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HOPF BIFURCATION FOR TUMOR-IMMUNE COMPETITION
SYSTEMS WITH DELAY

PING BI, HEYING XIAO

Abstract. In this article, a immune response system with delay is considered,
which consists of two-dimensional nonlinear differential equations. The main

purpose of this paper is to explore the Hopf bifurcation of a immune response

system with delay. The general formula of the direction, the estimation formula
of period and stability of bifurcated periodic solution are also given. Especially,

the conditions of the global existence of periodic solutions bifurcating from

Hopf bifurcations are given. Numerical simulations are carried out to illustrate
the the theoretical analysis and the obtained results.

1. Introduction

Recently, there has been much interest in mathematical model describing the
interaction between tumor cells and effector cells of the immune system, see, for
example, Bi et al [1], d’Onofrio et al [3, 4, 5], and Yafia et al [15]. An ideal model
can provide insights into the dynamics of interactions of the immune response with
the tumor and may play a significant role in understanding of the corresponding
cancer and developing effective drug therapy strategies against it. However, it is
almost impossible to develop realistic models to describe such complex processes.
In fact, mathematical models for the dynamics of the interaction of the immune
components with tumor cells are very idealized. Thus it is feasible to propose
simple models which are capable to display some of the essential immunological
phenomena. Recently, delayed models of tumor and immune response interactions
have been studied extensively, we refer to Bi et al [1, 2], Galach [8], Mayer [13], Yafia
[16, 17, 18] and the references cited therein. It would be interesting to consider the
nonlinear dynamics of the delayed model.

In 1994, Kuznetsov et al [11] took into account the penetration of TCs by ECs,
and proposed a model describing the response of effector cells (ECs) to the growth
of tumor cells (TCs). They assumed that interactions between ECs and TCs in vitro
can be described by the kinetic scheme shown in Figure 1, where E, T,C, T ∗, E∗

are the local concentrations of ECs, TCs, EC-TC complexes, inactivated ECs, and
lethally hit TCs, respectively.

From the above kinetic scheme and the experimental observations, Kuznetsov
et al [11] claimed that the model can be reduced to two equations which describe
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the behavior of ECs and TCs only. Taking time scale as that in [8] and [2], then
Kuznetsov, Makalkin and Taylor’s model can be written as

dx
dt

= σ + ζxy − δx,

dy
dt

= αy(1− βy)− xy,
(1.1)

where x denotes the dimensionless density of ECs, y stands for the dimensionless
density of the population of TCs. All coefficients are positive, where ζ > 0 shows the
stimulation coefficient of the immune system exceeds the neutralization coefficient
of ECs in the process of the formation of EC-TC complexes, which is the most
biologically meaningful.

Figure 1. Kinetic scheme describing interactions between ECs
and TCs

Yafia [15] considered the model (1.1) and studied the linearizing stability of the
equilibrium and the existence of the Hopf bifurcation. In [8, 16, 17], the authors
obtained the same results as [15] for the model (1.1) with delay τ , as follows

dx
dt

= σ + ζx(t− τ)y(t− τ)− δx,

dy
dt

= αy(1− βy)− xy,
(1.2)

The rest of this paper is organized as follows. In section 2, we study the tumor
model with delay (1.2), and show the properties of the Hopf bifurcated periodic
solutions of this system, including the direction of Hopf bifurcation, the period and
stability of bifurcated periodic solutions. The numerical analysis and simulations
are also given to illustrate the main results. Section 3 is devoted to the existence
of the global Hopf bifurcation. A brief discussion is also given in this section.

2. Direction and stability of Hopf bifurcation

If αδ > σ, equations (1.1) and (1.2) have two possible nonnegative steady states
P0(σδ , 0) and P2(−α(βδ−ζ)+

√
∆

2ζ , α(βδ+ζ)−
√

∆
2αβζ ), where ∆ = α2(βδ− ζ)2 + 4αβζσ > 0.

Galach[8] and Yafia [16] shows the stability of the equilibria and existence of the
Hopf bifurcation for system (1.1) and (1.2), the main results are summarized as
follows.

