
Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 31, pp. 1–10.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

SOLVABILITY OF A QUADRATIC INTEGRAL EQUATION OF
FREDHOLM TYPE IN HÖLDER SPACES

JOSEFA CABALLERO, MOHAMED ABDALLA DARWISH, KISHIN SADARANGANI

Abstract. In this article, we prove the existence of solutions of a quadratic
integral equation of Fredholm type with a modified argument, in the space of

functions satisfying a Hölder condition. Our main tool is the classical Schauder

fixed point theorem.

1. Introduction

Differential equations with a modified arguments arise in a wide variety of sci-
entific and technical applications, including the modelling of problems from the
natural and social sciences such as physics, biological and economics sciences. A
special class of these differential equations have linear modifications of their argu-
ments, and have been studied by several authors, see [1]–[9] and their references.

The aim of this article is to investigate the existence of solutions of the following
integral equation of Fredholm type with a modified argument,

x(t) = p(t) + x(t)
∫ 1

0

k(t, τ) x(r(τ)) dτ, t ∈ [0, 1]. (1.1)

Our solutions are placed in the space of functions satisfying the Hölder condition.
A sufficient condition for the relative compactness in these spaces and the classical
Schauder fixed point theorem are the main tools in our study.

2. Preliminaries

Our starting point in this section is to introduce the space of functions satisfying
the Hölder condition and some properties in this space. These properties can be
found in [2].

Let [a, b] be a closed interval in R, by C[a, b] we denote the space of continuous
functions on [a, b] equipped with the supremum norm; i.e., ‖x‖∞ = sup{|x(t)| : t ∈
[a, b]} for x ∈ C[a, b]. For 0 < α ≤ 1 fixed, by Hα[a, b] we will denote the space of
the real functions x defined on [a, b] and satisfying the Hölder condition; that is,
those functions x for which there exists a constant Hα

x such that

|x(t)− x(s)| ≤ Hα
x |t− s|α, (2.1)

for all t, s ∈ [a, b]. It is easily proved that Hα[a, b] is a linear subspace of C[a, b].
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In the sequel, for x ∈ Hα[a, b], by Hα
x we will denote the least possible constant

for which inequality (2.1) is satisfied. More precisely, we put

Hα
x = sup

{ |x(t)− x(s)|
|t− s|α

: t ∈ [a, b], t 6= s
}
. (2.2)

The spaces Hα[a, b] with 0 < α ≤ 1 can be equipped with the norm

‖x‖α = |x(a)|+ sup
{ |x(t)− x(s)|
|t− s|α

: t ∈ [a, b], t 6= s
}
,

for x ∈ Hα[a, b]. In [2], the authors proved that (Hα[a, b], ‖ · ‖α) with 0 < α ≤ 1 is
a Banach space. The following lemmas appear in [2].

Lemma 2.1. For x ∈ Hα[a, b] with 0 < α ≤ 1, the following inequality is satisfied

‖x‖∞ ≤ max
(
1, (b− a)α

)
‖x‖α. (2.3)

Lemma 2.2. For 0 < α < γ ≤ 1, we have

Hγ [a, b] ⊂ Hα[a, b] ⊂ C[a, b]. (2.4)

Moreover, for x ∈ Hγ [a, b] the following inequality holds

‖x‖α ≤ max
(
1, (b− a)γ−α

)
‖x‖γ . (2.5)

Now, we present the following sufficient condition for relative compactness in
the spaces Hα[a, b] with 0 < α ≤ 1 which appears in Example 6 of [2] and it is an
important result for our study.

Theorem 2.3. Suppose that 0 < α < β ≤ 1 and that A is a bounded subset in
Hβ [a, b] (this means that ‖x‖β ≤ M for certain constant M > 0, for any x ∈ A)
then A is a relatively compact subset of Hα[a, b].

