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SOLVABILITY OF NONLINEAR DIFFERENCE EQUATIONS OF
FOURTH ORDER

STEVO STEVIC, JOSEF DIBLIK, BRATISLAV IRICANIN, ZDENEK SMARDA

ABSTRACT. In this article we show the existence of solutions to the nonlinear
difference equation
Tn—3Tn—4
Tp = , n €No,
xn—l(an + bn-¢n—2£n—3¢n—4)

where the sequences (an)nen, and (bn)nen,, and initial the values x_;, j =
1,4, are real numbers. Also we find the set of initial values for which solutions
are undefinable when a, # 0 and b, # 0 for every n € Ng. When these two
sequences are constant, we describe the long-term behavior of the solutions in
detail.

1. INTRODUCTION

From the very beginning of the study of difference equations, a special attention
was paid on the solvable ones. Some old results in the topic can be found, for
example, in [9] and [I8]. The publication of [24], in which Stevi¢ gave a theoretical
explanation for the formula to solutions of the following difference equation

_ Tpn—2
1+ 1202

presented in [I0], trigged a renewed interest in the area (see, e.g., [1]-[4], [8, 21, 25],
[28]-[42], [44]-]49]). There are also some equations and systems which are recently
studied by using some solvable equations (see, e.g., [5, 23] 27, 43]).

In several papers were later studied some special cases of the following extension

of equation (|1.1))

, n € Ny, (11)

Tn

Tn—2
an + bnxn71$n72

Tn = 5 n e NO, (12)
where (an)neng, (bn)nen,, and the initial values z_o,2_1 are real numbers, as
well as some other extensions, by using the main idea in [24] (see, e.g., [1l 2, [4]
211 29, 32, [46]). Some systems of difference equations which are extensions of

equation were studied, in [28] B0, B3] 36}, B7, 39 [44]. For related results see
(61 8, 25, (311, 133), 138, (40} (41} 42, [45), [47, 148} [49].

2000 Mathematics Subject Classification. 39A10, 39A20.

Key words and phrases. Solution to difference equation; long-term behavior of solutions;
undefinable solutions.

(©2014 Texas State University - San Marcos.

Submitted September 21, 2014. Published December 22, 2014.

1



2 S. STEVIC, J. DIBLIK, B. IRICANIN, Z. SMARDA EJDE-2014/264

Note that, if (z,)n>—_2 is a solution to equation (1.2)) such that x,, # 0, n > —2,

then we have that
Tn—1Tn—2

In—l(an + bnmn—lxn—2) .

Tp =

This form of equation ([1.2)) suggests investigation of the related equations which in
the numerators have more that one factor, after cancelling the same ones.
Motivated by this idea, here we will study the next difference equation

Tn—3Tn—4

, n € N, 1.3
xnfl(an + bnxnf2xn73xn74) 0 ( )

Ty =

where (an)neng, (bn)nen, and the initial values z_;, j € {1,2, 3,4}, are real num-
bers, which is naturally imposed for further studies in this direction.
For a solution (z,)n>—s of the difference equation

Tn = f(@p-1,...,Tn-s), n € Ny, (1.4)

where f : R® — R, s € N, is said that it is periodic with period p, if there is an
ng > —s such that
Tptp = Ty, for n > mng.

If ng # —s, sometimes is said that the solution is eventually periodic. For some
results in the area (mostly on classes of equations not related to differential ones),
see, e.g. [7, [111, 12} 13} (14} [15] 16} [T, 191 20} 22] 25, 26] and the references therein.

This article is organized as follows. First, we will show that equation can
be solved in closed form. Then, we will study in detail the long-term behavior of
their solutions for the case when (an)nen, and (by)nen, are constant sequences.
Finally, we will find the domain of undefinable solutions of the equation for the
case when a, # 0 # by, for every n € Ny.

2. CLOSED FORM SOLUTIONS FOR (|1.3)

Let (xyn)n>—4 be a solution to equation . If z_; = 0 for some j € {3,4},
then clearly x¢p = 0, so that z; is not defined. If x_5 = 0, then x; = 0, so that x5
is not defined. If z_; = 0, then clearly x¢ is not defined. So, if z_; = 0 for some
j €41,2,3,4}, then the solution is not defined.

