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SOLVABILITY OF NONLINEAR DIFFERENCE EQUATIONS OF
FOURTH ORDER

STEVO STEVIĆ, JOSEF DIBLÍK, BRATISLAV IRIČANIN, ZDENĚK ŠMARDA

Abstract. In this article we show the existence of solutions to the nonlinear

difference equation

xn =
xn−3xn−4

xn−1(an + bnxn−2xn−3xn−4)
, n ∈ N0,

where the sequences (an)n∈N0 and (bn)n∈N0 , and initial the values x−j , j =

1, 4, are real numbers. Also we find the set of initial values for which solutions
are undefinable when an 6= 0 and bn 6= 0 for every n ∈ N0. When these two

sequences are constant, we describe the long-term behavior of the solutions in
detail.

1. Introduction

From the very beginning of the study of difference equations, a special attention
was paid on the solvable ones. Some old results in the topic can be found, for
example, in [9] and [18]. The publication of [24], in which Stević gave a theoretical
explanation for the formula to solutions of the following difference equation

xn =
xn−2

1 + xn−1xn−2
, n ∈ N0, (1.1)

presented in [10], trigged a renewed interest in the area (see, e.g., [1]-[4], [8, 21, 25],
[28]-[42], [44]-[49]). There are also some equations and systems which are recently
studied by using some solvable equations (see, e.g., [5, 23, 27, 43]).

In several papers were later studied some special cases of the following extension
of equation (1.1)

xn =
xn−2

an + bnxn−1xn−2
, n ∈ N0, (1.2)

where (an)n∈N0 , (bn)n∈N0 , and the initial values x−2, x−1 are real numbers, as
well as some other extensions, by using the main idea in [24] (see, e.g., [1, 2, 4,
21, 29, 32, 46]). Some systems of difference equations which are extensions of
equation (1.1) were studied, in [28, 30, 35, 36, 37, 39, 44]. For related results see
[6, 8, 25, 31, 33, 38, 40, 41, 42, 45, 47, 48, 49].
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Note that, if (xn)n≥−2 is a solution to equation (1.2) such that xn 6= 0, n ≥ −2,
then we have that

xn =
xn−1xn−2

xn−1(an + bnxn−1xn−2)
.

This form of equation (1.2) suggests investigation of the related equations which in
the numerators have more that one factor, after cancelling the same ones.

Motivated by this idea, here we will study the next difference equation

xn =
xn−3xn−4

xn−1(an + bnxn−2xn−3xn−4)
, n ∈ N0, (1.3)

where (an)n∈N0 , (bn)n∈N0 and the initial values x−j , j ∈ {1, 2, 3, 4}, are real num-
bers, which is naturally imposed for further studies in this direction.

For a solution (xn)n≥−s of the difference equation

xn = f(xn−1, . . . , xn−s), n ∈ N0, (1.4)

where f : Rs → R, s ∈ N, is said that it is periodic with period p, if there is an
n0 ≥ −s such that

xn+p = xn, for n ≥ n0.

If n0 6= −s, sometimes is said that the solution is eventually periodic. For some
results in the area (mostly on classes of equations not related to differential ones),
see, e.g. [7, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 25, 26] and the references therein.

This article is organized as follows. First, we will show that equation (1.3) can
be solved in closed form. Then, we will study in detail the long-term behavior of
their solutions for the case when (an)n∈N0 and (bn)n∈N0 are constant sequences.
Finally, we will find the domain of undefinable solutions of the equation for the
case when an 6= 0 6= bn, for every n ∈ N0.

2. Closed form solutions for (1.3)

Let (xn)n≥−4 be a solution to equation (1.3). If x−j = 0 for some j ∈ {3, 4},
then clearly x0 = 0, so that x1 is not defined. If x−2 = 0, then x1 = 0, so that x2

is not defined. If x−1 = 0, then clearly x0 is not defined. So, if x−j = 0 for some
j ∈ {1, 2, 3, 4}, then the solution is not defined.

On the other hand, if there is an n ∈ N0, say n = n0, such that xn0 = 0 and
xn 6= 0 for 0 ≤ n ≤ n0 − 1. Then xn0−3 = 0 or xn0−4 = 0, so that it must be
n0 ≤ 3. If n0 ∈ {0, 1, 2}, then clearly x−j = 0 for some j ∈ {1, 2, 3, 4}. If n0 = 3,
then x0 = 0 (the case already treated) or x−1 = 0. Hence, in all the cases there
is a j ∈ {1, 2, 3, 4} such that x−j = 0, so that according to the first part of the
consideration such solutions are not defined.

