Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 33, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

HÖLDER CONTINUITY FOR A PERIODIC 2-COMPONENT μ-B SYSTEM

XIAOHUAN WANG

Abstract

In this article, we consider the Cauchy problem of a periodic $2-$ component μ-b system. We show that the date to solution for the periodic 2 -component μ-b system is Hölder continuous from bounded set of Sobolev spaces with exponent $s>5 / 2$ measured in a weaker Sobolev norm with index $r<s$ for the periodic case.

1. Introduction

In this article, we reconsider the Cauchy problem of the following two-component periodic μ-b system

$$
\begin{gather*}
\mu(u)_{t}-u_{t x x}=b u_{x}\left(\mu(u)-u_{x x}\right)-u u_{x x x}+\rho \rho_{x}, \quad t>0, x \in \mathbb{R} \\
\rho_{t}=(\rho u)_{x}, \quad t>0, x \in \mathbb{R} \\
u(0, x)=u_{0}(x), \quad \rho(0, x)=\rho_{0}(x), \quad x \in \mathbb{R} \tag{1.1}\\
u(t, x+1)=u(t, x), \quad \rho(t, x+1)=\rho(t, x), \quad t \geq 0, x \in \mathbb{R}
\end{gather*}
$$

where $b \in \mathbb{R}, \mu(u)=\int_{\mathbb{S}} u d x$ and $\mathbb{S}=\mathbb{R} / \mathbb{Z}:=(0,1)$.
Recently, Zou [23] introduced the system

$$
\begin{gather*}
\mu(u)_{t}-u_{t x x}=2 \mu(u) u_{x}-2 u_{x} u_{x x}-u u_{x x x}+\rho \rho_{x}-\gamma_{1} u_{x x x}, \quad t>0, x \in \mathbb{R} \\
\rho_{t}=(\rho u)_{x}-2 \gamma_{2} \rho_{x}, \quad t>0, x \in \mathbb{R} \\
u(0, x)=u_{0}(x), \quad \rho(0, x)=\rho_{0}(x), \quad x \in \mathbb{R} \tag{1.2}\\
u(t, x+1)=u(t, x), \quad \rho(t, x+1)=\rho(t, x), \quad t \geq 0, x \in \mathbb{R}
\end{gather*}
$$

where $\mu(u)=\int_{\mathbb{S}} u d x, \mathbb{S}=\mathbb{R} / \mathbb{Z}$ and $\gamma_{i} \in \mathbb{R}, i=1,2$. By integrating both sides of the first equation in the system $\sqrt[1.2]{ }$ over the circle \mathbb{S} and using the periodicity of u, one obtains

$$
\mu\left(u_{t}\right)=\mu(u)_{t}=0
$$

[^0]which implies the following 2 -component periodic μ-Hunter-Saxton system
\[

$$
\begin{gather*}
-u_{t x x}=2 \mu(u) u_{x}-2 u_{x} u_{x x}-u u_{x x x}+\rho \rho_{x}-\gamma_{1} u_{x x x}, \quad t>0, x \in \mathbb{R} \\
\rho_{t}=(\rho u)_{x}-2 \gamma_{2} \rho_{x}, \quad t>0, x \in \mathbb{R} \\
u(0, x)=u_{0}(x), \quad \rho(0, x)=\rho_{0}(x), \quad x \in \mathbb{R} \tag{1.3}\\
u(t, x+1)=u(t, x), \quad \rho(t, x+1)=\rho(t, x), \quad t \geq 0, x \in \mathbb{R}
\end{gather*}
$$
\]

This system is a 2 -component generalization of the generalized Hunter-Saxton equation obtained in [10]. Zou [23] shows that this system is both a bi-Hamiltonian Euler equation and a bi-variational equation. Liu-Yin [14 established the local well-posedness, precise blow-up scenario and global existence result to the system (1.3).

If $b=2$, then system (1.1) becomes the system (1.3) with $\gamma_{1}=\gamma_{2}=0$. Therefore, system (1.1) generalizes system (1.3) in some sense.