3. Main results

In this section, we will study the solvability of (1.1) in the Hölder spaces. We
will use the following assumptions:

(i) p ∈ Hβ [0, 1], 0 < β ≤ 1.
(ii) k : [0, 1] × [0, 1] → R is a continuous function such that it satisfies the

Hölder condition with exponent β with respect to the first variable, that is,
there exists a constant Kβ such that

|k(t, τ)− k(s, τ)| ≤ Kβ |t− s|β ,

for any t, s, τ ∈ [0, 1].
(iii) r : [0, 1]→ [0, 1] is a measurable function.
(iv) The following inequality is satisfied

‖p‖β(2K +Kβ) <
1
4
,

where the constant K is defined by

K = sup
{∫ 1

0

|k(t, τ)| dτ : t ∈ [0, 1]
}
,

which exists by (ii).
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Theorem 3.1. Under assumptions (i)–(iv), Equation (1.1) has at least one solution
belonging to the space Hα[0, 1], where α is arbitrarily fixed number satisfying 0 <
α < β.

Proof. Consider the operator T defined on Hβ [0, 1] by

(T x)(t) = p(t) + x(t)
∫ 1

0

k(t, τ) x(r(τ)) dτ, t ∈ [0, 1].

In the sequel, we will prove that T transforms the space Hβ [0, 1] into itself. In fact,
we take x ∈ Hβ [0, 1] and t, s ∈ [0, 1] with t 6= s. Then, by assumptions (i) and (ii),
we obtain

|(T x)(t)− (T x)(s)|
|t− s|β

=

∣∣p(t) + x(t)
∫ 1

0
k(t, τ) x(r(τ)) dτ − p(s)− x(s)

∫ 1

0
k(s, τ) x(r(τ)) dτ

∣∣
|t− s|β

≤ |p(t)− p(s)|
|t− s|β

+

∣∣x(t)
∫ 1

0
k(t, τ) x(r(τ)) dτ − x(s)

∫ 1

0
k(t, τ) x(r(τ)) dτ

∣∣
|t− s|β

+

∣∣x(s)
∫ 1

0
k(t, τ) x(r(τ)) dτ − x(s)

∫ 1

0
k(s, τ) x(r(τ)) dτ

∣∣
|t− s|β

≤ |p(t)− p(s)|
|t− s|β

+
|x(t)− x(s)|
|t− s|β

∫ 1

0

|k(t, τ)| |x(r(τ))| dτ

+
|x(s)|

∫ 1

0
|k(t, τ)− k(s, τ)| |x(r(τ))| dτ

|t− s|β

≤ |p(t)− p(s)|
|t− s|β

+
|x(t)− x(s)|
|t− s|β

‖x‖∞
∫ 1

0

|k(t, τ)| dτ

+
‖x‖∞ · ‖x‖∞

∫ 1

0
|k(t, τ)− k(s, τ)| dτ
|t− s|β

≤ |p(t)− p(s)|
|t− s|β

+K‖x‖∞
|x(t)− x(s)|
|t− s|β

+
‖x‖2∞

∫ 1

0
Kβ |t− s|β dτ
|t− s|β

≤ Hβ
p +K‖x‖∞Hβ

x +Kβ‖x‖2∞.

By Lemma 2.1, since ‖x‖∞ ≤ ‖x‖β and, as Hβ
x ≤ ‖x‖β , we infer that

|(T x)(t)− (T x)(s)|
|t− s|β

≤ Hβ
p + (K +Kβ)‖x‖2β .
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Therefore,

‖T x‖β = |(T x)(0)|+ sup
{ |(T x)(t)− (T x)(s)|

|t− s|β
: t, s ∈ [0, 1], t 6= s

}
≤ |(T x)(0)|+Hβ

p + (K +Kβ)‖x‖2β

≤ |p(0)|+ |x(0)|
∫ 1

0

|k(0, τ)| |x(r(τ))| dτ +Hβ
p + (K +Kβ)‖x‖2β

≤ ‖p‖β + ‖x‖∞ · ‖x‖∞
∫ 1

0

|k(0, τ)| dτ + (K +Kβ)‖x‖2β

≤ ‖p‖β +K‖x‖2β + (K +Kβ)‖x‖2β
= ‖p‖β + (2K +Kβ)‖x‖2β <∞.

(3.1)

This proves that the operator T maps Hβ [0, 1] into itself.
Taking into account that the inequality

‖p‖β + (2K +Kβ)r2 < r

is satisfied for values between the numbers

r1 =
1−

√
1− 4‖p‖β(2K +Kβ)
2(2K +Kβ)

and

r2 =
1−

√
1 + 4‖p‖β(2K +Kβ)
2(2K +Kβ)

which are positive by assumption (iv), consequently, from (3.1) it follows that T
transforms the ball Bβr0 = {x ∈ Hβ [0, 1] : ‖x‖β ≤ r0} into itself, for any r0 ∈ [r1, r2];
i.e., T : Bβr0 → Bβr0 , where r1 ≤ r0 ≤ r2.