Lemma 2.1 ([8]). If the point P2 exists and has nonnegative coordinates, then it
is stable. And there is no nonnegative periodic solution to equation (1.1).
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Lemma 2.2 ([16]). Let αδ > σ.
(1) The equilibrium point P0 is asymptotically stable for all τ > 0.
(2) If αβ > ζ, then there exists τl > 0 such that P2 is asymptotically stable for

τ < τl and unstable for τ > τl;
(3) If αβ > ζ, then there exists ε1 > 0 such that, for each 0 < ε < ε1, sys-

tem (1.2) has a family of periodic solutions pl(ε) with period Tl = Tl(ε), for the
parameter values τ = τ(ε) satisfy pl(0) = P2, Tl(0) = 2π

ωl
, τ(0) = τl. Where

τl =

{
1
ω arccos q(ω

2−r)−psω2

s2ω2+p2 , if s(r − ω2)− pq > 0,
1
ω arccos q(ω

2−r)−psω2

s2ω2+p2 + π, if s(r − ω2)− pq < 0,

ω2 =
1
2

(s2 − p2 + 2r) +
1
2

√
(s2 − p2 + 2r)2 − 4(r2 − q2).

Let τj = τl + 2jπ
ωl
, j = 0, 1, . . . . Let P2(x2, y2) be the positive equilibrium,

where x2 = −α(βδ−ζ)+
√

∆
2ζ , y2 = α(βδ+ζ)−

√
∆

2αβζ . From lemma 2.1 we know that if
0 < ζ

β < α,αδ > σ, then (2.2) undergos Hopf bifurcation at the equilibrium
P2(x2, y2), the corresponding purely imaginary roots are λ = ±iτjω, and the critical
values are τ = τj , j = 0, 1, . . . .

As pointed out by Hassard et al [10], it is interesting to determine the direction,
stability and period of these periodic solutions bifurcating from the steady state. In
this section, we will study the stability and direction of the Hopf bifurcated periodic
solution by using the center manifold reduction and normal form theory of retarded
functional differential equations due to the ideals of Faria and Magalhaés [6, 7].
Throughout this section, we assume that system (2.1) undergoes Hopf bifurcations
at the equilibrium P2 as the critical parameter τ = τj , j = 1, 2, 3 . . . and the
corresponding purely imaginary roots are ±iω.

Set z1(t) = x(t)− x2, z2(t) = y(t)− y2. Then system (1.2) can be written as

z′1(t) = α1z1(t) + α2z1(t− τ) + α3z2(t− τ) + ζz1(t− τ)z2(t− τ),

z′2(t) = β1z1(t) + β2z2(t)− αβz2
2(t)− z1(t)z2(t),

(2.1)

where α1 = −δ < 0, α2 = ζy2 > 0, α3 = ζx2 > 0, β1 = −y2 < 0, β2 =
α − 2αβy2 − x2 = −αβy2 < 0. Normalizing the delay τ in system (2.1) by the
time-scaling t→ t

τ , then (2.1) is transformed into

z′1(t) = τ(α1z1(t) + α2z1(t− 1) + α3z2(t− 1) + ζz1(t− 1)z2(t− 1)),

z′2(t) = τ(β1z1(t) + β2z2(t)− αβz2
2(t)− z1(t)z2(t)).

(2.2)

Let z(t) = (z1(t), z2(t))T . We transformed (2.2) into the FDE

ż(t) = N(τ)(zt) + F (zt, τ), (2.3)

where N(ϕ) : C([−1, 0],R2) → R2, F (ϕ) : C([−1, 0],R2) → R2, ϕ = col(ϕ1, ϕ2) ∈
C([−1, 0],R2) satisfy

N(τ)(ϕ) = τ

(
α1ϕ1(0) + α2ϕ1(−1) + α3ϕ2(−1)

β1ϕ1(−1) + β2ϕ2(0)

)
,

F (ϕ, τ) = τ

(
ζϕ1(−1)ϕ2(−1)

−αβϕ2
2(0)− ϕ1(0)ϕ2(0)

)
.
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Setting the new parameter γ = τ − τj , then (2.3) can be written as

ż(t) = N(τj)(zt) + F̃ (zt, γ), (2.4)

where F̃ (zt, γ) = N(γ)(zt) + F (zt, τj + γ).
Let Λ = {iω,−iω}. Assuming A is the infinitesimal generator of ż(t) = N(τk)(zt)

satisfying AΦ = ΦB with

B =
(
iω 0
0 −iω

)
, (2.5)

and A has a pair of conjugate purely imaginary roots ±iω. Denote P is the
invariant space of A associated with Λ, then dimP = 2. We can decompose
C := C([−1, 0],R2) as C = P