On the other hand, if there is an n € Ny, say n = ng, such that z,, = 0 and
xn # 0 for 0 <n < ny—1 Then 2,3 = 0 or x,,—4 = 0, so that it must be
no < 3. If ng € {0,1,2}, then clearly z_; = 0 for some j € {1,2,3,4}. If ng = 3,
then zo = 0 (the case already treated) or x_; = 0. Hence, in all the cases there
isaj e {1,2,3,4} such that z_; = 0, so that according to the first part of the
consideration such solutions are not defined.

Therefore, for every well-defined solution of equation

v #0, 1<j<4, (2.1)

is equivalent to x,, # 0, n > —4.
Hence, for solutions satisfying (2.1]), the change of variables
1
Yyp = ————, n > —2, (2.2)
TpTp—1Tn—2
is possible and the sequence (y,)n>—_2 satisfies the equation

Yn = GplYn—2 + bna ne N07 (23)
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which means that
Yom+i = A2m+iY2(m—1)+i T D2m+tis (2.4)

for every m € Ny and i € {0, 1}, that is, (y2m+i)m>—1, ¢ € {0,1}, are solutions to
the difference equations

Zm = @2m+iZm—1 + bam4i, m € No, (2.5)
i€ {0,1}.
By a known formula, it follows that
m m m
Yomti = Yi-2 | [ azjri+ Y _bari [[ azjein m €N, (2.6)
j=0 =0 j=l+1

i € {0,1}, are general solutions to the equations in (2.5)). From (2.2)) it follows that

_ 1  Y3mti—1
T3m+i = = T3(m—1)+i>
Y3m+iL3m—+i—1TL3m+i—2 Y3m—+i

i € {0,1,2}, and consequently

Ysm+i—1 Y3m+i—4
T3m+i = T3(m—2)+i>
Y3m+i Y3m+i—3

i € {0,1,2}, so by using the change m — 2m + j, m € Ny, j € {0, 1}, is obtained
Yem+3j5+i—1 Yem+3j+i—4
L6m+3j+i = L6(m—1)43j+i>
Yem+3j+i Y6m+35+i—3

i €{0,1,2}, j € {0,1}, which can be written in the form

Temis = Yom—+5—1 Y6m+j— 4m6(m_1)+j’ m € Ny, (2.7)
Yem+j Yem+;-3

j €0,5, as far as 6m + j > 2. From (12.7) it follows that

Tomal = Ti_g H Y6s5+1—1 Y6s+1—4 4 m> —1 (2.8)
m—+l — — — .
5—0 Y6s+1 Y6s+1— 3 ’

for | =2,7.
Employing the formulas in (2.6)), in equalities ([2.8)) for [ even and odd separately,
we have

m
Y6s5+2i—1 Y6s5+2i—4

Tem+2i = T2i—6
o Yes+2i Y6s+2i-3

I H Y- H33+ azj41 + le ’ ‘1 b1 Hjsﬁ-? a2j41
5=0 Y- Hjﬁol azj + Y0 b H?SJ{H az;
Yoo HSs-i—z 2 as; + Z3s+z 2 bgl H?s—;-erZ as;
UIRY | Y ERIED By Sung SERY | H Har v ee)
H (x_1x_ow_3)~ HSSH ! azj+1 + ZSSH ! bai41 H] i1 a2g+1
= T2i—6 (T—o@_37_4)~ H35+z ag; +Zss+z boy H?sjil ag;
(567290739574)_1H?SJBz Zagj+ g b T az;

(r_1z 9z _3)~! Hj":{)z Pagji1 + 0 T bora H?;{QQ agj+1
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m 35+27 3s+i— 3s+i1—1
20 agjmr +aazox—33 720" bauy1 [[217 azjs
= T2i—6 I I H