By Theorem 2.3, we have that the set Bβr0 is relatively compact in Hα[0, 1] for
any 0 < α < β ≤ 1. Moreover, we can prove that Bβr0 is a compact subset in
Hα[0, 1] for any 0 < α < β ≤ 1 (see Appendix).

Next, we will prove that the operator T is continuous on Bβr0 , where in Bβr0 we
consider the induced norm by ‖ · ‖α, where 0 < α < β ≤ 1. To do this, we fix
x ∈ Bβr0 and ε > 0. Suppose that y ∈ Bβr0 and ‖x− y‖α ≤ δ, where δ is a positive
number such that δ < ε

2(2K+3Kβ)r0
.

Then, for any t, s ∈ [0, 1] with t 6= s, we have

|[(T x)(t)− (T y)(t)]− [(T x)(s)− (T y)(s)]|
|t− s|α

=
∣∣∣ [x(t)

∫ 1

0
k(t, τ) x(r(τ)) dτ − y(t)

∫ 1

0
k(t, τ) y(r(τ)) dτ

]
|t− s|α

−
[
x(s)

∫ 1

0
k(s, τ) x(r(τ)) dτ − y(s)

∫ 1

0
k(s, τ) y(r(τ)) dτ

]
|t− s|α

∣∣∣
≤
∣∣∣ [x(t)

∫ 1

0
k(t, τ) x(r(τ)) dτ − y(t)

∫ 1

0
k(t, τ) x(r(τ)) dτ

]
|t− s|α

+

[
y(t)

∫ 1

0
k(t, τ) x(r(τ)) dτ − y(t)

∫ 1

0
k(t, τ) y(r(τ)) dτ

]
|t− s|α
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−
[
x(s)

∫ 1

0
k(s, τ) x(r(τ)) dτ − y(s)

∫ 1

0
k(s, τ) x(r(τ)) dτ

]
|t− s|α

−
[
y(s)

∫ 1

0
k(s, τ) x(r(τ)) dτ − y(s)

∫ 1

0
k(s, τ) y(r(τ)) dτ

]
|t− s|α

∣∣∣
=

1
|t− s|α

∣∣∣(x(t)− y(t))
∫ 1

0

k(t, τ) x(r(τ)) dτ + y(t)
∫ 1

0

k(t, τ)(x(r(τ)− y(r(τ))) dτ

− (x(s)− y(s))
∫ 1

0

k(s, τ) x(r(τ)) dτ − y(s)
∫ 1

0

k(s, τ) (x(r(τ))− y(r(τ))) dτ
∣∣∣

≤ 1
|t− s|α

{
|(x(t)− y(t))− (x(s)− y(s))| ·

∣∣∣ ∫ 1

0

k(t, τ) x(r(τ)) dτ
∣∣∣

+ |x(s)− y(s)| ·
∣∣∣ ∫ 1

0

(k(t, τ)− k(s, τ)) x(r(τ)) dτ |̇

+
∣∣∣y(t)

∫ 1

0

k(t, τ)(x(r(τ)− y(r(τ))) dτ − y(s)
∫ 1

0

k(s, τ)(x(r(τ)− y(r(τ))) dτ
∣∣∣}

≤ |(x(t)− y(t))− (x(s)− y(s))|
|t− s|α

‖x‖∞
∫ 1

0

|k(t, τ)| dτ

+
[
|(x(s)− y(s))− (x(0)− y(0))|+ |x(0)− y(0)|

]
‖x‖∞

×
∫ 1

0

|k(t, τ)− k(s, τ)|
|t− s|α

dτ +
1

|t− s|α
∣∣∣y(t)

×
∫ 1

0

k(t, τ)(x(r(τ)− y(r(τ))) dτ − y(s)
∫ 1

0

k(t, τ)(x(r(τ)− y(r(τ))) dτ
∣∣∣

+
1

|t− s|α
∣∣∣y(s)