⊕
Q by the formal adjoint theory for FDEs in

[9]. Considering complex coordinates, we still denote C([−1, 0],C2) as C. Let
Φ = (Φ1,Φ2) by the bases for P , where

Φ1 = eiωθv, Φ2 = Φ̄1, θ ∈ [−1, 0], (2.6)

where v = (v1, v2)T is a vector in C2 that satisfies N(τj)Φ1 = iωv. Choose a basis
Ψ for the adjoint space P ∗, where Ψ = col(Ψ1,Ψ2),

Ψ1 = e−iωθ̃uT , Ψ2 = Ψ̄1, u =
(
u1

u2

)
, θ̃ ∈ [0, 1]. (2.7)

Define (Ψ,Φ) = ((Ψi,Φj))i,j=1,2,

(ψ,ϕ) = ψ(0)ϕ(0)−
∫ 0

−1

∫ θ

0

ψ(s− θ)dη(θ)ϕ(s)ds,∀ϕ ∈ P,ψ ∈ P ∗. (2.8)

Then (Ψ,Φ) can be transformed to the identify matrix I2. Thus we can ensure

v =

(
1

iωj−(α1+α2e
−iωj )τj

τjα3e
−iωj

)
, u = u1

(
1

iωj−(α1+α2e
−iωj )τj

τjβ1

)
, (2.9)

with
1
u1

= 1 + v2
iωj − (α1 + α2e

−iωj )τj
τjβ1

+ (α2 + α3v2)e−iωj .

Define the enlarged phase space BC as

BC := {ϕ : [−1, 0]→ C2|ϕ is continuous on [−1, 0), lim
θ→0−

ϕ(θ) exists}.

The projection π : BC → P is defined as π(ϕ + X0b) = Φ[(Ψ, ϕ) + Ψ(0)b], for
each ϕ ∈ C and b ∈ R2, thus we have the decomposition BC = P

⊕
kerπ. Let

zt = Φx+ y, x ∈ C2, y ∈ ker(π) ∩ C1 := Q1, we can decompose (2.4) as

ẋ = Bx+ Ψ(0)F̃ (Φx+ y, γ),
dy
dx

= AQ1y + (I − π)X0F̃ (Φx+ y, γ),
(2.10)

where

X0(θ) =

{
I, θ = 0;
0, −1 ≤ θ < 0.

(2.11)

We write the Taylor expansion

Ψ(0)F̃ (Φx+ y, γ) =
1
2
f1

2 (x, y, γ) +
1
3!
f1

3 (x, y, γ) + h.o.t.,

(I − π)X0F̃ (Φx+ y, γ) =
1
2
f2

2 (x, y, γ) +
1
3!
f2

3 (x, y, γ) + h.o.t.,
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where f1
k , f

2
k are homogeneous polynomials in x, y, γ of degree k, k = 2, 3, with

coefficients in C2 and kerπ, respectively, and h.o.t. stands for higher order terms.
The normal form method implies a normal form on the center manifold of the origin
for (2.4) is

ẋ = Bx+
1
2
g1

2(x, 0, γ) +
1
3!
g1

3(x, 0, γ) + h.o.t.. (2.12)

where g1
2(x, 0, γ), g1

3(x, 0, γ) are homogeneous polynomials in x, γ, and h.o.t. are
the higher order terms. We follow the notation in [6]; that is,

V m+p
j (X) =

{
Σ|(q,l)|=jC(q,l)x

qγl : (q, l) ∈ Nm+p
0 , C(q,l) ∈ X

}
,

with x = (x1, x2, . . . , xm), γ = (γ1, γ2, . . . , γp);

Mj(p, h) = (M1
j p,M

2
j h),

M1
j p(x, γ) = [B, p(·, γ)](x) = Dxp(x, γ)Bx−Bp(x, γ),

M2
j h(x, γ) = Dxh(x, γ)Bx−AQ1h(x, γ).

(2.13)

Since V 3
j satisfies V 3

j (C2) = Im(M1
j )⊕ ker(M1

j ) and

ker(M1
j ) = span

{
xqγlek : (q, λ) = λj , λj ∈ Λ, j = 1, 2, q ∈ N2

0, l ∈ N0, |(q, l)| = j
}
,

e1, e2 is the base of C2. Then we can obtain

ker(M1
2 ) = span

{(
x1γ
0

)
,

(
0
x2γ

)}
,

ker(M1
3 ) = span

{(x2
1x2

0

)
,

(
x1γ

2

0

)
,

(
0

x1x
2
2

)
,

(
0

x2γ
2

)}
.