Therefore, for every well-defined solution of equation (1.3)

x−j 6= 0, 1 ≤ j ≤ 4, (2.1)

is equivalent to xn 6= 0, n ≥ −4.
Hence, for solutions satisfying (2.1), the change of variables

yn =
1

xnxn−1xn−2
, n ≥ −2, (2.2)

is possible and the sequence (yn)n≥−2 satisfies the equation

yn = anyn−2 + bn, n ∈ N0, (2.3)
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which means that
y2m+i = a2m+iy2(m−1)+i + b2m+i, (2.4)

for every m ∈ N0 and i ∈ {0, 1}, that is, (y2m+i)m≥−1, i ∈ {0, 1}, are solutions to
the difference equations

zm = a2m+izm−1 + b2m+i, m ∈ N0, (2.5)

i ∈ {0, 1}.
By a known formula, it follows that

y2m+i = yi−2

m∏
j=0

a2j+i +
m∑

l=0

b2l+i

m∏
j=l+1

a2j+i, m ∈ N0, (2.6)

i ∈ {0, 1}, are general solutions to the equations in (2.5). From (2.2) it follows that

x3m+i =
1

y3m+ix3m+i−1x3m+i−2
=

y3m+i−1

y3m+i
x3(m−1)+i,

i ∈ {0, 1, 2}, and consequently

x3m+i =
y3m+i−1

y3m+i

y3m+i−4

y3m+i−3
x3(m−2)+i,

i ∈ {0, 1, 2}, so by using the change m→ 2m + j, m ∈ N0, j ∈ {0, 1}, is obtained

x6m+3j+i =
y6m+3j+i−1

y6m+3j+i

y6m+3j+i−4

y6m+3j+i−3
x6(m−1)+3j+i,

i ∈ {0, 1, 2}, j ∈ {0, 1}, which can be written in the form

x6m+j =
y6m+j−1

y6m+j

y6m+j−4

y6m+j−3
x6(m−1)+j , m ∈ N0, (2.7)

j ∈ 0, 5, as far as 6m + j ≥ 2. From (2.7) it follows that

x6m+l = xl−6

m∏
s=0

y6s+l−1

y6s+l

y6s+l−4

y6s+l−3
, m ≥ −1, (2.8)

for l = 2, 7.
Employing the formulas in (2.6), in equalities (2.8) for l even and odd separately,