If $\rho \equiv 0$, then system 1.1 becomes the system

$$
\begin{gather*}
\mu\left(u_{t}\right)-u_{x x t}+u u_{x x x}-b u_{x}\left(\mu(u)-u_{x x}\right)=0, \quad t>0, x \in \mathbb{S} \\
u(0, x)=u_{0}(x), \quad x \in \mathbb{S} . \tag{1.4}
\end{gather*}
$$

The above equation is called μ-b equation. If $b=2$, then equation 1.4 becomes the well-known μ-CH equation. Lenells, Misiołek and Tiğlay [13] introduced the μ-CH, the μ-DP as well as μ-Burgers equations, and the μ - b equation (see also [11]). In the case $b=3$, the μ-b equation reduces to the μ-DP equations. In addition, if $\mu(u)=0$, they reduce to the HS and μ-Burgers equations, respectively. It is remarked that the μ-Hunter-Saxton equation has a very close relation with the periodic Hunter-Saxton and Camassa-Holm equations, that is, 1.4 will reduce to the Hunter-Saxton equation [9, 19, 21] if $\mu(u)=0$ and $b=2$.

The local well-posedness of the μ-CH and μ-DP Cauchy problems have been studied in [10] and [13]. Recently, Fu et. al. [3] described precise blow-up scenarios for μ-CH and μ-DP.

When $\rho \not \equiv 0$ and $\gamma_{i}=0(i=1,2)$, Constanin-Ivanov 2] considered the peakon solutions of the Cauchy problem of system (1.3). In paper [20], Wunsch studied the the Cauchy problem of 2-component periodic Hunter-Saxton system, see also [12]. The local well-posedness of system 1.1) was established in our paper [17].

Recently, some properties of solutions to the Camassa-Holm equation have been studied by many authors. Himonas et al. [5] studied the persistence properties and unique continuation of solutions of the Camassa-Holm equation, see [4, 22] for the similar properties of solutions to other shallow water equation. Himonas-Kenig [6] and Himonas et al. 7] considered the non-uniform dependence on initial data for the Camassa-Holm equation on the line and on the circle, respectively. Lv et al. [16] obtained the non-uniform dependence on initial data for μ - b equation. Lv-Wang [15] considered the system (1.1) with $\rho=\gamma-\gamma_{x x}$ and obtained the non-uniform dependence on initial data. Just recently, Chen et al. 11 and Himonas et al. [8] studied the Hölder continuity of the solution map for shallow water equations. Thompson [18] also studied the Hölder continuity for the CH system, which is obtained from (1.1) by replacing the operator $\mu-\partial_{x}^{2}$ with the operator $1-\partial_{x}^{2}$.

Our work has been inspired by [1, 8]. In this paper, we shall study the problem 1.1. We remark that there is significant difference between system (1.1) and CH system because of the two operators $1-\partial_{x}^{2}$ and $\mu-\partial_{x}^{2}$. Moreover, the properties of u and γ are different, see Proposition 2.1. So the system (1.1) will have the properties
unlike the signal equation, for example, μ-b equation. And this is different from the CH system.

This paper is organized as follows. In section 2, we will recall some known results about the well-posedness and then state out our main results. Section 3 is concerned with the proof of the main results.

Notation In this paper, the symbols \lesssim, \approx and \gtrsim are used to denote inequality/equality up to a positive universal constant. For example, $f(x) \lesssim g(x)$ means that $f(x) \leq c g(x)$ for some positive universal constant c. In the following, we denote by $*$ the spatial convolution. Given a Banach space Z, we denote its norm by $\|\cdot\|_{Z}$. Since all space of functions are over \mathbb{S}, for simplicity, we drop \mathbb{S} in our notations of function spaces if there is no ambiguity. Let $[A, B]=A B-B A$ denotes the commutator of linear operator A and B. Set $\|z\|_{H^{s} \times H^{s-1}}^{2}=\|u\|_{H^{s}}^{2}+\|\rho\|_{H^{s-1}}^{2}$, where $z=(u, \rho)$.

2. Some known results and main result

In this section we first recall the known results, and then state out our main result.

As $\mu(u)_{t}=0$ under spatial periodicity, we can re-write 1.1 as follows:

$$
\begin{gather*}
u_{t}-u u_{x}=\partial_{x} A^{-1}\left(b \mu(u) u+\frac{3-b}{2} u_{x}^{2}+\frac{1}{2} \rho^{2}\right), \quad t>0, x \in \mathbb{S} \\
\rho_{t}-u \rho_{x}=u_{x} \rho, \quad t>0, x \in \mathbb{S} \tag{2.1}\\
u(0, x)=u_{0}(x), \quad \rho(0, x)=\rho_{0}(x), \quad x \in \mathbb{S}
\end{gather*}
$$