Noting (2.10), one has

f1
2 (x, 0, γ) = 2Ψ(0)[N(γ)(Φx) + F (Φx, τj)];

i.e.,

f1
2 (x, 0, γ) = 2

(
A1x1γ +A2x2γ + a20x

2
1 + a11x1x2 + a02x

2
2

Ā1x2γ + Ā2x1γ + ā02x
2
1 + ā11x1x2 + ā20x

2
2

)
, (2.14)

where

A1 =
iωj
τj
uT v,A2 =

−iωj
τj

uT v̄,

a20 = τj [u1e
−2iωjζv1v2 + u2(−αβv2

2 − v1v2)],

a11 = τj [ζu1(v1v̄2 + v̄1v2) + u2(−2αβv2v̄2 − (v1v̄2 + v̄1v2)],

a02 = τj [u1e
2iωjζv̄1v̄2 + u2(−αβv̄2

2 − v̄1v̄2)].

Therefore,

g1
2(x, 0, γ) = Projker(M1

2 ) f
1
2 (x, 0, γ) =

(
2A1x1γ
2Ā1x2γ

)
. (2.15)

Since the terms O(|x|γ2) are irrelevant to determine the generic Hopf bifurcation,
we assume

J = span
{(x2

1x2

0

)
,

(
0

x1x
2
2

)}
,

then
g1

3(x, 0, γ) = ProjJ f̄
1
3 (x, 0, 0) + o(|x|γ2),
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where

f̄1
3 (x, 0, 0) =

3
2

[(Dxf
1
2 )u1

2 − (Dxu
1
2)g1

2 ](x,0,0) +
3
2

[(Dyf
1
2 )u2

2](x,0,0).

Hence we will compute g1
3(x, 0, γ) as follows.

Firstly, noting

f1
2 (x, 0, 0) = 2

(
a20x

2
1 + a11x1x2 + a02x

2
2

ā02x
2
1 + ā11x1x2 + ā20x

2
2

)
,

u1
2(x, 0) =

2
iωl

(
a20x

2
1 − a11x1x2 − 1

3a02x
2
2

1
3 ā02x

2
1 + ā11x1x2 − ā20x

2
2

)
,

one has

ProjJ [(Dxf
1
2 )u1

2](x,0,0) =
4
iωl

(
(−a20a11 + 2

3 |a02|2 + |a11|2)x2
1x2

(− 2
3 |a02|2 − |a11|2 + a20a11)x1x

2
2

)
= 4

(
A3x

2
1x2

Ā3x1x
2
2

)
.

(2.16)

Secondly, From (2.15), we know g1
2(x, 0, 0) = 0, then ProjJ [(Dxu

1
2)g1

2 ](x,0,0) = 0.
Lastly, we will compute ProjJ [(Dyf

1
2 )u2

2](x,0,0) as follows. Let

h = u2
2 = h200x

2
1 + h020x

2
2 + h002γ

2 + h110x1x2 + h101x1γ + h011x2γ.

Noting that g2
2 = 0, one has

M2
2h(x, γ) = f2

2 = 2(I − π)X0F̃ (Φx, γ) = 2(I − π)X0[N(γ)(Φx) + F (Φx, τj)].

On the other hand, we know

M2
2h(x, γ) = Dxh(x, γ)Bx−AQ1h(x, γ)

= Dxh(x, γ)Bx− [ḣ(x, γ) +X0(L(τj)(h(x, γ))− ḣ(x, γ)(0))].
(2.17)

If γ = 0, then
ḣ(x)−Dxh(x)Bx = 2ΦΨ(0)F (Φx, τj),

ḣ(x)(0)− L(τj)(h(x)) = 2F (Φx, τj).
(2.18)

Let

W (θ) = Φx+ y = Φ1x1 + Φ2x2 + y(θ) = eiωlθvx1 + e−iωlθv̄x2 + y(θ),

W̃ (θ) = Φx = Φ1x1 + Φ2x2 = eiωlθvx1 + e−iωlθv̄x2.