we have

x6m+2i = x2i−6

m∏
s=0

y6s+2i−1

y6s+2i

y6s+2i−4

y6s+2i−3

= x2i−6

m∏
s=0

y−1

∏3s+i−1
j=0 a2j+1 +

∑3s+i−1
l=0 b2l+1

∏3s+i−1
j=l+1 a2j+1

y−2

∏3s+i
j=0 a2j +

∑3s+i
l=0 b2l

∏3s+i
j=l+1 a2j

×
y−2

∏3s+i−2
j=0 a2j +

∑3s+i−2
l=0 b2l

∏3s+i−2
j=l+1 a2j

y−1

∏3s+i−2
j=0 a2j+1 +

∑3s+i−2
l=0 b2l+1

∏3s+i−2
j=l+1 a2j+1

= x2i−6

m∏
s=0

(x−1x−2x−3)−1
∏3s+i−1

j=0 a2j+1 +
∑3s+i−1

l=0 b2l+1

∏3s+i−1
j=l+1 a2j+1

(x−2x−3x−4)−1
∏3s+i

j=0 a2j +
∑3s+i

l=0 b2l

∏3s+i
j=l+1 a2j

×
(x−2x−3x−4)−1

∏3s+i−2
j=0 a2j +

∑3s+i−2
l=0 b2l

∏3s+i−2
j=l+1 a2j

(x−1x−2x−3)−1
∏3s+i−2

j=0 a2j+1 +
∑3s+i−2

l=0 b2l+1

∏3s+i−2
j=l+1 a2j+1
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= x2i−6

m∏
s=0

∏3s+i−1
j=0 a2j+1 + x−1x−2x−3

∑3s+i−1
l=0 b2l+1

∏3s+i−1
j=l+1 a2j+1∏3s+i

j=0 a2j + x−2x−3x−4

∑3s+i
l=0 b2l

∏3s+i
j=l+1 a2j

×
∏3s+i−2

j=0 a2j + x−2x−3x−4

∑3s+i−2
l=0 b2l

∏3s+i−2
j=l+1 a2j∏3s+i−2

j=0 a2j+1 + x−1x−2x−3

∑3s+i−2
l=0 b2l+1

∏3s+i−2
j=l+1 a2j+1

,

for m ≥ −1, i ∈ {1, 2, 3}, and

x6m+2i+1 = x2i−5

m∏
s=0

y6s+2i

y6s+2i+1

y6s+2i−3

y6s+2i−2

= x2i−5

m∏
s=0

y−2

∏3s+i
j=0 a2j +

∑3s+i
l=0 b2l

∏3s+i
j=l+1 a2j

y−1

∏3s+i
j=0 a2j+1 +

∑3s+i
l=0 b2l+1

∏3s+i
j=l+1 a2j+1

×
y−1

∏3s+i−2
j=0 a2j+1 +

∑3s+i−2
l=0 b2l+1

∏3s+i−2
j=l+1 a2j+1

y−2

∏3s+i−1
j=0 a2j +

∑3s+i−1
l=0 b2l

∏3s+i−1
j=l+1 a2j

= x2i−5

m∏
s=0

(x−2x−3x−4)−1
∏3s+i

j=0 a2j +
∑3s+i

l=0 b2l

∏3s+i
j=l+1 a2j

(x−1x−2x−3)−1
∏3s+i

j=0 a2j+1 +
∑3s+i

l=0 b2l+1

∏3s+i
j=l+1 a2j+1

×
(x−1x−2x−3)−1

∏3s+i−2
j=0 a2j+1 +

∑3s+i−2
l=0 b2l+1

∏3s+i−2
j=l+1 a2j+1

(x−2x−3x−4)−1
∏3s+i−1

j=0 a2j +
∑3s+i−1

l=0 b2l

∏3s+i−1
j=l+1 a2j

= x2i−5

m∏
s=0

∏3s+i
j=0 a2j + x−2x−3x−4

∑3s+i
l=0 b2l

∏3s+i
j=l+1 a2j∏3s+i

j=0 a2j+1 + x−1x−2x−3

∑3s+i
l=0 b2l+1

∏3s+i
j=l+1 a2j+1

×
∏3s+i−2

j=0 a2j+1 + x−1x−2x−3

∑3s+i−2
l=0 b2l+1

∏3s+i−2
j=l+1 a2j+1∏3s+i−1

j=0 a2j + x−2x−3x−4

∑3s+i−1
l=0 b2l

∏3s+i−1
j=l+1 a2j

,

for m ≥ −1, i ∈ {1, 2, 3}.
Hence the following theorem holds.

Theorem 2.1. If (xn)n≥−4 is a well-defined solution of equation (1.3), then it can
be represented in the form

x6m+2i = x2i−6

m∏
s=0

∏3s+i−1
j=0 a2j+1 + x−1x−2x−3

∑3s+i−1
l=0 b2l+1

∏3s+i−1
j=l+1 a2j+1∏3s+i

j=0 a2j + x−2x−3x−4

∑3s+i
l=0 b2l

∏3s+i
j=l+1 a2j

×
∏3s+i−2

j=0 a2j + x−2x−3x−4

∑3s+i−2
l=0 b2l

∏3s+i−2
j=l+1 a2j∏3s+i−2

j=0 a2j+1 + x−1x−2x−3

∑3s+i−2
l=0 b2l+1

∏3s+i−2
j=l+1 a2j+1

,

(2.9)
and

x6m+2i+1 = x2i−5

m∏
s=0

∏3s+i
j=0 a2j + x−2x−3x−4

∑3s+i
l=0 b2l

∏3s+i
j=l+1 a2j∏3s+i

j=0 a2j+1 + x−1x−2x−3

∑3s+i
l=0 b2l+1

∏3s+i
j=l+1 a2j+1

×
∏3s+i−2

j=0 a2j+1 + x−1x−2x−3

∑3s+i−2
l=0 b2l+1

∏3s+i−2
j=l+1 a2j+1∏3s+i−1

j=0 a2j + x−2x−3x−4

∑3s+i−1
l=0 b2l

∏3s+i−1
j=l+1 a2j

,

(2.10)

for m ≥ −1, i ∈ {1, 2, 3}.
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Remark 2.2. The formulas in (2.9) and (2.10) can be regarded as an integral
formula for general solution of equation (1.3). In fact, they include non-defined
solutions, which will be described in detail in the last section of this article.