where $A=\mu-\partial_{x}^{2}$ is an isomorphism between $H^{s}(\mathbb{S})$ and $H^{s-2}(\mathbb{S})$ with the inverse $v=A^{-1} u$ given by

$$
\begin{aligned}
v(x)= & \left(\frac{x^{2}}{2}-\frac{x}{2}+\frac{13}{12}\right) \mu(u)+(x-1 / 2) \int_{0}^{1} \int_{0}^{y} u(s) \mathrm{d} s \mathrm{~d} y \\
& -\int_{0}^{x} u(s) \mathrm{d} s \mathrm{~d} y+\int_{0}^{1} \int_{0}^{y} \int_{0}^{s} u(r) \mathrm{d} r \mathrm{~d} s \mathrm{~d} y
\end{aligned}
$$

Since A^{-1} and ∂_{x} commute, the following identities hold:

$$
\begin{gather*}
A^{-1} \partial_{x} u(x)=(x-1 / 2) \int_{0}^{1} u(x) \mathrm{d} x-\int_{0}^{x} u(y) \mathrm{d} y+\int_{0}^{1} \int_{0}^{x} u(y) \mathrm{d} y \mathrm{~d} x \tag{2.2}\\
A^{-1} \partial_{x}^{2} u(x)=-u(x)+\int_{0}^{1} u(x) \mathrm{d} x \tag{2.3}
\end{gather*}
$$

It is easy to show that $\mu\left(\Lambda^{-1} \partial_{x} u(x)\right)=0$.
Proposition 2.1 ([17, Theorem 2.1]). Given $z_{0}=\left(u_{0}, \rho_{0}\right) \in H^{s} \times H^{s-1}, s \geq 2$. Then there exists a maximal existence time $T=T\left(\left\|z_{0}\right\|_{H^{s} \times H^{s-1}}\right)>0$ and a unique solution $z=(u, \rho)$ to system 2.1) such that

$$
z=z\left(\cdot, z_{0}\right) \in C\left([0, T) ; H^{s} \times H^{s-1}\right) \cap C^{1}\left([0, T) ; H^{s-1} \times H^{s-2}\right)
$$

Moreover, the solution depends continuously on the initial data, i.e. the mapping

$$
z_{0} \rightarrow z\left(\cdot, z_{0}\right): H^{s} \times H^{s-1} \rightarrow C\left([0, T) ; H^{s} \times H^{s-1}\right) \cap C^{1}\left([0, T) ; H^{s-1} \times H^{s-2}\right)
$$

is continuous.
Next, an explicit estimate for the maximal existence time T is given.

Proposition 2.2. Let $s>\frac{5}{2}$. If $z=(u, \rho)$ is a solution of system (2.1) with initial data z_{0} described in Proposition 2.1, then the maximal existence time T satisfies

$$
T \geq T_{0}:=\frac{1}{2 C_{s}\left\|z_{0}\right\|_{H^{s} \times H^{s-1}}}
$$

where C_{s} is a constant depending only on s. Also, we have

$$
\|z(t)\|_{H^{s} \times H^{s-1}} \leq 2\left\|z_{0}\right\|_{H^{s} \times H^{s-1}}, \quad 0 \leq t \leq T_{0}
$$

Now, we state our main result.
Theorem 2.3. Assume $s>5 / 2$ and $3 / 2<r<s$. Then the solution map to (2.1) with (2.2) is Hölder continuous with exponent $\alpha=\alpha(s, r)$ as a map from $B(0, h)$ with $H^{r}(\mathbb{S})$ norm to $C\left(\left[0, T_{0}\right], H^{r}(\mathbb{S})\right)$, where T_{0} is defined as in Proposition 2.2 , More precisely, for initial data $(u(0), \rho(0))$ and $(\hat{u}(0), \hat{\rho}(0))$ in a ball $B(0, h):=$ $\left\{u \in H^{s}:\|u\|_{H^{s}} \leq h\right\}$ of H^{s}, the solutions of 2.1) with 2.2) $(u(x, t), \rho(x, t)$ and $\hat{u}(x, t), \hat{\rho}(x, t)$ satisfy the inequality

$$
\begin{align*}
&\|u(t)-\hat{u}(t)\|_{C\left(\left[0, T_{0}\right] ; H^{r}\right)} \leq c\|u(0)-\hat{u}(0)\|_{H^{r}}^{\alpha}, \tag{2.4}\\
&\|\rho(t)-\hat{\rho}(t)\|_{C\left(\left[0, T_{0}\right] ; H^{r}\right)} \leq c\|\rho(0)-\hat{\rho}(0)\|_{H^{r}}^{\alpha},
\end{align*}
$$