∫ 1

0

k(t, τ)(x(r(τ)− y(r(τ))) dτ

− y(s)
∫ 1

0

k(s, τ)(x(r(τ)− y(r(τ))) dτ
∣∣∣

≤ K‖x− y‖α‖x‖∞ + sup
p,q∈[0,1]

|(x(p)− y(p))− (x(q)− y(q))|

× ‖x‖∞
∫ 1

0

Kβ |t− s|β

|t− s|α
dτ + |x(0)− y(0)|‖x‖∞

∫ 1

0

Kβ |t− s|β

|t− s|α
dτ

+
|y(s)− x(s)|
|t− s|α

∫ 1

0

|k(t, τ)| |x(r(τ)− y(r(τ))| dτ

+ |y(s)|
∫ 1

0

|k(t, τ)− k(s, τ)|
|t− s|α

|x(r(τ)− y(r(τ))| dτ

≤ K‖x‖∞‖x− y‖α + ‖x‖∞Kβ |t− s|β−α

× sup
p,q∈[0,1], p 6=q

{ |(x(p)− y(p))− (x(q)− y(q))|
|p− q|α

|p− q|α
}

+Kβ‖x‖β |t− s|β−α|x(0)− y(0)|

+KHα
y ‖x− y‖∞ + ‖y‖∞ ‖x− y‖∞

∫ 1

0

Kβ |t− s|β

|t− s|α
dτ

≤ K‖x‖β‖x− y‖α + 2Kβ‖x‖β‖x− y‖α +K‖y‖α‖x− y‖α +Kβ‖y‖α‖x− y‖α
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≤
(
K‖x‖β + 2Kβ‖x‖β +K‖y‖α +Kβ‖y‖α

)
‖x− y‖α.

Since ‖y‖α ≤ ‖y‖β (see, Lemma 2.2) and x, y ∈ Bβr0 , from the above inequality we
infer that
|[(T x)(t)− (T y)(t)]− [(T x)(s)− (T y)(s)]|

|t− s|α
≤ (2Kr0 + 3Kβr0)‖x− y‖α

≤ (2Kr0 + 3Kβr0)δ <
ε

2
.

(3.2)

On the other hand,

|(T x)(0)− (T y)(0)| =
∣∣∣x(0)

∫ 1

0

k(0, τ) x(r(τ)) dτ − y(0)
∫ 1

0

k(0, τ)y(r(τ)) dτ
∣∣∣

≤
∣∣∣x(0)

∫ 1

0

k(0, τ) x(r(τ)) dτ − x(0)
∫ 1

0

k(0, τ) y(r(τ)) dτ
∣∣∣

+
∣∣∣x(0)

∫ 1

0

k(0, τ) y(r(τ)) dτ − y(0)
∫ 1

0

k(0, τ) y(r(τ)) dτ
∣∣∣

≤
∣∣∣x(0)

∫ 1

0

k(0, τ)(x(r(τ))− y(r(τ))) dτ
∣∣∣

+
∣∣∣(x(0)− y(0))

∫ 1

0

k(0, τ) y(r(τ))) dτ
∣∣∣

≤ K‖x‖∞‖x− y‖∞ +K‖y‖∞‖x− y‖α
≤ K‖x‖β‖x− y‖α +K‖y‖β‖x− y‖α

≤ 2Kr0‖x− y‖α < 2Kr0δ <
ε

2
.

(3.3)
From (3.2) and (3.3), it follows that

‖T x− T y‖
= |(T x)(0)− (T y)(0)|

+ sup
{ |((T x)(t)− (T y)(t))− ((T x)(s)− (T y)(s))|

|t− s|α
: t, s ∈ [0, 1], t 6= s

}
<
ε

2
+
ε

2
= ε.

This proves that the operator T is continuous at the point x ∈ Bδr0 for the norm
‖‖α. Since Bδr0 is compact in Hα[0, 1], applying the classical Schauder fixed point
theorem we obtain the desired result. �

4. Example

To present an example illustrating our result we need some previous results.

Definition 4.1. A function f : R+ → R+ is said to be subadditive if f(x + y) ≤
f(x) + f(y) for any x, y ∈ R+.

Lemma 4.2. Suppose that f : R+ → R+ is subadditive and y ≤ x then f(x) −
f(y) ≤ f(x− y).

Proof. Since f(x) = f(x− y + y) ≤ f(x− y) + f(y) the result follows. �
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Remark 4.3. From Lemma 4.2, we infer that if f : R+ → R+ is subadditive then
|f(x)− f(y)| ≤ f(|x− y|) for any x, y ∈ R+.