3. Constant coefficients case

In this section we study equation (1.3) when

an = a, bn = b, n ∈ N0,

where a and b are some real constants. In this case, equation (1.3) becomes

xn =
xn−3xn−4

xn−1(a + bxn−2xn−3xn−4)
, n ∈ N0. (3.1)

If x−j 6= 0, j = 1, 4, from (2.9) and (2.10) we have

x6m+2i = x2i−6

m∏
s=0

(x−1x−2x−3)−1
∏3s+i−1

j=0 a +
∑3s+i−1

l=0 b
∏3s+i−1

j=l+1 a

(x−2x−3x−4)−1
∏3s+i

j=0 a +
∑3s+i

l=0 b
∏3s+i

j=l+1 a

×
(x−2x−3x−4)−1

∏3s+i−2
j=0 a +

∑3s+i−2
l=0 b

∏3s+i−2
j=l+1 a

(x−1x−2x−3)−1
∏3s+i−2

j=0 a +
∑3s+i−2

l=0 b
∏3s+i−2

j=l+1 a

= x2i−6

m∏
s=0

(x−1x−2x−3)−1a3s+i + b
∑3s+i−1

l=0 a3s+i−1−l

(x−2x−3x−4)−1a3s+i+1 + b
∑3s+i

l=0 a3s+i−l

×
(x−2x−3x−4)−1a3s+i−1 + b

∑3s+i−2
l=0 a3s+i−2−l

(x−1x−2x−3)−1a3s+i−1 + b
∑3s+i−2

l=0 a3s+i−2−l
,

(3.2)

m ≥ −1, i ∈ {1, 2, 3}, and

x6m+2i+1 = x2i−5

m∏
s=0

(x−2x−3x−4)−1
∏3s+i

j=0 a +
∑3s+i

l=0 b
∏3s+i

j=l+1 a

(x−1x−2x−3)−1
∏3s+i

j=0 a +
∑3s+i

l=0 b
∏3s+i

j=l+1 a

×
(x−1x−2x−3)−1

∏3s+i−2
j=0 a +

∑3s+i−2
l=0 b

∏3s+i−2
j=l+1 a

(x−2x−3x−4)−1
∏3s+i−1

j=0 a +
∑3s+i−1

l=0 b
∏3s+i−1

j=l+1 a

= x2i−5

m∏
s=0

(x−2x−3x−4)−1a3s+i+1 + b
∑3s+i

l=0 a3s+i−l

(x−1x−2x−3)−1a3s+i+1 + b
∑3s+i

l=0 a3s+i−l

×
(x−1x−2x−3)−1a3s+i−1 + b

∑3s+i−2
l=0 a3s+i−2−l

(x−2x−3x−4)−1a3s+i + b
∑3s+i−1

l=0 a3s+i−1−l
,

(3.3)

for m ≥ −1, i ∈ {1, 2, 3}.
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If a 6= 1, then from (3.2) and (3.3) we have

x6m+2i = x2i−6

m∏
s=0

(x−1x−2x−3)−1(1− a)a3s+i + b(1− a3s+i)
(x−2x−3x−4)−1(1− a)a3s+i+1 + b(1− a3s+i+1)

× (x−2x−3x−4)−1(1− a)a3s+i−1 + b(1− a3s+i−1)
(x−1x−2x−3)−1(1− a)a3s+i−1 + b(1− a3s+i−1)

= x2i−6

m∏
s=0

((x−1x−2x−3)−1(1− a)− b)a3s+i + b

((x−2x−3x−4)−1(1− a)− b)a3s+i+1 + b

× ((x−2x−3x−4)−1(1− a)− b)a3s+i−1 + b

((x−1x−2x−3)−1(1− a)− b)a3s+i−1 + b
,

(3.4)

for m ≥ −1, i ∈ {1, 2, 3}, and

x6m+2i+1 = x2i−5

m∏
s=0

(x−2x−3x−4)−1(1− a)a3s+i+1 + b(1− a3s+i+1)
(x−1x−2x−3)−1(1− a)a3s+i+1 + b(1− a3s+i+1)

× (x−1x−2x−3)−1(1− a)a3s+i−1 + b(1− a3s+i−1)
(x−2x−3x−4)−1(1− a)a3s+i + b(1− a3s+i)

= x2i−5

m∏
s=0

((x−2x−3x−4)−1(1− a)− b)a3s+i+1 + b

((x−1x−2x−3)−1(1− a)− b)a3s+i+1 + b

× ((x−1x−2x−3)−1(1− a)− b)a3s+i−1 + b

((x−2x−3x−4)−1(1− a)− b)a3s+i + b
,

(3.5)

for m ≥ −1, i ∈ {1, 2, 3}.