where α is given by

$$
\alpha= \begin{cases}1 & \text { if }(s, r) \in \Omega_{1} \tag{2.5}\\ s-r & \text { if }(s, r) \in \Omega_{2}\end{cases}
$$

and the regions Ω_{1} and Ω_{2} are defined by

$$
\begin{gathered}
\Omega_{1}=\{(s, r): s>5 / 2,3 / 2<r \leq s-1\} \\
\Omega_{2}=\{(s, r): s>5 / 2, s-1<r<s\}
\end{gathered}
$$

3. Proof of Theorem 2.3

In this section, we prove Theorem 2.3 by using energy method. We shall prove that

$$
\|z(t)-\hat{z}(t)\|_{C\left(\left[0, T_{0}\right] ; H^{r} \times H^{r-1}\right)} \leq c\|z(0)-\hat{z}(0)\|_{H^{r} \times H^{r-1}}^{\alpha}
$$

where $\|z(t)\|_{H^{r} \times H^{r-1}}=\|u(t)\|_{H^{r}}+\|\rho(t)\|_{H^{r-1}}$.
We note that $\|u(0)-\hat{u}(0)\|_{H^{r}}>0$ and $\|\rho(0)-\hat{\rho}(0)\|_{H^{r-1}}>0$. Indeed, due to $r>3 / 2$, it follows from Sobolev embedding $H^{\frac{1}{2}+}(\mathbb{S}) \hookrightarrow C^{0}(\mathbb{S})$ that

$$
\|u(0)-\hat{u}(0)\|_{C^{0}} \lesssim\|u(0)-\hat{u}(0)\|_{H^{r}}
$$

Hence $u(0) \equiv \hat{u}(0)$ if $\|u(0)-\hat{u}(0)\|_{H^{r}}=0$, and it follows from Proposition 2.1 that $u(x, t)=\hat{u}(x, t)$. Therefore, we will assume that $\|u(0)-\hat{u}(0)\|_{H^{r}}>0$ and $\|\rho(0)-\hat{\rho}(0)\|_{H^{r-1}}>0$. To prove Theorem 2.3. we need the following Lemmas.

Lemma 3.1 ([8, Lemma 1]). If $r+1 \geq 0$, then

$$
\left\|\left[\Lambda^{r} \partial_{x}, f\right] v\right\|_{L^{2}} \leq c\|f\|_{H^{s}}\|v\|_{H^{r}}
$$

provided that $s>3 / 2$ and $r+1 \leq s$.
Proof of Theorem 2.3. Let $u_{0}(x), \rho(0), \hat{u}_{0}(x), \hat{\rho}(0) \in B(0, h)$ and $(u(x, t), \rho(x, t))$ and $(\hat{u}(x, t), \hat{\rho}(x, t))$ be the two solutions to 2.1) with initial data $\left(u_{0}(x), \rho(0)\right)$ and ($\left.\hat{u}_{0}(x), \hat{\rho}(0)\right)$, respectively. Let

$$
v=u-\hat{u}, \quad \sigma=\rho-\hat{\rho},
$$

then v and σ satisfy that

$$
\begin{align*}
v_{t}-\frac{1}{2} \partial_{x}[v(u+\hat{u})]= & -\partial_{x} A^{-1}[b \mu(u) v+b \mu(v) \hat{u} \\
& \left.\quad+\frac{3-b}{2}\left(v_{x}(u+\hat{u})_{x}\right)+\frac{1}{2} \sigma(\rho+\hat{\rho})\right], \quad t>0, x \in \mathbb{S} \tag{3.1}\\
& \sigma_{t}=(v \rho+\sigma \hat{u})_{x}, \quad t>0, x \in \mathbb{S} \\
& v(0, x)=u_{0}(x)-\hat{u}_{0}(x), \quad x \in \mathbb{S} \\
& \sigma(0, x)=\rho_{0}(x)-\hat{\rho}_{0}(x), \quad x \in \mathbb{S}
\end{align*}
$$