3s+1 3s+1 3s+1
—0 02j +T2T_37— 421 bay H _l+1 az;
3s+z— 3s+i— 3s+i—
Hj—O agj +T2T_3T_4) ? boy H j=l+1 a2]
3s4i—2 +z— — )
1520 % agjin +ao1zow 332

b21+1 Hj:l—i—l a2j+1
for m > -1, ¢ € {1,2,3}, and

m

X

Y6s+2i  Y6s+2i—3
20 Y6s5+2i41 Y6s+-2i—2

Y—2 Hj’sff azj + Z?EH bay Hgsjﬂ azj
= T2i—5 H 3s+1
Y1 H g+ e bart [[50 0 azjea
LY HQWFz asj1 + e by [1 iﬁf azj+1
yoo T an + 000 b [0 sy
(r_ox_gw_4)7 1 HBS_Jrz az; + ZBSH bai HSS—EA az;
- H (172w _3) " [0 azja +Zz_ bovy1 [T} 41 a2y
(97371967251073)_1 H?S:T)Z_ azj+1 + Zl_o *bart IT; _z+_12 42j+1
(@_am_3m_a) " [0 ag; + Y00 ba H?’S—J{ﬁ ay;
KL ijiff’ Q25 + T _2X_3T_4 ZZ—H b H —l+1 a2
o ]_[35“ agjr1 + T 17 0x_3 ) by HjJH azj41
H;S:J(r)% 241+ T_1T_2T 3 Zli017 bary1 de-l;lz a2j+1
T agj + o ow w0 300 b Ty az;

form > —1,i € {1,2,3}.
Hence the following theorem holds.

Tem+2i+1 — T2i—5

= T2i-5

)

Theorem 2.1. If (z,,)n>—_4 is a well-defined solution of equation (1.3)), then it can
be represented in the form

+i—1

m 3s+i—1 -1
[[20 azjr + a1z 22— 321 0 b21+1H Tl azj41
Tem+2i — L2i—6 H 35+ 3541 3s5+i
s=0 H Zo G2j T 2T 374 5 by H j=1+1 425
3s+i1—2 3s+i—2 3s+i—2
szo aj + T 2T 37— 42 b2lH'—l+1 a2

3sti—2 stie stie )
520" agjn +oaz—ow—y 350" bovt [175047 7 agjnn

(2.9)
and
) T T35 azj + 29w 574 Z?’S“ bt T15204 1 a2
6m+21+1 — L2i—5
o TL26 agjn + wrw—ow 3 32070 o [T agjn
= (2.10)

3s+i—2 3s+i1—2 3s+
I[,20 "agj+o 1w o3y 0 " bup ]l =i+ azj+1
3s+i1—1 3s+i—1 3s+1i— ’
[IiZ0 azjtoxorsz_ad2y bull;D, 112]

form>—1,1i€{1,2,3}.

X
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Remark 2.2. The formulas in and can be regarded as an integral
1.’

formula for general solution of equatlon In fact, they include non-defined
solutions, which will be described in detail in the last section of this article.

3. CONSTANT COEFFICIENTS CASE

In this section we study equation (|1.3)) when
an:a7 bn:b, nENo,

where a and b are some real constants. In this case, equation (1.3) becomes

Tp—3Ln—4
Tn—1(a + bTp_2Tp_3Tn_a)

Tp =

, mn€Np. (31)

Ifz_; #0,j=1,4, fromandwehave

" (z_1x_0x_3)" H?SEP a+z3s+z H?’S:lrj-l
e e I e S e e
x (93—230—3%—4)_11_[?5"?_ a+ 33 b

(o122 5) M I e+ S5O
R e D S S
:x217631_[0 (x_ow_3x_4)~ a35+1+1+b23i+1a35+i_l
X (¢ ow_gw_g)"laP il 4 p 3R g2

(x_17_0m_3)~ a35+1—1+b23g+’ 2 3s+i—2-1’

Tem+2i —

(3.2)

m>—1,4i€{1,2,3}, and

Tem+2i+1 =

x21_5H (r_ox_3w_4)~ Hjsﬂ T sl Hgs:lrjrl
(z 1z oz ) I a+ X2 I
(o vz o) I ey bIEt a
(v srsr_a) L at o I
x21_5H (x_ox_3w_4)~ 1a3s+z‘+1+bzzi6rz‘ GSSH._Z
o (o1 _ow_g)TlaBsHitl 4 p 3T gBstit
" (x_q2_ox_g) " 35+1—1+bz3s+’t—2 3e4i2—1