From

f1
2 (x, y, 0) = 2τj

u
T

(
ζW1(−1)W2(−1)

−αβW 2
2 (0)−W1(−1)W2(−1)

)
ūT
(

ζW1(−1)W2(−1)
−αβW 2

2 (0)−W1(−1)W2(−1)

)
 ,

we obtain

[(Dyf
1
2 )h](x,0,0)

= 2

τju
T

(
ζW̃2(−1)h1(−1) + ζW̃1(−1)h2(−1)

−W̃2(−1)h1(−1)− W̃1(−1)h2(−1)− 2αβW̃2(0)h2(0)

)
τj ū

T

(
ζW̃2(−1)h1(−1) + ζW̃1(−1)h2(−1)

−W̃2(−1)h1(−1)− W̃1(−1)h2(−1)− 2αβW̃2(0)h2(0)

)

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and

ProjJ [(Dyf
1
2 )u2

2](x,0,0) = 2
(
A4x

2
1x2

Ā4x1x
2
2

)
, (2.19)

where

A4 = τj

[
u1ζ(e−iωjv2h

1
110(−1) + eiωj v̄2h

1
200(−1) + e−iωjv1h

2
110(−1)

+ eiωj v̄1h
2
200(−1))

]
+ u2τj

[
− e−iωjv2h

1
110(−1)− eiωj v̄2h

1
200(−1)

− e−iωkv1h
2
110(−1)− eiωj v̄1h

2
200(−1)

]
− u2τj

[
2αβ(v2h

2
110(0) + v̄2h

2
200(0))

]
.

To compute A4, we should get h110(θ), h200(θ) firstly. From (2.18), it follows

ḣ110 = 2(Φ1,Φ2)
(
a11

ā11

)
,

ḣ110(0)− L(τj)(h110) = τj

(
a1

b1

)
,

(2.20)

and

ḣ200 − 2iωjh200 = 2(Φ1,Φ2)
(
a20

ā02

)
,

ḣ200(0)− L(τj)(h200) = τj

(
a2

b2

)
,

(2.21)

where a1 = 2[ζ(v1v̄2+v̄1v2)], b1 = 2[−2αβv2v̄2−(v1v̄2+v̄1v2)], a2 = 2[ζv1v2e
−2iωk ],

b2 = 2[−αβv2
2 − e−2iωjv1v2]. Solving the above equations (2.20) and (2.21), we

obtain

h110 = 2[
a11

iωk
Φ1 −

ā11

iωj
Φ2] + C1,

h200 = 2[
a20

−iωk
Φ1 +

ā02

−3iωj
Φ2] + C2e

2iωkθ,

where

C1 =
(
C1

1

C2
1

)
, C1

1 =

∣∣∣∣a1 −α3

b1 −(β2 + β3)

∣∣∣∣∣∣∣∣−(α1 + α2) −α3

−β1 −(β2 + β3)

∣∣∣∣ ,

C2
1 =

∣∣∣∣−(α1 + α2) a1

−β1 b1

∣∣∣∣∣∣∣∣−(α1 + α2) −α3

−β1 −(β2 + β3)

∣∣∣∣ , C2 =
(
C1

2

C2
2

)
,

C1
2 =

∣∣∣∣τja2 −τjα3e
−2iωj

τjb2 2iωk + τjβ2 + τjβ3e
−2iωj

∣∣∣∣∣∣∣∣2iωk − τjα1 − τjα2e
−2iωj −τjα3e

−2iωk

−τjβ1e
−2iωj 2iωk + τjβ2 + τjβ3e

−2iωj

∣∣∣∣ ,

C2
2 =

∣∣∣∣2iωk − τjα1 − τjα2e
−2iωk τja2

−τjβ1e
−2iωj τjb2

∣∣∣∣∣∣∣∣2iωk − τjα1 − τjα2e
−2iωj −τjα3e

−2iωj

−τjβ1e
−2iωj 2iωj + τjβ2 + τjβ3e

−2iωj

∣∣∣∣ .
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Hence,

g1
3(x, 0, 0) =

(
(6A3 + 3A4)x2

1x2

(6Ā3 + 3Ā4)x1x
2
2

)
.

Thus, the normal form of the system (2.12) has the form

ẋ = Bx+
(
A1x1γ
Ā1x2γ

)
+

1
3!