Case a = 1. From (3.2) and (3.3) we have

x6m+2i

= x2i−6

m∏
s=0

(x−1x−2x−3)−1 + b(3s + i)
(x−2x−3x−4)−1 + b(3s + i + 1)

(x−2x−3x−4)−1 + b(3s + i− 1)
(x−1x−2x−3)−1 + b(3s + i− 1)

,

(3.6)
for m ≥ −1, i ∈ {1, 2, 3}, and

x6m+2i+1

= x2i−5

m∏
s=0

(x−2x−3x−4)−1 + b(3s + i + 1)
(x−1x−2x−3)−1 + b(3s + i + 1)

(x−1x−2x−3)−1 + b(3s + i− 1)
(x−2x−3x−4)−1 + b(3s + i)

,

(3.7)
for m ≥ −1, i ∈ {1, 2, 3}.

4. Long-term behavior of solutions to (3.1)

Before we formulate and prove the main results in this section, we want to
introduce the following notation

y−1 = (x−1x−2x−3)−1, y−2 = (x−2x−3x−4)−1,

which are consistent with the considerations and notation in the previous section
(see the change of variables (2.2)). Set

p2i
m =

((y−1(1− a)− b)a3m+i + b)((y−2(1− a)− b)a3m+i−1 + b)
((y−2(1− a)− b)a3m+i+1 + b)((y−1(1− a)− b)a3m+i−1 + b)

(4.1)
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and

p2i+1
m =

((y−2(1− a)− b)a3m+i+1 + b)((y−1(1− a)− b)a3m+i−1 + b)
((y−1(1− a)− b)a3m+i+1 + b)((y−2(1− a)− b)a3m+i + b)

, (4.2)

for m ≥ −1 and i ∈ {1, 2, 3}.

Case a 6= −1, b 6= 0. First we describe the long-term behavior of well-defined
solution of equation (3.1) for the case a 6= −1, b 6= 0.

Theorem 4.1. Assume that a 6= −1, b 6= 0 and (xn)n≥−4 is a well-defined solution
of equation (3.1). Then the following statements are true.

(a) If |a| > 1, y−1 6= b/(1− a) 6= y−2, then xn → 0 as n→ +∞.
(b) If |a| > 1, y−1 = b/(1 − a) 6= y−2, then x6m+2i → 0, i ∈ {1, 2, 3} as

m→ +∞.
(c) If |a| > 1, y−1 = b/(1 − a) 6= y−2, then |x6m+2i+1| → ∞, i ∈ {1, 2, 3} as

m→ +∞.
(d) If |a| > 1, y−1 6= b/(1 − a) = y−2, then |x6m+2i| → ∞, i ∈ {1, 2, 3} as

m→ +∞.
(e) If |a| > 1, y−1 6= b/(1 − a) = y−2, then x6m+2i+1 → 0, i ∈ {1, 2, 3} as

m→ +∞.
(f) If |a| < 1, then the sequences (x6m+j)m∈N0 converge for every j = 0, 5.
(g) If y−1 = b/(1− a) = y−2 or a = 0, then x6m+j = xj−6, m ∈ N0, j = 2, 7.
(h) If a = 1, then xn → 0 as n→ +∞.

Proof. (a): From (4.1) and (4.2), we have

p2i
m =

((y−1(1− a)− b) + (b/a3m+i))((y−2(1− a)− b) + (b/a3m+i−1))
((y−2(1− a)− b)a + (b/a3m+i))((y−1(1− a)− b) + (b/a3m+i−1))

→ 1
a

and

p2i+1
m =

((y−2(1− a)− b) + (b/a3m+i+1))((y−1(1− a)− b) + (b/a3m+i−1))
((y−1(1− a)− b) + (b/a3m+i+1))((y−2(1− a)− b)a + (b/a3m+i−1))

→ 1
a
,

as m→ +∞, for every i ∈ {1, 2, 3}, which means that

lim
m→+∞

pj
m =

1
a
, (4.3)

for every j = 2, 7. From (3.4), (3.5), (4.3) and the assumption |a| > 1, statement
(a) follows easily.