(x_Qx_gx_4)_ a33+1 =+ bz?i—(’)—l_l a33+l— —1

(3.3)

i

form > -1, 1 € {1,2,3}.
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If a # 1, then from (3.2)) and (3.3)) we have

H (x 12 9z _3) (1 —a)a® T 4 b(1 — a®5+7)
T6m+2i = T2—6 T s —
G (@o2z_grog)TH(1 — a)ad T +b(1 — ads i)

EJDE-2014/264

« (x_2$_3$_4)7 (1—-a)a 3sti—1 1 b(1 a35+i71)
(x_ 195 27_3)~L(1 — a)a®sti—1 4 b(1 — @ds+i-1) -
_ 1— —ba3stt +p .
= To;_ GH (212 27 5) ( a) Ja +

((x—ox_3x_4)~1(1 —a) — b)adsti+tl + b

" ((x,gq:,gx,zl)_ (1 —a)—b)a®+ =1 +b

(z_12_9x_3)"1(1 —a) — b)adsTi-1 + b’
for m > —1, i€ {1,2,3}, and

x 9T _3%_ 4) (l—a) 35+i+1+b(
Tem+42i+1 = T2i— 5H

35+i+1)
i 0(96 1T 2% — 3)

(1 _ a)a33+z+1 + b(l _ a35+z+1)
y (r_12_9w_3) (1 —a)a® T 1 +b
(x 230 _4)7 1

(1_a35+i—1)
1— 3s+1 b(1 — 3s5+i
(1 —a)adsti +b( @ ) 55
— H (r_oz_37_4) (1 —a) —b)a® T+l 4 b
o Sg 0((1‘ 1Z2_22_3) (1 —a) —b)a3sTitl + b
(@ aw ) (1= a) —Da¥ 4
(w_oz_32_4)"1(1 —a) —b)adsti4+ b’
form > —1,i¢€ {1,2,3}.

Case a = 1. From and . we have

T6m+2i
= To; ﬁ o 3) +b(B3s+1i) (zor_3z4)"' +0Bs+i—1)
o s=0 (z_QI_P’I 4) =+ b(33 +1i+ 1) (iE—lQZ—QI 3)71 + b(3$ +17— 1)7
(3.6)
for m > —1, 4 € {1,2,3}, and

Tem+2i+1

— 0 ﬁ (o 32_4) P +b(Bs+i+1) (z_12_2w_3) L +bBs+i—1)
S o (@1wow_3) Tt +b(3s + i+ 1)

(x_gw_3x_4)" 1 4+ b(3s+ 1)

(3.7)
form > -1, i € {1,2,3}.

4. LONG-TERM BEHAVIOR OF SOLUTIONS TO (3.1))

Before we formulate and prove the main results in this section, we want to
introduce the following notation

Y-1= (x,1x72x73)_1, Yo = ($72$739€74)_1,

which are consistent with the considerations and notation in the previous section
(see the change of variables (2.2])). Set

) 3m—+i—1 + b)
(1 _ (1) _ b)a3m+1 1 + b) (41)

i~ (= 0) D)™ 1 b)(yo(1 —a) -
" (21— @) — B 1 b)((y—
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and
2it1 _ (g2 —a) = b)a®> " + b)((y-1(1 — a) — b)a®> "1 +b)
P T (= a) = D)@ £ b)(y (1 — a) — b)aim i +)
for m > —1 and i € {1,2,3}.

(4.2)

Case a # —1, b # 0. First we describe the long-term behavior of well-defined
solution of equation (3.1]) for the case a # —1, b # 0.