Let $\Lambda=\left(1-\partial_{x}\right)^{1 / 2}$. Applying Λ^{r} and Λ^{r-1} to both sides of the first and second equation of (3.1), then multiplying both sides by $\Lambda^{r} v$ and $\Lambda^{r-1} \sigma$, respectively, and integrating, we obtain

$$
\begin{align*}
\frac{1}{2} & \frac{d}{d t}\|v(t)\|_{H^{r}}^{2} \\
= & \frac{1}{2} \int_{\mathbb{S}} \Lambda^{r} \partial_{x}[v(u+\hat{u})] \cdot \Lambda^{r} v \mathrm{~d} x-\int_{\mathbb{S}} \Lambda^{r} \partial_{x} A^{-1}[b \mu(u) v+b \mu(v) \hat{u} \tag{3.2}\\
& \left.+\frac{3-b}{2}\left(v_{x}(u+\hat{u})_{x}\right)+\frac{1}{2} \sigma(\rho+\hat{\rho})\right] \cdot \Lambda^{r} v \mathrm{~d} x
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|\sigma(t)\|_{H^{r-1}}^{2}=\int_{\mathbb{S}} \Lambda^{r-1}(v \rho+\sigma \hat{u})_{x} \cdot \Lambda^{r-1} \sigma \mathrm{~d} x \tag{3.3}
\end{equation*}
$$

It follows from Lemma 3.1 that

$$
\begin{align*}
& \left|\frac{1}{2} \int_{\mathbb{S}} \Lambda^{r} \partial_{x}[v(u+\hat{u})] \cdot \Lambda^{r} v \mathrm{~d} x\right| \\
& =\frac{1}{2}\left|\int_{\mathbb{S}}\left[\Lambda^{r} \partial_{x}, u+\hat{u}\right] v \cdot \Lambda^{r} v \mathrm{~d} x-\int_{\mathbb{S}}(u+\hat{u}) \Lambda^{r} \partial_{x} v \cdot \Lambda^{r} v \mathrm{~d} x\right| \\
& \lesssim\left|\int_{\mathbb{S}}\left[\Lambda^{r} \partial_{x}, u+\hat{u}\right] v \cdot \Lambda^{r} v \mathrm{~d} x\right|+\left|\int_{\mathbb{S}}(u+\hat{u}) \Lambda^{r} \partial_{x} v \cdot \Lambda^{r} v \mathrm{~d} x\right| \tag{3.4}\\
& \lesssim\left|\int_{\mathbb{S}}\left[\Lambda^{r} \partial_{x}, u+\hat{u}\right] v \cdot \Lambda^{r} v \mathrm{~d} x\right|+\left|\int_{\mathbb{S}} \partial_{x}(u+\hat{u}) \cdot\left(\Lambda^{r} v\right)^{2} \mathrm{~d} x\right| \\
& \lesssim\left\|\left[\Lambda^{r} \partial_{x}, u+\hat{u}\right] v\right\|_{L^{2}}\|v(t)\|_{H^{r}}+\left\|\partial_{x}(u+\hat{u})\right\|_{L^{\infty}}\|v(t)\|_{H^{r}}^{2} \\
& \lesssim\left(\|u+\hat{u}\|_{H^{s}}+\left\|\partial_{x}(u+\hat{u})\right\|_{L^{\infty}}\right)\|v(t)\|_{H^{r}}^{2} \\
& \lesssim\left(\|u+\hat{u}\|_{H^{s}}\right)\|v(t)\|_{H^{r}}^{2},
\end{align*}
$$

where we have used the facts that $H^{\frac{1}{2}+} \hookrightarrow L^{\infty}$ and $s>3 / 2$. It is easy to show that

$$
\begin{align*}
& \left|-b \int_{\mathbb{S}} \Lambda^{r} \partial_{x} A^{-1}[\mu(u) v+\mu(v) \hat{u}] \cdot \Lambda^{r} v \mathrm{~d} x\right| \tag{3.5}\\
& \lesssim\left\|\partial_{x} A^{-1}[\mu(u) v+\mu(v) \hat{u}]\right\|_{H^{r}} \cdot\|v(t)\|_{H^{r}}
\end{align*}
$$

By (2.2) and (2.3), we have

$$
\begin{aligned}
\left\|\partial_{x} A^{-1} u\right\|_{H^{r}} & =\left\|\left(x-\frac{1}{2}\right) \int_{0}^{1} u(x) \mathrm{d} x-\int_{0}^{x} u(y) \mathrm{d} y+\int_{0}^{1} \int_{0}^{x} u(y) \mathrm{d} y \mathrm{~d} x\right\|_{H^{r}} \\
& \lesssim\left\|x-\frac{1}{2}\right\|_{H^{r}} \int_{0}^{1}|u(x)| \mathrm{d} x+\|u(t)\|_{H^{r-1}}+\int_{0}^{1} \int_{0}^{x}|u(y)| \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

