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LIMIT OF MINIMAX VALUES UNDER I'-CONVERGENCE

MARCO DEGIOVANNI, MARCO MARZOCCHI

ABSTRACT. We consider a sequence of minimax values related to a class of
even functionals. We show the continuous dependence of these values under
the I'-convergence of the functionals.

1. INTRODUCTION

Let X be a Banach space and f,g : X — R two functions of class C'. Assume
also that f and g are even and positively homogeneous of the same degree.

Several results of critical point theory (see [ [I5, 22, 25]) are based on the
construction of a sequence of minimax values (¢,,) given by

¢ym = Inf max f(u
" Kek{™ UEKf( )

where Kgm) is the family of compact and symmetric subsets K of
{ue X :g(u)=1}

such that i(K) > m and i is a topological index which takes into account the
symmetry of f and g. Typical examples are the Krasnosel’skii genus (see e.g. [15]
22, 25]) and the Zs-cohomological index (see [IT] [12]). More general examples are
contained in [4].

A natural question concerns the behavior of the minimax values ¢, when f and
g are substituted by two sequences (f;,) and (gp) converging in a suitable sense.
This problem has been recently treated (see [5] [16] 21] and references therein) in the
setting of homogenization problems and limit behavior of the p-Laplace operator.

As pointed out in [5], one has

— 3 m
em = jinf F(K),

where K is the family of nonempty compact subsets K of X and F™ : K — R is
defined as

maxy,cr f(u) if K€ Kkim
+00 otherwise .

FM(K) = {
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In this way the behavior of minimax values of f is reduced to that of infimum values
for the related functionals F(™) and the convergence of infima has been extensively
studied in the setting of I'-convergence of functionals (see e.g. [3] [7]).

Let us mention that the behavior of critical values under I'-convergence has been
already studied also in [I} [9] [13] [14].

A goal of this article is to answer a question raised in [, Remark 5.2], concerning
the relation between the I'-convergence of the functionals ﬁ and that of the

related functionals (F), (m)) (see the next Corollarles M and By the way, [5l
Remark 5.2] seemed to suggest a negative answer, while we will show that it is
affirmative.

In particular, our results allow to treat the convergence of the minimax eigen-
values A associated to nonlinear problems of the form

—Apu = AV, |ulP"?u in Q,
u=0 on JQ,

where Q is a (possibly unbounded) open subset on RY, 1 < p < N and the weight
V} is possibly indefinite. As usual, in the case p = 1 a suitable relaxed interpretation
of the problem has to be introduced. For 1 < p < N fixed, eigenvalue problems of
this kind have been treated in [I7, [24]. For p = 1 with Q bounded and V;(z) =1
we refer the reader to [6l [10] 18], [T9] 20].

In Theorem [6.4] we will show the right continuity with respect to p of the minimax
eigenvalues. When ) is bounded and V,(z) = 1, the problem has been already
treated in [5] 16} 21].

A related question concerns, for f and g fixed, the dependence of the minimax
values on the topology of the space. Actually, in the setting of classical critical point
theory the topology is chosen so that f and g are of class C!, while minimization
methods and I'-convergence techniques prefer weaker topologies in which the sets

fue X: f(u) <b, g(u) =1}

are compact, but then f cannot be continuous.

In Corollary we prove, under quite general assumptions, that the minimax
values are not affected by a change of topology. Then in Theorem we show an
application in the setting of functionals of the Calculus of variations.

2. REVIEW ON VARIATIONAL CONVERGENCE

Throughout this section, X will denote a metrizable topological space.

Definition 2.1. Let (f;) be a sequence of functions from X to R. According to
[T, Definition 4.1], we define two functions

(Fflihnigffh) . X - R, (Fflifirisotipfh) X SR,

as

(F — h;friﬁffh)(“) = sup [hmlnf(lnf{fh( ):ve U})} ;

UeN (u)
(F — lim sup fh> (u) = sup [lim sup(inf{fp(v) : v € U})} ,
h— o0 UeN (u) h— o0

where M (u) denotes the family of neighborhoods of w.
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If at some v € X we have

(r ~ lim inf fh) (1) = (r — limsup fh) (),

h—o0

we simply write
(I‘ - hlim fh) (u) .
Let us also recall [7, Propositions 8.1 and 7.1].