(
(6A3 + 3A4)x2

1x2

(6Ā3 + 3Ā4)x1x
2
2

)
+ o(|x|4 + |x|γ2). (2.22)

Let x1 = ξ1 − iξ2, x2 = ξ1 + iξ2, ξ1 = ρ cosω, ξ2 = ρ sinω. Then system (2.22) can
be written as

ρ̇ = r1γρ+ r2ρ
3 +O(γ2ρ+ |(ρ, γ)|4),

ω̇ = −ωj − Im(A1)γ − Im(A3 +
1
2
A4)ρ2 + o(|(ρ2, γ)|),

(2.23)

where r1 = ReA1, r2 = Re(A3 + 1
2A4). Summarizing, we have the following theo-

rem.

Theorem 2.3. The flow on the center manifold of the equilibrium P2 at γ = 0 is
given by (2.23). And also we can draw the following conclusion.

(1) The Hopf bifurcation is supercritical if r1r2 < 0, and subcritical if r1r2 > 0;
(2) The nontrivial periodic solution is stable if r2 < 0, and unstable if r2 > 0;
(3) The period of the nontrivial solution is

P (γ) =
2π
ωj

(1−
Im(A1)γ − r1γ

r2
Im(A3 + 1

2A4)
ωj

) +O(γ3)

with P (0) = 2π/ωj.

To explain the result of Theorem 2.3, we provide the simulations of Hopf bifur-
cation at P2. In this paper, we cite the parameters in [11] to illustrate Theorem
2.3. Assume σ = 0.1181, ζ = 0.0031, δ = 0.3743, α = 1.636, β = 0.002, then
the system (1.2) has a Tumor-free equilibrium P0(0.3155, 0), which is asymptoti-
cally stable and a positive equilibrium P2(1.33435, 92.1911), which is locally stable.
We only simulate local properties of the positive equilibrium P2(1.33435, 92.1911)
here in the following Figure 2 and Figure 3, and the corresponding critical value is
τ0 = 1.8760.

3. Existence of global Hopf bifurcation

In section 2, we discussed the direction and stability of the Hopf bifurcated
periodic solutions of system (1.2) at the equilibrium P2(x2, y2) as τ = τj . However,
this bifurcated periodic solution exists in a neighborhood of the positive equilibrium,
so we want to know whether the non-constant periodic solution exist globally. In
this section, we will study the existence of global bifurcated periodic solution using
a global Hopf bifurcation result due to Wu[14]. Throughout this section, we follow
the notations in [14] and rewrite system (1.2) as the functional differential equation

ż = F (zt, τ), (3.1)
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Figure 2. (left) Stable equilibrium (1.3344, 92.1911) when τ =
1 < τ0; (right) oscillation of the solution to (1.2) with respect to t
when τ = 1 < τ0
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Figure 3. (left) Bifurcated periodic solution at the positive equi-
librium when τ = 2.0 > τ0; (right) oscillation solution x(t) and
y(t) of (1.2) with respect to t when τ = 2.0 > τ0

where z = (x, y)T , zt(θ) = z(t+θ) ∈ C([−τ, 0],R2
+). Before stating the main results

of this section, we will give a known lemma. Let

X = C([−τ, 0],R2
+),

Σ = Cl{(z, τ, p) ∈ X× R+ × R+ : zz is a nonconstant periodic solution of (3.1)},
N = {(z̄, τ, p) : F (z̄, τ, p) = 0}.

(3.2)

Lemma 3.1 ([14]). Only one of the following two results holds
(1) l(P2,τj ,2π/ωl) is unbounded;
(2) l(P2,τj ,2π/ωl) is bounded and

∑
(z̄,τ,p)∈l(P2,τj ,2π/ωl)

∩N γ(z̄, τ, p) = 0.

Assume l(P2,τj ,2π/ωl) is the connected component of (P2, τj , 2π/ωl) in Σ, from
lemma 2.2, we know that l(P2,τj ,2π/ωl) is nonempty.

Next we give two lemmas needed for the proof of the main result.
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Lemma 3.2. If 0 < ζ/β < min{δ, α}, αδ > σ, then all periodic solutions of (1.2)
are uniformly bounded.

Proof. From the second equation of system (1.2), we have

y(t) = y(0) exp
∫ t

0

(α(1− βy(s))− x(s))ds,

noting the definition of y(t) and P2 is a positive equilibrium, one knows x(0) ≥ 0
and y(0) ≥ 0; that is, y(t) ≥ 0. It is easy to see

dy
dt

= αy(1− βy)− xy ≤ αy(1− βy),

it follows y ≤ 1
β , that is 0 ≤ y ≤ 1

β .
We will prove x(t) ≥ 0 as follows. Since (x(t), y(t)) is a periodic solution of (1.2),

then x(t) must have the minimum x(η1), η1 > 0, that is

σ + ζx(η1 − τ)y(η1 − τ)− δx(η1) = 0,

hence
δx(η1) ≥ ζx(η1 − τ)y(η1 − τ).