Using the above inequality, we have

$$
\begin{align*}
& \left\|\partial_{x} A^{-1}[\mu(u) v+\mu(v) \hat{u}]\right\|_{H^{r}} \\
& \lesssim|\mu(u)|\left(\left\|x-\frac{1}{2}\right\|_{H^{r}} \int_{0}^{1}|v(x)| \mathrm{d} x+\|v(t)\|_{H^{r-1}}+\int_{0}^{1} \int_{0}^{x}|v(y)| \mathrm{d} y \mathrm{~d} x\right) \tag{3.6}\\
& \quad+|\mu(v)|\left(\left\|x-\frac{1}{2}\right\|_{H^{r}} \int_{0}^{1}|\hat{u}(x)| \mathrm{d} x+\|\hat{u}(t)\|_{H^{r-1}}+\int_{0}^{1} \int_{0}^{x}|\hat{u}(y)| \mathrm{d} y \mathrm{~d} x\right) \\
& \lesssim\left(\|u\|_{H^{s}}+\|\hat{u}\|_{H^{s}}\right)\|v(t)\|_{H^{r}},
\end{align*}
$$

where we have used the inequality

$$
|\mu(v)|=\left|\int_{\mathbb{S}} v(x, t) \mathrm{d} x\right| \leq \int_{\mathbb{S}}|v(x, t)| \mathrm{d} x \leq\|v(t)\|_{H^{r}}
$$

provided that $r \geq 0$. Substituting (3.6) into (3.5), we obtain

$$
\begin{equation*}
\left|-b \int_{\mathbb{S}} \Lambda^{r} \partial_{x} A^{-1}[\mu(u) v+\mu(v) \hat{u}] \cdot \Lambda^{r} v \mathrm{~d} x\right| \lesssim\left(\|u\|_{H^{s}}+\|w\|_{H^{s}}\right)\|v(t)\|_{H^{r}}^{2} \tag{3.7}
\end{equation*}
$$

Similarly, integrating by parts, we have

$$
\begin{align*}
& \left|\frac{1}{2} \int_{\mathbb{S}} \Lambda^{r} \partial_{x} A^{-1}(\sigma(\rho+\hat{\rho})) \cdot \Lambda^{r} v \mathrm{~d} x\right| \\
& \lesssim\left\|\partial_{x} A^{-1} \sigma(\rho+\hat{\rho})\right\|_{H^{r}} \cdot\|v(t)\|_{H^{r}} \tag{3.8}\\
& \lesssim\|\sigma(t)\|_{L^{2}}\left(\|\rho\|_{H^{1}}+\|\hat{\rho}\|_{H^{1}}\right) \cdot\|v(t)\|_{H^{r}} \\
& \lesssim\left(\|\rho\|_{H^{s-1}}+\|\hat{\rho}\|_{H^{s-1}}\right) \cdot\left(\|v(t)\|_{H^{r}}^{2}+\|\sigma(t)\|_{H^{r-1}}^{2}\right) ;
\end{align*}
$$

and

$$
\begin{align*}
& \left|-\frac{3-b}{2} \int_{\mathbb{S}} \Lambda^{r} \partial_{x} A^{-1} v_{x}(u+\hat{u})_{x} \cdot \Lambda^{r} v \mathrm{~d} x\right| \\
& \lesssim\left\|\partial_{x} A^{-1} v_{x}(u+\hat{u})_{x}\right\|_{H^{r}} \cdot\|v(t)\|_{H^{r}} \tag{3.9}\\
& \lesssim\|v(t)\|_{L^{2}}\left(\|u\|_{H^{2}}+\|\hat{u}\|_{H^{2}}\right) \cdot\|v(t)\|_{H^{r}} \\
& \lesssim\left(\|u\|_{H^{s}}+\|\hat{u}\|_{H^{s}}\right) \cdot\|v(t)\|_{H^{r}}^{2}
\end{align*}
$$

provided that $s \geq 2$. In the above inequality, we used

$$
\left|\int_{\mathbb{S}} v_{x}(x, t) u_{x}(x, t) \mathrm{d} x\right|=\left|\int_{\mathbb{S}} v(x, t) u_{x x}(x, t) \mathrm{d} x\right| \leq\|v(t)\|_{L^{2}}\|u\|_{H^{2}}
$$