Proposition 2.2. The following facts hold:

(a) for every u € X and every sequence (up) converging to u in X, it holds
(F — lim inf fh> (u) < liminf fp, (up) ;
h—o0 h—o0
(b) for every u € X there exists a sequence (uy) converging to u in X such that
(F — lim inf fh> (u) = liminf fy,(up);
h— o0 h— o0
(c) for every u € X and every sequence (uy) converging to u in X, it holds

(F - li}rln sup fh) (u) < 1i}ILn sup fn(un);
(d) for every u € X there exists a sequence (uy) converging to u in X such that
(F - 11211 sup fh) (u) = hin sup fn(un) ;
(e) we have
igl{f (I‘ — li}rlrisotip fh> > li}irisotip (i&f fh) .
Now let us recall from [8] Definition 5.2] a variant of the notion of equicoercivity.
Definition 2.3. A sequence (f3,) of functions from X to R is said to be asymp-

totically equicoercive if, for every strictly increasing sequence (h,) in N and every
sequence (u,) in X satisfying

sup fp, (un) < +oo,
neN

there exists a subsequence (u,,) converging in X.

The next result is a simple variant of [7, Proposition 7.2]. We prove it for reader’s
convenience.

Proposition 2.4. If (f,) is asymptotically equicoercive, we have
inf (F — lim inf fh> < lim inf (inf fh) .
X h—o0 h—o0 X

Proof. Without loss of generality, we may assume that

Tim inf (19; fh) < +o0.

h—o0
Let
limin (‘inf f;)
b> Hmint (igf f
and let (fp, ) be a subsequence such that

itelg (igl(ffhn) <b.
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Let u,, € X be such that
fhn (un) <b.

Then a subsequence (u,,) is convergent to some u in X. We infer that
inf (F — lim inf fh) < (F — lim inf fh) (u) < liminf f, (u,,) <b
X h—oo h—oo Jj—00 J 7
and the assertion follows by the arbitrariness of b. O

In the following, we denote by K be the family of nonempty compact subsets
of X. If d is a compatible distance on X, the associated Hausdorff distance dy; is
defined on K as

Ay (K, K) = { d(u, Ks) d,K}.
#(K1, Ky) = max { max d(u, Kz), max d(v, K1)
The H-topology is the topology on K induced by dy. Recall that the H-topology
just depends on the topology of X, not on the distance d. Therefore K has an
intrinsic structure of metrizable topological space.

Proposition 2.5. Let (f,) be a sequence of functions from X to R and define
Frn:K—Ras

Fn(K) =sup fp.
K

Then (fr) is asymptotically equicoercive if and only if (Fp) is asymptotically equico-
ercive with respect to the H-topology.

Proof. Assume that (f;,) is asymptotically equicoercive and let (h,) be a strictly
increasing sequence in N and (K,) a sequence in K such that

sup Fp, (Kp) < +00.
neN

We claim that U,cnK, is compact.

Actually, given a compatible distance d on X, let (u;) be a sequence in this
set and let v; € K, be such that d(v;,u;) — 0. Up to a subsequence, either
(n;) is constant or (n;) is strictly increasing. In the former case it is obvious
that (v;) admits a convergent subsequence, while in the latter case this is due to
the asymptotic equicoercivity of (fs). In any case, (u;) also admits a convergent
subsequence.

By Blaschke’s theorem (see e.g. [2, Theorem 4.4.15]) we infer that the image of
the sequence (K,) is included in a compact subset of K and the assertion follows.

Conversely, assume that (Fj) is asymptotically equicoercive and let (h,) and
(un) be such that

sup fn, (un) < +00.
neN

If we set K,, = {u,}, then (K,,) is a sequence in IC with

sup Fr, (Kp) < +00.
neN

If (K,,) is convergent in /C, then (uy,) is convergent in X. O
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3. INDEX THEORY AND MINIMAX VALUES

In this article, we consider an index i with the following properties:

(i) i(K) is an integer greater or equal than 1 and is defined whenever K is
a nonempty, compact and symmetric subset of a topological vector space
such that 0 € K;

(ii) if X is a topological vector space and K C X \ {0} is compact, symmetric
and nonempty, then there exists an open subset U of X \ {0} such that
K CU and

1(IA( ) <i(K) for any compact, symmetric and nonempty KCU;

(iii) if X,Y are two topological vector spaces, K C X \ {0} is compact, sym-
metric and nonempty and 7 : K — Y \ {0} is continuous and odd, we
have

i(m(K)) = i(K).
Well known examples are the Krasnosel’skil genus (see e.g. [15], 22]) and the Zs-
cohomological index (see [IT], [T2]). More general examples are contained in [4].