(b) and (c): In this case we have

p2i
m =

(y−2(1− a)− b)a3m+i−1 + b

(y−2(1− a)− b)a3m+i+1 + b
→ 1

a2
, (4.4)

p2i+1
m =

(y−2(1− a)− b)a3m+i+1 + b

(y−2(1− a)− b)a3m+i + b
→ a, (4.5)

as m→ +∞, for every i ∈ {1, 2, 3}, From (3.4), (3.5), (4.4), (4.5) and the assump-
tion |a| > 1, these two statements follow easily.

(d) and (e): In this case we have

p2i
m =

(y−1(1− a)− b)a3m+i + b

(y−1(1− a)− b)a3m+i−1 + b
→ a, (4.6)
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p2i+1
m =

(y−1(1− a)− b)a3m+i−1 + b

(y−1(1− a)− b)a3m+i+1 + b
→ 1

a2
, (4.7)

as m→ +∞, for every i ∈ {1, 2, 3}, From (3.4), (3.5), (4.6), (4.7) and the assump-
tion |a| > 1, these two statements follow easily.

(f): Using the asymptotic relation

(1 + x)−1 = 1− x + O(x2), (4.8)

when x is in a neighborhood of zero, we have

p2i
m =

(1 + (y−1(1− a)− b)a3m+i/b)(1 + (y−2(1− a)− b)a3m+i−1/b)
(1 + (y−2(1− a)− b)a3m+i+1/b)(1 + (y−1(1− a)− b)a3m+i−1/b)

= 1 +
1
b

(
(y−1(1− a)− b)

(
1− 1

a

)
+ (y−2(1− a)− b)

(1
a
− a
))

a3m+i

+ o(a3m)

(4.9)

and

p2i+1
m =

(1 + (y−2(1− a)− b)a3m+i+1/b)(1 + (y−1(1− a)− b)a3m+i−1/b)
(1 + (y−1(1− a)− b)a3m+i+1/b)(1 + (y−2(1− a)− b)a3m+i/b)

= 1 +
1
b

(
(y−2(1− a)− b)(a− 1) + (y−1(1− a)− b)

(1
a
− a
))

a3m+i

+ o(a3m),

(4.10)

for every i ∈ {1, 2, 3} and sufficiently large m. From (4.9), (4.10), the assumption
|a| < 1, and by a known result on the convergence of products the result follows
easily.

(g): The result follows from direct calculations and formulas (3.4) and (3.5).
(h): Let

r2i
m =

y−1 + bi + 3bm

y−2 + b(i + 1) + 3bm

y−2 + b(i− 1) + 3bm

y−1 + b(i− 1) + 3bm
,

r2i+1
m =

y−2 + b(i + 1) + 3bm

y−1 + b(i + 1) + 3bm

y−1 + b(i− 1) + 3bm

y−2 + bi + 3bm
,

for i ∈ {1, 2, 3}. Then we have

r2i
m =

(
1 + y−1+bi

3bm

)
(

1 + y−2+b(i+1)
3bm

)
(

1 + y−2+b(i−1)
3bm

)
(

1 + y−1+b(i−1)
3bm

) = 1− 1
3m

+ O
( 1

m2

)
(4.11)

and

r2i+1
m =

(
1 + y−2+b(i+1)

3bm

)
(

1 + y−1+b(i+1)
3bm

)
(

1 + y−1+b(i−1)
3bm

)
(

1 + y−2+bi
3bm

) = 1− 1
3m

+ O
( 1

m2

)
. (4.12)

From (4.11) and (4.12), we have that the products in (3.6), (3.7) are equiconver-
gent with the product

n∏
j=1

(
1− 1

3j
+ O

( 1
j2

))
,
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that is, with the sequence

exp
( n∑

j=1

ln
(

1− 1
3j

+ O
( 1

j2

)))
= exp

(
− 1

3

n∑
j=1

(1
j

+ O
( 1

j2

)))
. (4.13)

From (4.13), and the fact that limn→∞
∑n

j=1
1
j = +∞, the statement follows.