Lemma 4.4. Let f : R+ → R+ be a concave function with f(0) = 0. Then f is
subadditive.

Proof. For x, y ∈ R+ and, since f is concave and f(0) = 0, we have

f(x) = f

(
x

x+ y
(x+ y) +

y

x+ y
· 0
)

≥ x

x+ y
f(x+ y) +

y

x+ y
f(0)

=
x

x+ y
f(x+ y)

and

f(y) = f

(
x

x+ y
· 0 +

y

x+ y
(x+ y)

)
≥ x

x+ y
f(0)f(x+ y) +

y

x+ y
f(x+ y)

=
y

x+ y
f(x+ y).

Adding these inequalities, we obtain

f(x) + f(y) ≥ x

x+ y
f(x+ y) +

y

x+ y
f(x+ y) = f(x+ y).

This completes the proof. �

Remark 4.5. Let f : R+ → R+ be the function defined by f(x) = p
√
x, where

p > 1. Since this function is concave (because f ′′(x) ≤ 0 for x > 0) and f(0) = 0,
Lemma 4.4 says us that f is subadditive. By Remark 4.3, we have

|f(x)− f(y)| = | p
√
x− p
√
y| ≤ p

√
|x− y|

for any x, y ∈ R+.

Example 4.6. Let us consider the quadratic integral equation

x(t) = arctan 5
√
q sin t+ q̂ + x(t)

∫ 1

0

4
√
mt2 + τ x

( τ

τ + 1
)
dτ, t ∈ [0, 1], (4.1)

where, q, q̂ and m are nonnegative constants. Notice that (4.1) is a particular case
of (1.1), where p(t) = arctan 5

√
q sin t+ q̂, k(t, τ) = 4

√
mt2 + τ and r(τ) = τ

τ+1 .
In what follows, we will prove that assumptions (i)-(iv) of Theorem 3.1 are

satisfied. Since the inverse tangent function is concave (because its second derivative
is nonpositive) and its value at zero is zero, taking into account Remarks 4.3 and
4.5, we have

|p(t)− p(s)| =
∣∣∣ arctan 5

√
q sin t+ q̂ − arctan 5

√
q sin s+ q̂

∣∣∣
≤ arctan

(∣∣ 5
√
q sin t+ q̂ − 5

√
q sin s+ q̂

∣∣)
≤
∣∣ 5
√
q sin t+ q̂ − 5

√
q sin s+ q̂

∣∣
≤ 5
√
q| sin t− sin s|

≤ 5
√
q |t− s|1/5,
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where we have used that arctanx ≤ x for x ≥ 0 and | sinx − sin y| ≤ |x − y| for
any x, y ∈ R. This says that p ∈ H 1

5
[0, 1] and, moreover, H1/5

p = 5
√
q. Therefore,

assumptions (i) of Theorem 3.1 is satisfied.
Note that

‖p‖ 1
5

= |p(0)|+ sup
{ |p(t)− p(s)|
|t− s|1/5

: t, s ∈ [0, 1], t 6= s
}

≤ arctan 5
√
q̂ +H1/5

p

= arctan 5
√
q̂ + 5
√
q.

Since for any t, s, τ ∈ [0, 1], we have (see, Remark 4.5)

|k(t, τ)− k(s, τ)| =
∣∣ 4
√
mt2 + τ − 4

√
ms2 + τ

∣∣
≤ 4
√
|mt2 −ms2|

= 4
√
m 4
√
|t2 − s2|

= 4
√
m 4
√
t+ s 4

√
|t− s|

≤ 4
√
m

4
√

2 |t− s|1/4

= 4
√
m

4
√

2 |t− s|1/20 |t− s|1/5

≤ 4
√

2m |t− s|1/5,

assumption (ii) of Theorem 3.1 is satisfied with Kβ = K 1
5

= 4
√

2m.
It is clear that r(τ) = τ

τ+1 satisfies assumption (iii).
In our case, the constant K is given by

K = sup
{∫ 1

0

|k(t, τ)| dτ : t ∈ [0, 1]
}

= sup
{∫ 1

0

4
√
mt2 + τ dτ : t ∈ [0, 1]

}
= sup

{4
5

(
4
√

(mt2 + 1)5 − 4
√
m5t10

)}
=

4
5

(
4
√

(m+ 1)5 − 4
√
m5
)
.