In the following, if X is a topological vector space we will denote by K the
family of nonempty, compact and symmetric subsets of X \ {0}.

If X is just a vector space, we denote by K r the family of nonempty, compact
and symmetric subsets K of some finite dimensional subspace of X such that 0 ¢ K.
Of course, we mean that the subspace is endowed with the unique topology which
makes it a topological vector space.

Let us point out a situation in which the behavior of i on s is completely
determined by that on KCs .

Proposition 3.1. If X is a metrizable and locally convex topological vector space,
the following facts hold:
(a) for every K € Ks and every sequence (Kp) in Ks converging to K with
respect to the H-topology, it holds
i(K) > limsupi(Kp);
h—o0

(b) for every K € Ks there exists a sequence (Kp) in Ks g converging to K
with respect to the H-topology such that

i(K) = lim i(K).

Proof. Assertion (a) easily follows from property (ii) of the index i. To prove (b),
consider a compatible distance d on X such that d(—u, —v) = d(u, v) and such that
B,.(u) is convex for any v € X and r > 0 (see e.g. [23]).

Given K € K, let r > 0 with K N B,.(0) = 0 and let F' C K be a finite set such
that

K C UveFBr(U) .

By substituting F' with F'U (—F'), we may assume that F' is symmetric. For every
v € F,let ¥, : X — [0,1] be a continuous function such that

¥y(u) =0 whenever u & B,.(v),

Zﬁy(u)zl for all u € K,
veF
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Zﬁv(u)gl for all u € X,
veF
I_p(u) =9Y,(—u) forallve Fandue X.

Since 0 € conv(F'), we can define an odd and continuous map m : X — conv(F) as
m(u) =Y dy(w)v.
vEF
For every u € K and v € F, we have either 9,(u) = 0 or d(v,u) < r, whence
m(u) € conv({v € F :d(v,u) <r}) forallue K,
which implies
d(m(u),u) <r foraluekK.
In particular, we have 0 & 7(K), n(K) € Ky, p, dy(7(K), K) < r and
i(m(K)) = i(K)

by property (iii) of the index i. Then assertion (b) follows. O

In an equivalent way, one can say that i : s — [1,+oo[ is the upper semicon-
tinuous envelope of its restriction to KCg p.

Now let X be a metrizable and locally convex topological vector space and let
f:X —[0,+0] and g : X \ {0} — R be two functions such that:

(a) f and g are even and positively homogeneous of degree 1;
(b) f is convex;
(c) for every b € R, the restriction of g to {u € X\{0} : f(u) < b} is continuous.

For every m > 1, one can define a minimax value ¢,, as

cm = inf supf,
Kek{™ K

where ICgm) is the family K’s in K4 such that
KC{ue X\ {0}:g(u) =1}, i(K)>m,
with the convention

inf sup f =400 if K™ =9,
Kex{™ K

One can also consider

inf  supf,
Kek(™) K

where ICS? is the family K’s in K, p such that
KC{ue X\{0}:9(u) =1}, i(K)>m,

with analogous convention if Kin},) = 0.
We aim to show that the two values agree, so that the topology of X plays a
role just in assumption (c).

Theorem 3.2. For every integer m > 1 we have

inf supf= inf supf.
Kek(™ K Kek!™ K
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Proof. Of course, we have

inf supf< inf supf.
Kek(™ K Kek( K

To prove the converse, let K € ICgm) with

sup f < o0
K

and let b € R with
b>supf.
K

Consider a compatible distance d on X as in the proof of Proposition By
assumption (c¢) we can find r > 0 such that K N B,.(0) = § and

glw) >0, supf<bg(w)
K (3.1)
whenever w € X with d(w, K) < r and f(w) <b.

Now let F, ¥, and w be as in the proof of Proposition so that m7(K) € Ks.r
with i(7(K)) > i(K) > m and d(n(u),u) < r with

w(u) € conv({v € F :d(v,u) <r}) forallue K.