If x(η1− τ) ≥ 0, then x(t) ≥ 0. If x(η1− τ) < 0, then x(η1) ≤ x(η1− τ) < 0, hence

dx
dt

= σ + ζx(t− τ)y(t− τ)− δx > ζ

β
x(η1)− δx(t).

By the constant variation formula and the comparison theorem, it implies that

x(t) >
ζx(η1)
βδ

(1− exp−δt) + x(0) exp−δt, t > 0. (3.3)

noting x(0) > 0 and 0 < ζ
β < min{δ, α}, it is easy to see that (3.3) does not hold

as t = η1; this is a contradiction, thus x(t) > 0.
On the other hand, we have

dx
dt

= σ + ζx(t− τ)y(t− τ)− δx ≤ σ +
ζ

β
x(t− τ)− δx,

Then we prove the bound of the solution x(t) in three cases:
(1) If x(t−τ) ≥ x(t) for t > 0, since (x(t), y(t)) is a periodic solution of (1.2), then

x(t) must have the maximum x(η), η ∈ (0, τ), that is σ+ζx(η−τ)y(η−τ)−δx(η) =
0, hence

x(η) ≤ σ

δ
+

ζ

βσ
x(η − τ) ≤ σ

δ
+

ζ

βσ
‖ϕ‖, η − τ ∈ (−τ, 0).

(2) If x(t− τ) < x(t) for t > 0, then

dx
dt
≤ σ +

ζ

β
x− δx,

from 0 < ζ/β < δ, one has

x(t) ≤ σ

δ − ζ
β

;

(3) If there exists t > 0 such that x(t−τ) ≥ x(t) and t1 > 0 such that x(t1−τ) <
x(t1). Integrating (1) and (2), we know x(t) ≤ max{ σ

δ− ζβ
, σδ + ζ

βσ‖ϕ‖}. The proof

is complete. �



EJDE-2014/27 HOPF BIFURCATION 11

Lemma 3.3. If αδ > σ, then system (1.2) has no-nonconstant periodic solution
with period τ .

Proof. Suppose (1.2) has no-constant periodic solution with period τ , then the
corresponding ordinary differential equations

dx
dt

= σ + ζxy − δx,

dy
dt

= αy(1− βy)− xy,
(3.4)

have a non-constant periodic solution. System (3.4) has a positive equilibrium
P2(x2, y2) and a boundary equilibrium P0(σδ , 0). From lemma 2.1, we know that P2

is stable and (3.4) has no non-constant periodic solution. This is a contradiction.
The proof is complete. �

Theorem 3.4. If 0 < ζ/β < min{δ, α}, αδ > σ, then (1.2) has at least j − 1
periodic solutions for τ ≥ τj , j ≥ 1.

Proof. The characteristic matrix of (3.1) at the equilibrium z̄ = (z̄1, z̄2)T ∈ R2 is

∆(z̄, τ, p)(λ) = λId−DF (z̄, τ, p)(eλ·Id);

i.e.

∆(z̄, τ, p)(λ) =
(

λ− ζz̄2e
−λτ − δ −ζz̄1e

−λτ

z̄2 λ− α+ 2αβz̄2 + z̄1

)
, (3.5)

where Id is the identity matrix, DF (z̄, τ, p) is the Fréchet derivative of F with
respect to zt evaluated at (z̄, τ, p).

On the other hand, from the definition of [14], we know that (z̄, τ, p) is called a
center of (3.1) if (z̄, τ, p) ∈ N and det(∆(z̄, τ, p)( 2π

p i)) = 0 and the center is said to
be isolated if it is the only center in the neighborhood of (z̄, τ, p).

From (3.5) we know that

det(∆(P0, τ, p)(λ)) = (λ− δ)(λ− α+
σ

δ
) = 0,

obviously, this equation has no purely imaginary roots, thus (3.1) has no centers
with the form (P0, τ, p). From the proof of [2, 16, theorem 4.2], we know that there
exist ε1 > 0, ε2 > 0 and a smooth curve λ(τ) : [τj − ε1, τj + ε1] → C such that
det(∆(λ(τ))) = 0 as |λ(τ)− iωl| < ε2 for all τ ∈ [τj − ε1, τj + ε1], furthermore

λ(τj) = iωl,
Reλ(τ)

dτ

∣∣
τ=τj

> 0;

thus, for all τ > 0, (P2, τj ,
2π
ωl

)(j ∈ N) is the only center of (3.1). Let

Ωε,2π/ωl =
{

(η, p) : 0 < η < ε, |p− 2
π

ωl
| < ε

}
.