Theorem 4.1. Assume that a # —1, b # 0 and (z,,)n>—4 is a well-defined solution
of equation . Then the following statements are true.
(a) Ifla] > 1, y_1 #b/(1 — a) # y_2, then x,, — 0 as n — +oo.
(b) If la] > 1, y—1 = b/(1 —a) # y_a, then Tgmioi — 0, i € {1,2,3} as
m — +00.
(¢) If la] > 1, y_1 = b/(1 — a) # y—a, then |Temi2i+1| — 00, i € {1,2,3} as
m — +00.
(d) If la| > 1, y—1 # b/(1 —a) = y_2, then |Temi2i| — o0, i € {1,2,3} as
m — +00.
(e) If la] > 1, y—1 # b/(1 —a) = y_2, then Temi2i41 — 0, ¢ € {1,2,3} as
m — +00.
(f) If |a| < 1, then the sequences (Tem+j)men, converge for every j =0,5.
() Ify_1 =b/(1 —a) =y—_2 ora=0, then Temt; = Tj—¢, m € No, j =2,7.
(h) Ifa =1, then , — 0 as n — +oo.

Proof. (a): From (4.1)) and (4.2)), we have

pi= all—a)—b)+ (b/a’™ ) ((y—2(1 —a) = b) + (b/a® 7)) 1
™" (y—a(1 —a) — b)a+ (b/a® 1)) ((y_1(1 —a) — b) + (b/a®™+i-1))  q

and

sir1 _ (y2(1—a) =b) + (b/a® T ))((y1(1 = a) —b) + (b/a®™"7Y)) 1
" (a1 =a) = b) + (/@) ((y—2(1 — a) = bla+ (b/a> 71)) a’

as m — 400, for every i € {1,2,3}, which means that

. 1
li == 4.3
im_ph = (43)

m——+oo
for every j = 2,7. From (3.4), (3.5), (4.3) and the assumption |a| > 1, statement
(a) follows easily.

(b) and (c): In this case we have

) _ _ 3m+i—1
2i (y—2(l —a) —b)a ‘ +0b _ i7 (4.4)
(y—2(1 —a) = b)a®mtitl 4+ o2
siv1 _ (y—2(1—a) =b)a®" "+ 4+ b
™ (y_o(1—a) —b)admTi+ b
as m — o0, for every i € {1,2,3}, From (3.4), (3.5), (4.4), (4.5) and the assump-

tion |a| > 1, these two statements follow easily.

— a, (4.5)

(d) and (e): In this case we have

(y-1(1— @) = D)a®™ " + b
(y-1(1=a) — a1+

piﬁ = a, (4.6)
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3m-+i—1

2i+1 _ (y-1(1 —a) —b)a +b . 1

i R e

as m — +oo, for every i € {1,2, 3}, From (3.4), (3.5)), (4.6), (4.7) and the assump-

tion |a| > 1, these two statements follow easily.

(4.7)

(f): Using the asymptotic relation
(1+z) ' =1—2+0(?), (4.8)
when z is in a neighborhood of zero, we have

s (L4 (a1 — @) = B)a¥™ 1 /B)(1 + (y_o(1 — a) — b)a®™+~1/b)

(14 (y—2(1 — a) = b)adm+it /b)Y (1 4 (y—1(1 — a) — b)a>™+i=1/b)

=1+ %((yq(l —a)-p)(1- 2) +(y_o(1—a) —b) (% ~a))aPm (4.9)
+ 0(a3m)
and
sit1 _ L+ (el —a) =)@ /b)(1 4 (y1 (1 —a) = b)a® "1 /b)
m 1+ (y_1(1—a) — b)a® T+ b) (1 + (y_o(1 — a) — b)a® T /b)
=1+ %((y,g(l —a)=b)(a—1)+ (y-1(1 —a) — b)(é — a))a3m+i (4.10)
+o(a’™),

for every i € {1,2,3} and sufficiently large m. From (4.9), (4.10)), the assumption
la] < 1, and by a known result on the convergence of products the result follows
easily.
(g): The result follows from direct calculations and formulas (3.4]) and (3.5).
(h): Let
2 _ y_1+bi+3bm y_o+bi—1)+3bm
™y g+ b(i4 1)+ 3bmy_y +b(i — 1) 4 3bm’
p2itl _ Y2t b(i+1)+3bmy_1+b(i — 1)+ 3bm
™y +b(i+1)+3bm y_o+bi+ 3bm
for i € {1,2,3}. Then we have

)