Since f is convex, for every u € K there exists v € F such that d(v,u) < r and
f(m(u)) < f(v) < b, whence g(m(u)) > 0 and

fr) ()
o(n(w) = g(n(w))

by (3.1). Since g is even and continuous on 7(K) by assumption (c), if we set

e
ey €

<b

we have K € Ian;) with

sup f < b
K

and the assertion follows by the arbitrariness of b. O

Corollary 3.3. Under the assumptions of Theorem[3.3, let Y be a vector subspace
of X such that
{ue X\ {0}:g9(u) >0 and f(u) <4+o00} CY

and let Ty be any topology on Y which makes Y a metrizable and locally convex
topological vector space such that, for every b € R, the restriction of g to

{u e Y \{0}: f(u) < b}

1S Ty -continuous.
Then the minimazx values defined in the space Y agree with those defined in the
originary space X .

Proof. First of all, there is no change if X is substituted by Y endowed with the
topology of X. By Theorem it is equivalent to consider the classes ICg";,) which
do not change, when passing from the topology of X to 7y. (I
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4. VARIATIONAL CONVERGENCE OF FUNCTIONS AND SUP-FUNCTIONS

Let X be a metrizable and locally convex topological vector space and, for every
heN,let fr, : X — [0,400] and gp, : X \ {0} — R be two functions such that:
(a) fr and gj are both even and positively homogeneous of degree 1;
(b) fn is convex;
(c) for every b € R, the restriction of gj, to {u € X \ {0} : f,(u) < b} is contin-
uous.
For any integer m > 1, denote by Kiﬁ) the family of nonempty, compact and
symmetric subsets K of
{ue X\{0}:gn(u)=1}
such that i(K) > m and define f,(lm) : K — [0, +00] as

if K e kK™
f}(Lm)(K) _ {SupK fh 1 e' s,h
+o0 otherwise .

The set K will be endowed with the H-topology.
Let also f : X — [0,4+00] and g : X — R be two even functions such that

¢(0) = 0 and define K™ C K and FW : K — [0, 4+00] in an analogous way.
Theorem 4.1. Assume that
flu) > (I‘ — lim sup fh) (u) forallue X
h—o0

and that, for every strictly increasing sequence (hy) in N and every sequence (u,)
in X \ {0} converging to u # 0 such that

sup fp, (un) < +oo,

neN
it holds

g(u) = lim gp, (uy).

n—oo
Then, for every m > 1, we have

F (k) > (r — limsup ffj”)) (K) foral K €K,

h—o0

inf FOM(K) > hmsup( mf F m) ) ,
Kek h—o00

inf sup f > limsup ( 1nf sup fh)
Kek(™ K h—oo NKek!m) K
Proof. Let m > 1 and let K € K with F(™)(K) < +oo. Then K is a nonempty,
compact and symmetric subset of {u € X\{0} : g(u) = 1} with i(X) > m. Consider
a compatible distance d on X as in the proof of Proposition
Now, let b € R with
b> F™(K) =sup f
K

and let § > 0. Let o €]0, 1] be such that
sup f + o0 < bs whenever |s — 1| < o, (4.1)
K

d(s™'w,u) <& whenever u € K, w € X with d(w,u) <o and [s — 1| < 0.
(4.2)
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Then let h € N and r €]0,0/2] be such that K N By,.(0) = () and
lgn(w) = 1| <o (4.3)

for any h > h and any w € X with d(w, K) < 2r and f,(w) < b+ 0.

Again, let F and 9, be as in the proof of Proposition [3:1} Since F' is a finite set,
by (d) of Proposition we can define, for every h € N, an odd map 9y, : FF — X
such that

hlim Yp(v) =v forallveF,

f(v) > limsup fr(¢p(v)) forallve F.

h— o0

Without loss of generality, we assume that
d(¥n(v),v) <7 and fr(¢n(v)) < f(v) + o forany h > hand v € F.
Then define an odd and continuous map m;, : X — conv(y,(F)) as
mn(u) =Y D) Yn(v).
veF

For every w € K and v € F, we have either 9,(u) = 0 or d(v,u) < r, hence
d(¢n(v),u) < 2r. Therefore,

mr(u) € conv ({¢n(v) 1 v € F, d(¢n(v),u) <2r}) forallue K,

whence
d(mp(u),u) <2r <o forallh>handuc K.