It follows from Lemma 3.1 that

$$
\begin{align*}
& \left|\int_{\mathbb{S}} \Lambda^{r}(v \rho+\sigma \hat{u})_{x} \cdot \Lambda^{r} \sigma \mathrm{~d} x\right| \\
& \leq\|v \rho\|_{H^{r}}\|v(t)\|_{H^{r}}+\left\|\left[\partial_{x} \Lambda^{r-1}, \hat{u}\right] \sigma\right\|_{L^{2}}\|\sigma(t)\|_{H^{r-1}}+\left\|\hat{u}_{x}\right\|_{L^{\infty}}\|\sigma(t)\|_{H^{r-1}}^{2} \tag{3.10}\\
& \lesssim\left(\|\hat{u}\|_{H^{s}}+\|\rho\|_{H^{s}}\right)\left(\|v(t)\|_{H^{r}}^{2}+\|\sigma(t)\|_{H^{r-1}}^{2}\right)
\end{align*}
$$

where we used the fact $H^{r} \hookrightarrow H^{s}(r \leq s)$ again.
Lipschitz continuous Ω_{1}. Substituting (3.4)-(3.9) and (3.10) into (3.2) and (3.3), respectively, and adding the resulting equalities, we have

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left(\|v(t)\|_{H^{r}}^{2}+\|\sigma(t)\|_{H^{r-1}}^{2}\right) \\
& \lesssim\left(\|u\|_{H^{s}}+\|\hat{u}\|_{H^{s}}+\|\rho\|_{H^{s-1}}+\|\hat{\rho}\|_{H^{s-1}}\right)\left(\|v(t)\|_{H^{r}}^{2}+\|\sigma(t)\|_{H^{r-1}}^{2}\right)
\end{aligned}
$$

It follows from Proposition 2.2 that

$$
\begin{aligned}
& \|u\|_{H^{s}}+\|\hat{u}\|_{H^{s}}+\|\rho\|_{H^{s-1}}+\|\hat{\rho}\|_{H^{s-1}} \\
& \lesssim\|u(0)\|_{H^{s}}+\|\hat{u}(0)\|_{H^{s}}+\|\rho(0)\|_{H^{s-1}}+\|\hat{\rho}(0)\|_{H^{s-1}} \lesssim 1
\end{aligned}
$$

since $u_{0}, \rho_{0}, \hat{u}_{0}, \hat{\rho}_{0} \in B(0, h)$. Consequently, we obtain

$$
\frac{1}{2} \frac{d}{d t}\|z(t)\|_{H^{r} \times H^{r-1}}^{2} \lesssim c\|z(t)\|_{H^{r} \times H^{r-1}}^{2}
$$

which implies that

$$
\begin{equation*}
\|z(t)\|_{H^{r} \times H^{r-1}} \leq e^{c T_{0}}\|z(0)\|_{H^{r} \times H^{r-1}} \tag{3.11}
\end{equation*}
$$

Or equivalently
$\|u(t)-\hat{u}(t)\|_{H^{r}}+\|\rho(t)-\hat{\rho}(t)\|_{H^{r-1}} \leq e^{c T_{0}}\left(\|u(0)-\hat{u}(0)\|_{H^{r}}+\|\rho(0)-\hat{\rho}(0)\|_{H^{r-1}}\right)$.
In the beginning of section 3 , we obtain that $\|u(0)-\hat{u}(0)\|_{H^{r}}>0$ and $\| \rho(0)-$ $\hat{\rho}(0) \|_{H^{r}}>0$. Indeed, if $\|u(0)-\hat{u}(0)\|_{H^{r}}=0$ or $\|\rho(0)-\hat{\rho}(0)\|_{H^{r}}=0$, it follows from the Sobolev embedding Theorem and Proposition 2.1 that $u(x, t) \equiv \hat{u}(x, t)$ or $\rho(x, t) \equiv \hat{\rho}(x, t)$, respectively. Thus we can assume that

$$
\|u(0)-\hat{u}(0)\|_{H^{r}}=O\left(\|\rho(0)-\hat{\rho}(0)\|_{H^{r-1}}\right)
$$

