. Zhang, Y. Wang; Critical exponent for nonlocal diffusion equations with Dirichlet boundary condition, Math. Comput. Modelling 54 (2011), no. 1-2, 203-209.
[21] J. P. Zhao; Blow-up of solutions for a class of reaction-diffusion equations with a gradient term under nonlinear boundary condition, Z. Naturforsch. 67a (2012), 479-482.
[22] S. Zhou, C. Mu, Y. Mi, F. Zhang, Fuchen; Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition, Commun. Pure Appl. Anal. 12 (2013), no. 6, 2935-2946.

Weican Zhou
College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

E-mail address: 000496@nuist.edu.cn
Miaomiao Chen
College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

E-mail address: mmchennuist@163.com
Wenjun Liu (corresponding author)
College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

E-mail address: wjliu@nuist.edu.cn

[^0]: 2000 Mathematics Subject Classification. 35R02, 35B44, 35B51.
 Key words and phrases. ω-diffusion equation; critical exponent; blow up; blow-up rate; graph. (C) 2014 Texas State University - San Marcos.

 Submitted July 10, 2014. Published December 22, 2014.