Moreover, since fp is convex, for every u € K there exists v € F such that
d(n(v),u) < 2r and fa(ma(u)) < fa(n(v) < F(v) + o, whence

frn(mn(u)) <b+o forallh>handu€ K.
From (4.3)), it follows
mh(u) # 0 and |gp(7h(u)) — 1] <o forall h > h and u € K
and 7, (K) is a compact and symmetric subset of X \ {0} with
i(m, (K)) > i(K) > m.
Moreover,
fulmn(w) _ f()+o
gn(mn(w)) — gn(mn(u))
by (4.1) and g is continuous and even on 7, (K). If we set
7h (w)
gn(mn(u))

<b

K ={ tue K},

we have K, € ICgZ) and

fr(w) <b forallh>hand w € Ky,

whence
ff(bm)(Kh) <b forallh>h.

Moreover, we have

d(”(“),u) <§ forallh>handue K
gn(mn(u))
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by (4.2) and (4.3)), whence
dy (Kp,K)<§ forallh>h.

It follows
hfrfl—iip (inf {f,(lm)(f() s dy (I?,K) < 6}) <b,

hence
(F — lim sup f}(lm)) (K)<b

h—o0

by the arbitrariness of . We conclude that
FO(K) = (T = timsup F™) (K)

h—oo
by the arbitrariness of b.
From (e) of Proposition [2.2| we infer that
i (m) > lims ( : (m) >
Iygcf (K) > hfrln_zlip &rgcfh (K)

and the last assertion is just a reformulation of this fact. [
Theorem 4.2. Assume that

flu) < (F — lihlriig‘}f fh) (u) forallue X
and that, for every strictly increasing sequence (hy,) in N and every sequence ()
in X \ {0} such that

sup fr, (un) < +oo, lim (up,gn, (us)) = (u,¢) withc >0,
neN n—00

it holds
u#0 and g(u) =c.

Then, for every m > 1, we have
Fm (k) < (F ~ lim inf f,ﬂ"”) (K) forall K € K.

Proof. Let m > 1, let K € K and let (K}) be a sequence converging to K in K
such that
(r ~ lim inf ffj’”) (K) = lim inf F{™ (Kp)

Without loss of generality, we may assume that this value is not +oco. Let b € R
with
b > liminf F™ (K3) .
h—o00

Then there exists a subsequence (K}, ) such that

sup sup fp, = sup f;ST)(Khn) <b.
neN Kp,, neN

In particular, K, € Ian;Ll so that K also is symmetric.
On the other hand, for every u € K, there exists u, € Kj, with u;, — u. Since
I, (un,) < band gp, (up,) =1, it follows that

flu) < lihm inf fr(up) < liminf f (up,) <b forallue K,

K C{ue X\ {0}: gu) = 1}.
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Let U be an open subset of X \ {0} such that K C U and

i(R) < i(K)
for any nonempty, compact and symmetric subset K of U. Since K, h, C U even-
tually as n — oo, we have i(Kp, ) < i(K) eventually as n — oo, whence i(K) > m.
Therefore,
f(m)(K) =supf <b.
K
By the arbitrariness of b, the assertion follows. O

Corollary 4.3. Assume that

flu) < (I‘ - lihm inf fh) (u) forallue X
and that for every strictly increasing sequence (hy,) in N and every sequence (uy)
in X \ {0} such that

sup fp, (un) < 400, lim g, (up) =c withc>0,
neN n—oo

there exists a subsequence (un;) such that

lim wu,, =u withu # 0 and g(u) = c.

j—o0
Then, for every m > 1, the sequence (f,(Lm)) s asymptotically equicoercive and

Fm (k) < (F ~ liminf ff]")) (K) forai K €K,

inf FY(K) < liminf (&rét;cfh (K)),

Kek h—o0
inf sup f < liminf ( inf sup fh) .
(m) h (m)
Keki™ K oo Vkgek! K

Proof. If we define f;, : X — [0, +00] and F, : K — [0, +00] as
; {h@)ﬁ%w=h

Jlw) = +o0o0  otherwise,
fh(K> = Supfha
K

it is easily seen that ( fh) is asymptotically equicoercive. By Proposition (]t'h)
also is asymptotically equicoercive. In turn, from F, ,gm) > ]?h it follows that (]—',(lm))
is asymptotically equicoercive.