1 4bi —2+b(i—1)
2 (1 + i ) (1 i “T) 1 1
fm = y_a+b(i+1) PRETICT) M O(7> 1)
_2 —1 — m m
(]‘ + 3bm ) (1 + 3bm )
and
‘ (1+ y72+b751i+1)) <1+ y71+b7(ni—1)) 1 1
ratt = ibb(‘ﬂ) 3b+b‘ =1- 3m T O<72) (4.12)
Y_1 7 Yy—2101 m
(1 + T) (1 + S )

From (4.11]) and (4.12)), we have that the products in (3.6]), (3.7) are equiconver-

gent with the product
1 1
L o(L)
( 55 T\

J

n

1
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that is, with the sequence

n

exp(Zln(lngrO(%))):exp(—éZ(%JrO(j%))). (4.13)

j=1
From , and the fact that lim,, . > i1 J = 400, the statement follows.

Case a = —1, b # 0. Here we describe long-term behavior of well-defined solutions
of ﬂ ) for the case a = —1, b # 0, by using the next two formulas
T 2y 1= b)(— )38+'L +b (2y_2 _ b)(_1)33+i—1 +b
Tem+2i = L2i—6 H 1)3s+i+1 ’ 3sHi—1
o (2y—2 —b)(—1) +b (2y—1 —b)(-1) +0

and

z =z H (2y—2 —D)(=1)* " b 2y —b)(=D)* T +b
6m+2i+1 — L2i—5 (2y 1— b)( )3s+i+1 +b (2y72 _ b)(_1)3s+i Tb 5

form>—1landic€ {17 ,3}, which are obtained from (3.4) and (3.5 with a = —1.
Employing these formulas we obtain

x ﬁ (2y-1 = D) (=1)** + b
2i—6 2y1—b )3s+i—1+b

@y =)D 4D TP 2y b)? (4.14)
Ry b)) b L B2 —(2y 1 —b)?

(2y—1 = b)(=1)" +b

2y_1 —b)(=1)"1 + b’

o @y b (DR b
T12m+6+2i = L2—6 H (2y_1 — b)(_1)3$+i—1 +b

s=0
2y 1 — b) (415)
= T2i—6 H 2y L= b)

T12m+2i =

= 9321'76(

= X2i{—6,

2 o b Ss+i+1 +b
T2j— 5H y-2 ) )

T12m+2i+1 = 2y —b)(—1)>+ 1 b

s=0
B R EIG VARE N e /) S PRT
2y2—b)(-1)+b 14 B — (2y 2 —b)
N 7 Tt Ol Gl Dl
T Ry —b) (=i b

2m+1 (2y_o — b)( )35+i+1+b
T2;—5 H

sy —b)(=1)F Tt 4D
b2 — (2y_o — b)? (4.17)
=2y, —0)?

T12m+6+2i+1 =

= T2i5

= T2i—5
for m > —1 and 7 € {1, 2, 3}.
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From (4.14)-(4.17)) the following theorem follows. O

Theorem 4.2. Assume that a = —1, b # 0. Then every well-defined solution
(Tn)n>—a of equation (3.1) is twelve-periodic and is given by formulas (4.14)-(4.17).

The twelve-periodicity of every well-defined solution (x,),>_4 of equation (3.1)
in the case a = —1, b # 0, can be proved also without calculations in the following
way. First note that the sequence

1
Y= ——————, n=-2
TnTn—1Tn—2
satisfies the recurrence relation
Yn =b—Yn—2, n € Ny,
from which it follows that
Yn = Yn—a, N =25
that is, sequence (yn)n>—2 is four-periodic, and consequently the sequence w,, =
1/yn, n > —2, is also four-periodic. Further, we have
U u
Ty = L =—"2,_3, n>-—1. (4.18)
Tp—1Tn—2 Up—1
By using relation (4.18)) four times, we obtain
Up Up—-3 Up—6 Un—9

Tp = Tp—12, N =8
Up—1 Up—4 Un—7 Un—10

This along with four-periodicity of (uy, ), >—_2 implies twelve-periodicity of (z,,)n>_4.