If |τ − τj | ≤ ε1 and (η, p) ∈ ∂Ωε,2π/ωl , then

det(∆(P2, τ, p)(η +
2π
p
i)) = 0 ⇔ η = 0, τ = τj , p =

2π
ωl
.

Define

H±(P2, τj , 2π/ωl)(η, p) = det(∆(P2, τ ± ε1, p)(η +
2π
p
i)).
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Then the crossing number of isolated center is

γ(P2, τj , 2π/ωl)

= degB(H−(P2, τj ,
2π
ωl

),Ωε,2π/ωl)− degB(H+(P2, τj , 2π/ωl),Ωε,2π/ωl) = −1;

(3.6)

thus ∑
(z̄,τ,p)∈l(P2,τj ,2π/ωl)

∩N

γ(z̄, τ, p) < 0.

Noting lemma 3.2, we know that the connected component l(P2,τj ,2π/ωl) passing
through (P2, τj , 2π/ωl) is unbounded in Σ. From lemma 2.1 we know that the
projection of l(P2,τj ,2π/ωl) onto z-space is bounded. Noting [16], one has

2π
ωl

< τj . (3.7)

From the results of lemma 3.3, we know that (3.1) has no non-trivial periodic
solutions for τ = 0. Hence the projection of l(P2,τj ,2π/ωl) onto τ -space is away from
zero. If not, the projection of l(P2,τj ,2π/ωl) onto τ -space is included in the interval
(0, τ∗), τ∗ > τj , with the help of (3.7), we know (z̄, τ, p) ∈ l(P2,τj ,2π/ωl) as p < τ∗.
This implies the projection of l(P2,τj ,2π/ωl) onto p-space is bounded. Thus if we want
the connected component l(P2,τj ,2π/ωl) is unbounded, the projection of l(P2,τj ,2π/ωl)

onto τ -space must be unbounded; i.e., the projection of l(P2,τj ,2π/ωl) onto τ -space
must conclude [τj ,∞), this implies that the system (1.2) has at least j− 1 periodic
solutions for all τ ≥ τj(j ≥ 1) . �

Discussion. We studied the nonlinear dynamics of a Kuznetsov Makalkin and
Taylor’s model with delay, which is analyzed in [16]. In [16], Yafia only give the
existence of the Hopf bifurcation. In this paper, we give the general formula of
the direction, the estimation formula of period and stability of bifurcated periodic
solution. Especially, using a global Hopf bifurcation due to Wu[14], the global
existence of periodic solutions bifurcating from Hopf bifurcations is given. we show
that the local Hopf bifurcation implies the global Hopf bifurcation after the second
critical value of the delay. Numerical simulations are carried out to illustrate the
the theoretical analysis and results.

Our results on the existence and stability of the Hopf bifurcated periodic solu-
tions of P2 describe the equilibrium process. When a global stable periodic orbit
exists, it can be understood that the tumor and the immune system can coexist for
all the time although the cancer is not eliminated. The conditions for the parame-
ters provide theories basis to control the development or progression of the tumors.
The phenomena have been observed in some models d’Onofrio [3], Kuznetsov et
al [11], Bi et al [2] . In particular, Bi et al. [1] have shown that various bifur-
cations, including Hopf bifurcation, Bautin bifurcation and Hopf-Hopf bifurcation,
can occur in such models.

Finally, we point out that we have studied the dynamical behaviors of P2. In fact,
the dynamical behaviors of P0 is more rich such as the existence of the Bogdanov-
Takens bifurcation and steady-state bifurcation, which is studied in [2]. The two
equilibria may coexist, correspondingly, the system can exhibit more degenerate
bifurcations including Hopf-Hopf and resonant higher codimension bifurcations et
al. It would be interesting to consider these dynamics of the delayed model.
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[6] T. Faria, L. Magalhães; Normal forms for retarded functional differential equation and appli-

cations to Bogdanov-Takens singularity, J. Diff. Equ. 122(1995), 201–224.
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