From Theorem .2 we infer that

F (k) < (F ~ lim inf ]-}(Lm))(K) for all K € K
and the other assertions follow from Proposition [2.4 [l

Corollary 4.4. Assume that
flu) = (F - hlim fh) (u) forallue X

and that, for every strictly increasing sequence (hy) in N and every sequence (uy)
in X \ {0} such that

sup f,, (un) < +o0,
neN
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there exists a subsequence (uy,;) converging to some u in X with

lim gp, (un;) = g(u) .
j—o0 J '
Then, for every m > 1, the sequence (f}(Lm)) s asymptotically equicoercive and

Fm (K = (r ~ lim fff“)) (K) foral K €K,

inf FM (K = 1 ('f(m)K

L FE) = Jim (g 7)),
inf supf= lim ( inf sup fh).

Kek{™ K h—=oo N gex(n) K

Proof. Since g(0) = 0, if (u,,) is convergent to some u in X with

sup fhn (Un) < +OO, lim 9h, (un) =c> 07
neN n—oo

it follows that v # 0 and g(u) = ¢. Then the assertion is just a combination of

Theorem [.1] and Corollary O

5. MINIMAX VALUES AND FUNCTIONALS OF CALCULUS OF VARIATIONS

Throughout this section, {2 denotes an open subset of RY with N > 2 and, for
any ¢ € [1,00], || - || the usual norm in L?. Since Q is allowed to be unbounded,
for any p €]1, N[ we will consider the Banach space Dy?(Q) (see e.g. [I7]) endowed

with the norm
» 1/p
Jull = 19ull, = ([ 1Vul? do)
Q

Recall that Dé’p(Q) is continuously embedded in L?" (Q), where p* = Np/(N — p),
and contains CZ°(£2) as a dense vector subspace. For any p €]1, N[, define &, :
Li () — [0, 4] as

loc

5 (U) _ HVUHP iquD(l)’p(Q)7
P ) 4+ otherwise .

In the case p = 1, define first & : L (£2) — [0, +00] as

Eiu) = Jo IVulde if ue CHSQ),
! 40 otherwise ,

then denote by & : Li (2) — [0,+00] the lower semicontinuous envelope of &
with respect to the L{ (€2)-topology. If €2 is bounded and has Lipschitz boundary,
then & has a well known integral representation (see e.g. [7, Example 3.14]).

In any case, &7 is convex, even and positively homogeneous of degree 1. Moreover,

X, ={u€ L. (Q): & (u) < +oo}

is a vector subspace of L}OC(Q) and &7 is a norm on X; which makes X; a normed

space continuously embedded in L!" (Q) = L¥1(0Q).
More precisely, if we set

Vul|P d
(ff]RN| || *u| )f/p* cu e CHRY)\ {0}} whenever 1 <p < N,
gy |U|PT dx

S(N,p) = inf{
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then we have

1%2215(N,p) >0 for all g €]1, NJ,

S(N,p)"7 ||u
It follows easily that, for every ¢ €]1, N[ and b € R, the set
U1§p§q {'LL € LIIOC(Q) : gp(u) S b}

has compact closure in L{ ().

Now, given p € [1, N[, consider V, € LN/P(Q). Let op : R — R be the odd
function such that

pr < Ep(u) whenever 1 <p < N and &,(u) < +00.

0p(s) = s'/P forall s >0
and define g, : L{ (Q) — R as

o (1) = {gp(fQ Vp lul? dw) ifu e LP"(Q), (5.1)

0 otherwise .
Proposition 5.1. The following facts hold:
(a) gp is even and positively homogeneous of degree 1;
(b) for every b € R, the restriction of g, to {u € L. (Q) : Ey(u) < b} is con-

loc

tinuous.
Proof. Assertion (a) is obvious. If (u,) is convergent to u in L () with &,(u,) <
b, then (u,) is bounded in LP () and assertion (b) also follows (see also [25)

Lemma 2.13)). O

1

We aim to compare the minimax values with respect to the L.

(Q2)-topology
with those with respect to a stronger topology. As before, denote by ICS,Z) the
family of compact and symmetric subsets K of

{ € Lige(Q) : gp(u) = 1}
such that i(K) > m, with respect to the topology of L ().