Case a = −1, b 6= 0. Here we describe long-term behavior of well-defined solutions
of (3.1) for the case a = −1, b 6= 0, by using the next two formulas

x6m+2i = x2i−6

m∏
s=0

(2y−1 − b)(−1)3s+i + b

(2y−2 − b)(−1)3s+i+1 + b
· (2y−2 − b)(−1)3s+i−1 + b

(2y−1 − b)(−1)3s+i−1 + b

and

x6m+2i+1 = x2i−5

m∏
s=0

(2y−2 − b)(−1)3s+i+1 + b

(2y−1 − b)(−1)3s+i+1 + b
· (2y−1 − b)(−1)3s+i−1 + b

(2y−2 − b)(−1)3s+i + b
,

for m ≥ −1 and i ∈ {1, 2, 3}, which are obtained from (3.4) and (3.5) with a = −1.
Employing these formulas we obtain

x12m+2i = x2i−6

2m∏
s=0

(2y−1 − b)(−1)3s+i + b

(2y−1 − b)(−1)3s+i−1 + b

= x2i−6
(2y−1 − b)(−1)i + b

(2y−1 − b)(−1)i−1 + b

m−1∏
s=0

b2 − (2y−1 − b)2

b2 − (2y−1 − b)2

= x2i−6
(2y−1 − b)(−1)i + b

(2y−1 − b)(−1)i−1 + b
,

(4.14)

x12m+6+2i = x2i−6

2m+1∏
s=0

(2y−1 − b)(−1)3s+i + b

(2y−1 − b)(−1)3s+i−1 + b

= x2i−6

m∏
s=0

b2 − (2y−1 − b)2

b2 − (2y−1 − b)2

= x2i−6,

(4.15)

x12m+2i+1 = x2i−5

2m∏
s=0

(2y−2 − b)(−1)3s+i+1 + b

(2y−2 − b)(−1)3s+i + b

= x2i−5
(2y−2 − b)(−1)i+1 + b

(2y−2 − b)(−1)i + b

m−1∏
s=0

b2 − (2y−2 − b)2

b2 − (2y−2 − b)2

= x2i−5
(2y−2 − b)(−1)i+1 + b

(2y−2 − b)(−1)i + b
,

(4.16)

x12m+6+2i+1 = x2i−5

2m+1∏
s=0

(2y−2 − b)(−1)3s+i+1 + b

(2y−2 − b)(−1)3s+i + b

= x2i−5

m∏
s=0

b2 − (2y−2 − b)2

b2 − (2y−2 − b)2

= x2i−5

(4.17)

for m ≥ −1 and i ∈ {1, 2, 3}.
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From (4.14)-(4.17) the following theorem follows. �

Theorem 4.2. Assume that a = −1, b 6= 0. Then every well-defined solution
(xn)n≥−4 of equation (3.1) is twelve-periodic and is given by formulas (4.14)-(4.17).

The twelve-periodicity of every well-defined solution (xn)n≥−4 of equation (3.1)
in the case a = −1, b 6= 0, can be proved also without calculations in the following
way. First note that the sequence

yn =
1

xnxn−1xn−2
, n ≥ −2,

satisfies the recurrence relation

yn = b− yn−2, n ∈ N0,

from which it follows that
yn = yn−4, n ≥ 2;

that is, sequence (yn)n≥−2 is four-periodic, and consequently the sequence un =
1/yn, n ≥ −2, is also four-periodic. Further, we have

xn =
un

xn−1xn−2
=

un

un−1
xn−3, n ≥ −1. (4.18)

By using relation (4.18) four times, we obtain

xn =
un

un−1

un−3

un−4

un−6

un−7

un−9

un−10
xn−12, n ≥ 8.

This along with four-periodicity of (un)n≥−2 implies twelve-periodicity of (xn)n≥−4.

Case a 6= 0, b = 0. If a 6= 0 and b = 0 then equation (3.1) becomes

xn =
xn−3xn−4

xn−1a
, n ∈ N0,

and formulas (3.4)-(3.7) also hold, from which we obtain

x6m+2i =
x2i−6

am+1
,

for m ≥ −1, i ∈ {1, 2, 3}, and

x6m+2i+1 =
x2i−5

am+1
,

for m ≥ −1, i ∈ {1, 2, 3}, which means that

x6m+j =
xj−6

am+1
, (4.19)

for every m ≥ −1 and j = 2, 7. Using (4.19) we obtain the following theorem.