Case a # 0, b=0. If a # 0 and b = 0 then equation (3.1)) becomes

¢, = M7 n € Ny,
ITp—_10a
and formulas (3.4])-(3.7)) also hold, from which we obtain
L2i—6

Tem+2i = G,m+1 5

for m > —1, i € {1,2,3}, and
Lom+2i+1 = zf,i%,
a
for m > —1, ¢ € {1,2,3}, which means that
Tomaj = 2{%’; (4.19)
for every m > —1 and j = 2,7. Using we obtain the following theorem.

Theorem 4.3. Assume that a # 0, b =0, and (z,)n>—_4 is a well-defined solution
of equation (3.1). Then the following statements are true.

(a) If|a| > 1, then x, — 0 as n — +oo.

(b) If la] < 1, then |z,| — o0 as n — +o0.

(¢) If a =1, then the sequence (Ty)n>—4a is siz-periodic.

(d) If a = —1, then the sequence (xy,)n>—4 is twelve-periodic.
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5. DOMAIN OF UNDEFINABLE SOLUTIONS FOR (|1.3))

We have already shown that solutions of equation (1.3)) are not definedifz_; =0
for some j € {1,2,3,4}. A natural problem is to describe the set of all initial values
for which solutions to equation (|1.3]) are not defined.

Definition 5.1 ([34]). Consider the difference equation

T = f(Xn-1,...,Zn—s,n), n € Np, (5.1)
where s € N, and z_; € R, i =1, s. The string of numbers z_g,...,T_1, g, ..., Tn,
where ng > —1, is called an undefined solution of equation (5.1)) if

Ty = f(xjflv oo 7xj757,7)
for 0 < j < ng+ 1, and z,,41 is not a defined number; that is, the quantity
f(@ngs- - Tng—s+1,M0 + 1) is not defined.
The set of all initial values z_g,...,x_; which generate undefined solutions of

equation (5.1) is called domain of undefinable solutions of the equation. This do-
main is characterized in the next theorem for the case a, # 0, b, # 0, n € Ny.

Theorem 5.2. Assume that a, # 0, b, # 0, n € Ng. Then the domain of unde-
finable solutions of equation (1.3)) is the set

1
1 4
U = Upen, YUi—g {(x_4, e 1) ERY L xy_omi 3Ty = P where

z Ty

UU‘L{x_,...,x_ €R4:x_-:0}.
0 Q2j+i ;) G21+i } =t (-4 2 !
(5.2)

Proof. The considerations at the beginning of Section 2 show that the domain of
undefinable solutions of equation (|1.3]) contains the set

U;l‘zl{(x—% cxo) €ERYra_; =0}

Now assume z_; # 0, j = 1,4 (le. x, # 0 for every n > —4). If a solution

(Zn)n>—4a with such initial values is not defined then it must be

Qp

bn,

for some n € Ny (here we use the condition b,, # 0, n € Np).
Now recall that the change of variables implies that equation is equiv-

alent to the equations in . Hence, this along with implies that solution

(Zn)n>—4 is not defined if

(5.3)

ITpn—2Tpn—3Tpn—q4 = —

b2m+i

Yo(m-1)+i = —
A2m+i

for some m € Ny and 4 € {0,1}. Set
fngﬂ'(t) = Aom4il + b2m+i7 m € Ny, ¢ € {O7 1}
Then f5,1, (t) = (t — bamti)/a2m+i, m € No, i € {0,1}, and specially

Fomyi(0) = == m e Ny, i€ {0,1}. (5.4)
A2m+4

Now write equations in (2.4]) as

Yom+i = fom+i(Y2(m—1)+i), ™M € Np,
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for i € {0,1}. Then, we have
Yomti = fam+i © fam—1)4i© -0 fi(yi—2), m € No, i € {0,1}. (5.5)
Equalities (5.4) and (5.5) imply that

b m—+1i
Yo2(m—-1)+i = 7(1217:-1‘
for some m € Ny, i € {0,1}, if and only if
Yimz = f1 00 fon i (0). (5.6)

From ([5.6) we obtain

m Jj—1

yi*QZ_Z%H !

)
20 2+ (g G2+

for some m € Ny and ¢ € {0,1}, which along with the relations

1
io=————  1€{0,1},
v TioTi 3Ti4 {01}
implies that the first union in (5.2)) belongs to the domain of undefinable solutions
and consequently the result. O
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