If 1 < p < N, denote also by VI(,m) the family of compact and symmetric subsets
K of

{uGDé’p(Q):/VPWFdx:l}
Q

such that i(K) > m, with respect to the norm topology of Dy (Q).
If p =1, denote by V{m) the family of compact and symmetric subsets K of

{ueL%(Q);/ﬂmumx: 1}

such that i(K) > m, with respect to the norm topology of L™ Q).

Theorem 5.2. Let f, : Ll () — [0, 4+0oc] be convez, even and positively homoge-

loc
neous of degree 1. Moreover, suppose there exists v > 0 such that

fo(u) > vEy(u) for allu € L ().
Then, for every m > 1, we have

inf supf,= inf supf,.
Kek{m K Kevi™ K
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Proof. From Proposition [5.1] and the lower estimate on f,, we infer that, for every
b € R, the restriction of g, to {u € L () : fy(u) < b} is L (9)-continuous.

loc loc
Of course, the same is true if we consider a stronger topology. Then the assertion

follows from Corollary O

Now, in view of the convergence results of the next section, let us prove some
further basic facts concerning £, and g,. The authors want to thank Lorenzo Brasco
for pointing out that a previous version of this theorem was incorrect.

Theorem 5.3. For every sequence (pp) decreasing to p in [1, N[, we have
Ep(u) = (F - hlim Sph) (u) for allu € Li, ().

Proof. Let us prove only the case p =1 < pp,. The other cases are similar and even
simpler. Let d be a compatible distance on L (Q) and let u € L] (Q). Let b € R
with

b > (r - lihrggffph> ()

and let (up) be a sequence converging to u in Li () such that

(I‘ — lihrriicgf Eph> (u) = lihrggf Ep, (up) .

Let (&p,, ) be such that

sup &, (un,) <b.
neN )

First of all,

sup / |, [Pro dz < +o0,
neN JQ

so that u € L¥1(Q). Let v, € C1(€) be such that

1
d(vp,up,) < s Epn, (vn) < b.

N
Then (v,) also converges to u in L () and is bounded in L' (€2). For every
¥ € CHRYN) with 0 < ¥ < 1, we have

b> ”an”phn > ||19vvn||phn
> V(0 — [0,V

1_phn

2 L (supp(d)) " [[V(Dvn)lls = [[0n VI,

Php Phy,

1-Phy,

> L™(supp(9)) Prn &1 (V) — ||vn VI

Phy

where L™ denotes the Lebesgue measure. Passing to the lower limit as n — oo, we
obtain

b>&1(Yu) — |[uVI .
Let ¥ : RY — [0,1] be a C*-function such that ¥(z) = 1 if |z| < 1 and 9¥(z) = 0 if
|z| > 2 and let ¥x(x) = ¥(x/k). Then

b> & (Vru) — / [ul |V | dz .
Q
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It is easily seen that (Ju) is convergent to u in L{. (€2), while (|V¥y|) is bounded
in LV (Q) and convergent to 0 a.e. in 2. Passing to the lower limit as k — oo, we

obtain b > &; (u), hence
E1(u) < (1" — liminf Sph) (u)
by the arbitrariness of b.
Now let u € LL (), let b € R with b > & (u) and let § > 0. Let w € CL()

loc

with d(w,u) < § and ||Vw|; <b. Then
b> hlim Ep, (W),

whence
b > limsup (inf{&,, (v) : d(v,u) < 0}).

h—o0

By the arbitrariness of 9§, it follows that
b> (F — limsup Eph) (u),

h—o0
hence
E1(u) > (1" — lim sup Sph) (u)
h—o00
by the arbitrariness of b. O

Theorem 5.4. Let (pr) be a sequence converging to p in [1, N[ and let V,, €
LN/Pr(Q) and V € LN/P(Q) be such that

lim Vi(z) =V (z) forae z€Q,
h—o0
T (Vi = 1Vl
Define gn,g : LL.(Q) — R according to (5.1)). Then, for every strictly increasing
sequence (hy) in N and (uy,) in L () such that

sup &, . (up) < 400,
neN

there exists a subsequence (uy;) such that

m u,, =u in L},.(Q),

J—00

Jim gr, (un;) = g(u).

Proof. Up to a subsequence, (u,) is convergent to some u in L{ () and a.e. in Q.
Moreover, for every € > 0 there exists C. > 0 independent of n such that

Vi, [P =V ulP| < Ce|Vi, [N/P2 - el [P + V] ul?

whence
Ce|Vi, [NPr 4 el [P — [V, [ [P =V [ufP| = =V [uf?.