Theorem 4.3. Assume that a 6= 0, b = 0, and (xn)n≥−4 is a well-defined solution
of equation (3.1). Then the following statements are true.

(a) If |a| > 1, then xn → 0 as n→ +∞.
(b) If |a| < 1, then |xn| → ∞ as n→ +∞.
(c) If a = 1, then the sequence (xn)n≥−4 is six-periodic.
(d) If a = −1, then the sequence (xn)n≥−4 is twelve-periodic.
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5. Domain of undefinable solutions for (1.3)

We have already shown that solutions of equation (1.3) are not defined if x−j = 0
for some j ∈ {1, 2, 3, 4}. A natural problem is to describe the set of all initial values
for which solutions to equation (1.3) are not defined.

Definition 5.1 ([34]). Consider the difference equation

xn = f(xn−1, . . . , xn−s, n), n ∈ N0, (5.1)

where s ∈ N, and x−i ∈ R, i = 1, s. The string of numbers x−s, . . . , x−1, x0, . . . , xn0

where n0 ≥ −1, is called an undefined solution of equation (5.1) if

xj = f(xj−1, . . . , xj−s, j)

for 0 ≤ j < n0 + 1, and xn0+1 is not a defined number; that is, the quantity
f(xn0 , . . . , xn0−s+1, n0 + 1) is not defined.

The set of all initial values x−s, . . . , x−1 which generate undefined solutions of
equation (5.1) is called domain of undefinable solutions of the equation. This do-
main is characterized in the next theorem for the case an 6= 0, bn 6= 0, n ∈ N0.

Theorem 5.2. Assume that an 6= 0, bn 6= 0, n ∈ N0. Then the domain of unde-
finable solutions of equation (1.3) is the set

U = ∪m∈N0 ∪1
i=0

{
(x−4, . . . , x−1) ∈ R4 : xi−2xi−3xi−4 =

1
cm

, where

cm := −
m∑

j=0

b2j+i

a2j+i

j−1∏
l=0

1
a2l+i

6= 0
}
∪ ∪4

j=1

{
(x−4, . . . , x−1) ∈ R4 : x−j = 0

}
.

(5.2)

Proof. The considerations at the beginning of Section 2 show that the domain of
undefinable solutions of equation (1.3) contains the set

∪4
j=1

{
(x−4, . . . , x−1) ∈ R4 : x−j = 0

}
.

Now assume x−j 6= 0, j = 1, 4 (i.e. xn 6= 0 for every n ≥ −4). If a solution
(xn)n≥−4 with such initial values is not defined then it must be

xn−2xn−3xn−4 = −an

bn
(5.3)

for some n ∈ N0 (here we use the condition bn 6= 0, n ∈ N0).
Now recall that the change of variables (2.2) implies that equation (1.3) is equiv-

alent to the equations in (2.4). Hence, this along with (5.3) implies that solution
(xn)n≥−4 is not defined if

y2(m−1)+i = − b2m+i

a2m+i

for some m ∈ N0 and i ∈ {0, 1}. Set

f2m+i(t) := a2m+it + b2m+i, m ∈ N0, i ∈ {0, 1}.
Then f−1

2m+i(t) = (t− b2m+i)/a2m+i, m ∈ N0, i ∈ {0, 1}, and specially

f−1
2m+i(0) = − b2m+i

a2m+i
, m ∈ N0, i ∈ {0, 1}. (5.4)

Now write equations in (2.4) as

y2m+i = f2m+i(y2(m−1)+i), m ∈ N0,
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for i ∈ {0, 1}. Then, we have

y2m+i = f2m+i ◦ f2(m−1)+i ◦ · · · ◦ fi(yi−2), m ∈ N0, i ∈ {0, 1}. (5.5)

Equalities (5.4) and (5.5) imply that

y2(m−1)+i = − b2m+i

a2m+i

for some m ∈ N0, i ∈ {0, 1}, if and only if

yi−2 = f−1
i ◦ · · · ◦ f−1

2m+i(0). (5.6)

From (5.6) we obtain

yi−2 = −
m∑

j=0

b2j+i

a2j+i

j−1∏
l=0

1
a2l+i

,

for some m ∈ N0 and i ∈ {0, 1}, which along with the relations

yi−2 =
1

xi−2xi−3xi−4
, i ∈ {0, 1},

implies that the first union in (5.2) belongs to the domain of undefinable solutions
and consequently the result. �
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