Therefore, the inequality appearing in assumption (iv) takes the form

‖p‖ 1
5
(2K +Kβ) =

(
arctan 5

√
q̂ + 5
√
q
)(8

5
[

4
√

(m+ 1)5 − 4
√
m5
]

+ 4
√

2m
)
<

1
4
.

It is easily seen that the above inequality is satisfied when, for example, q̂ = 0,
q = 1

220 and m = 1. Therefore, using Theorem 3.1, we infer that (4.1) for q̂ = 0,
q = 1

220 and m = 1 has at least one solution in the space Hα[0, 1] with 0 < α < 1/5.

Note that in (4.1), we can take as r(τ) a particular functions such as r(τ) = {eτ},
where {·} denotes the fractional part.

Remark 4.7. Note that any solution x(t) of (1.1), i.e.,

x(t) = p(t) + x(t)
∫ 1

0

k(t, τ) x(r(τ)) dτ, t ∈ [0, 1],
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satisfies that its zeroes are also zeroes of p(t). From this, we infer that if p(t) 6= 0
for any t ∈ [0, 1] then x(t) 6= 0 for any t ∈ [0, 1]. By Bolzano’s theorem, this means
that the solution x(t) of Eq(1.1) does not change of sign on [0, 1] when p(t) 6= 0 for
any t ∈ [0, 1]. These questions seem to be interesting from a practical standpoint.

5. Appendix

Suppose that 0 < α < β ≤ 1 and by Bβr we denote the ball centered at θ and
radius r in the space Hβ [a, b]; i.e., Bβr = {x ∈ Hβ [a, b] : ‖x‖β ≤ r}. Then Bβr is a
compact subset in the space Hα[a, b].

In fact, by Theorem 2.3, since Bβr is a bounded subset in Hβ [a, b], Bβr is a
relatively compact subset of Hα[a, b]. In the sequel, we will prove that Bβr is a

closed subset of Hα[a, b]. Suppose that (xn) ⊂ Bβr and xn
‖‖α−→ x with x ∈ Hα[a, b].

We have to prove that x ∈ Bβr .

Since xn
‖·‖α−→ x, for ε > 0 given we can find n0 ∈ N such that ‖x0 − x‖α ≤ ε for

any n ≥ n0, or, equivalently,

|xn(a)− x(a)|+ sup
{ |(xn(t)− x(t))− (xn(s)− x(s))|

|t− s|α
: t, s ∈ [a, b], t 6= s

}
< ε,

(5.1)
for any n ≥ n0. Particularly, this implies that xn(a)→ x(a). Moreover, if in (5.1)
we put s = a then we get

sup
{ |(xn(t)− x(t))− (xn(a)− x(a))|

|t− a|α
: t, s ∈ [a, b], t 6= a

}
< ε, for any n ≥ n0.

This says that

|(xn(t)−x(t))− (xn(a)−x(a))| < ε|t− a|α, for any n ≥ n0 and for any t ∈ [a, b].
(5.2)

Therefore, for any n ≥ n0 and any t ∈ [a, b] by (5.1) and (5.2), we have

|xn(t)− x(t)| ≤ |(xn(t)− x(t))− (xn(a)− x(a))|+ |xn(a)− x(a)|
< ε(t− a)α + ε

= ε(1 + (b− a)α).

From this, it follows that
‖xn − x‖∞ → 0. (5.3)

Next, we will prove that x ∈ Bβr . In fact, as (xn) ⊂ Bβr ⊂ Hβ [a, b], we have that

|xn(t)− xn(s)|
|t− s|β

≤ r

for any t, s ∈ [a, b] with t 6= s. Consequently,

|xn(t)− xn(s)| ≤ r|t− s|β

for any t, s ∈ [a, b]. Letting n→∞ and taking into account (5.3), we obtain

|x(t)− x(s)| ≤ r|t− s|β

for any t, s ∈ [a, b]. Therefore,

|x(t)− x(s)|
|t− s|β

≤ r



10 J. CABALLERO, M. A. DARWISH, K. SADARANGANI EJDE-2014/31

for any t, s ∈ [a, b] with t 6= s, and this means that x ∈ Bβr . This completes the
proof.

References
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