From Fatou’s lemma it follows that

06/ VNP dx
Q

< Ce/ VNP da + E(sup ||un||zf") - limsup/ \7
Q neN hn n—oo Q

Up P =V |ul?| da,
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whence

limsup/ Vi, [tn Z:i") .
Q tn

n—oo

Prn — V |ufP| do < E(sup [lten
neN
Since (&p,,, (un)) is bounded, we infer that
sup ||un||];zb” < 400
neN hn
and the assertion follows by the arbitrariness of €. (]

6. CONVERGENCE OF MINIMAX VALUES FOR FUNCTIONALS OF CALCULUS OF
VARIATIONS

In this section, € still denotes an open subset of RY with N > 2 and, for any
p€[l,N[, & : L .(9) — [0, +0oc] the functional introduced in the previous section.

loc

Assume that (py) is a sequence converging to p in [1, N[, f : L (Q) — [0, +o0] is

loc

a functional, (f) is a sequence of functionals from L{ (Q) to [0, +00], V € LN/P(Q)
and (V},) is a sequence with Vj, € LN/P»(Q). Also suppose that:

(H1) f is even;
(H2) each fj, is convex, even and positively homogeneous of degree 1; moreover,
there exists v > 0 such that

fn(u) >vE,, (u) forallh € Nand u € Li,.(Q);
(H3) we have
hler;O Wn(z) =V(z) forae ze€Q,
Tim ([Vals/p = VIl

Let K be the family of nonempty compact subsets of Li _(Q) endowed with
the H-topology and define gs,g : Li _(2) — R according to (5.1). Then define

loc

ng)JCgm) C K and ‘7_-}(Lm)7‘7_-(m) : K — [0, +00] as in Section
Theorem 6.1. Assume that
flu) > (F — lim sup fh> (u) for allu € L, ().

h—o0

Then, for every m > 1, we have

Fm(K) > (F - limsupf,(Lm)>(K) forall K € K,

h—o0
. (m) S 1 . (m)
BF 2 o (fuf )

inf sup f > limsup ( inf sup fh) .
Kek{™ K h—oo NKek(™ K

The proof of the above theorem follows from Theorem Proposition [5.1f and
Theorem 5.4

Theorem 6.2. Assume that
Flu) < (r ~ liminf fh> () for allu € LL(Q).
h—o0
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Then, for every m > 1, the sequence (f,gm)) s asymptotically equicoercive and we
have

Fm (k) < (F ~ lim inf ffj”)) (K) forai K €K,

. (m) < limi . (m)
B FU) <mint (1 A (0),

inf sup f <liminf ( inf sup fh> .
(m) h (m)
Kek™ K —° VKek[} K

The proof of the above theorem follows from Corollary Proposition [5.1] and
Theorem [E.4

Corollary 6.3. Assume that
flu) = (r ~ lim fh> () for allue LL(Q).
Then, for every m > 1, the sequence (.F}(Lm)) 1s asymptotically equicoercive and we

have

F () = (r ~ lim f,ﬁ"”)(K) for dl K € K,

h— o0

. (m) T . (m)
inf FY"(K) = lim (Iygc]:h (K)),

KeK h—00
inf sup f= lim ( inf sup fh) .
Kek(™ K h—=oo N gex(m K

The proof of the above corollary follows from Corollary [£.4] Proposition [5.1] and
Theorem [5.4
As an example, whenever 1 < p < N and m > 1, consider again V), € LN/p(Q)

and the families V§™ already defined in Section |5l Define

)\ém) = inf sup (Sp(u))p.
Kevi™ uek

In particular, if 1 < p < N we have

)\I(,m): inf sup/|Vu|pda:.
Kevi™ ueK JQ

Theorem 6.4. Let (pp,) be a sequence decreasing to p in [1, N| and assume that
hlim Vo (@) = Vp(z)  for a.e. €,
T Vi gz, = Vol

Then, for every m > 1, we have limy_, o )\1(,7:) = )\,(,m).

Proof. Of course, it is equivalent to show that

lim (A<m>)1/ph = (A;M)”” .

h—oo Ph

By Theorem [5.2{ we get the same values )\](gm) using the L{ (Q)-topology. Then the

loc

assertion follows from Corollary and Theorem O
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