By (3.11), we have

$$
\|u(t)-\hat{u}(t)\|_{H^{r}} \leq C\left(\|u(0)-\hat{u}(0)\|_{H^{r}}\right)
$$

which is the desired Lipschitz continuity in Ω_{1}.
Hölder continuous in Ω_{2}. Since $s-1<r<s$, by interpolating between H^{s-1} and H^{s} norms, we obtain

$$
\|z(t)\|_{H^{r} \times H^{r-1}} \leq\|z(t)\|_{H^{s-1} \times H^{s-2}}^{s-r}\|z(t)\|_{H^{s} \times H^{s-1}}^{r-s+1}
$$

Moreover, from the Proposition 2.2, we have that

$$
\|z(t)\|_{H^{s} \times H^{s-1}} \lesssim\left\|u_{0}\right\|_{H^{s}}+\left\|\hat{u}_{0}\right\|_{H^{s}}+\left\|\rho_{0}\right\|_{H^{s-1}}+\left\|\hat{\rho}_{0}\right\|_{H^{s-1}} \lesssim h
$$

and thus we have

$$
\begin{equation*}
\|z(t)\|_{H^{r} \times H^{r-1}} \lesssim\|z(t)\|_{H^{s-1} \times H^{s-2}}^{s-r} \tag{3.13}
\end{equation*}
$$

We see that (3.11) is valid for $r=s-1, s>5 / 2$. Therefore, applying 3.11 into (3.13), we obtain

$$
\|z(t)\|_{H^{r} \times H^{r-1}} \lesssim\|z(0)\|_{H^{s-1} \times H^{s-2}}^{s-r}
$$

which is the desired Hölder continuity (similar to the discussion in Ω_{1}). The proof of Theorem 2.3 is completed.

Acknowledgments. This research was supported in part by PRC Grants NSFC 11301146 and 11226168.

References

[1] R. Chen, Y. Liu, P. Z. Zhang; The Hölder continuity of the solution map to the b-family equation in weak topology, Math. Ann. 357 (2013) 1245-1289.
[2] A. Constantin, R. Ivanov; On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A 372 (2008) 7129-7132.
[3] Y. Fu, Y. Liu, C. Qu; On the blow-up structure for the generalized periodic Camassa-Holm and Degasperis-Procesi equations, J. Funct. Anal. 262(2012), 3125-3158.
[4] Y. G. Fu, Z. R. Liu; Non-uniform dependence on initial data for the periodic modified Camassa-Holm equation, Nonlinear Differential Equations and Applications NoDEA 20 (2013) 741-755.
[5] A. Himonas, G. Misiolek, G. Ponce, Y. Zhou; Persistence properties and unique continuous of solutions of the Camassa-Holm equation, Comm. Math. Phys. 271 (2007) 511-522.
[6] A. Himonas, C. Kenig; Non-uniform dependence on initial data for the CH equation on the line, Differential Integral Equations 22 (2009) 201-224.
[7] A. Himonas, C. Kenig, G. Misiolek; Non-uniform dependence for the periodic CH equation, Commun. Partial Differential Equations 35 (2010) 1145-1162.
[8] A. Himonas, J. Holmes; Hölder continuity of the solution map for the Novikov equation, J. Math. Phys. 54 (2013), 061051.
[9] J. K. Hunter, R. Saxton; Dynamics of director fields, SIAM J. Appl. Math. 51 (1991) 14981521.
[10] B. Khesin, J. Lenells, G. Misiolek; Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms, Math. Ann. 342 (2008) 617-656.
[11] M. Kohlmann; The periodic μ-b-equation and Euler equations on the circle, J. Nonlinear Math. Phys. 18(2011), 1-8.
[12] M. Kohlmann; The curvature of semidirect product groups associated with two-component Hunter-Saxton systems, J. Phys. A: Math. Theor. 44 (2011) 225203.
[13] J. Lenells, G. Misiołek, F. Tiğlay; Integrable evolution equations on spaces for tensor densities and their peakon solutions, Comm. Math. Phys. 299(2010), 129-161.
[14] J. Liu, Z. Yin; On the Cauchy problem of a periodic 2-component μ-Hunter-Saxton equation, Nonlinear Analysis, 75 (2012) 131-142.
[15] G. Y. Lv, M. X. Wang; Non-uniform dependence for a modified Camassa-Holm system, J. Math. Physics 53 (2012) 013101.
[16] G. Y. Lv, Peter Y. H. Pang, M. X. Wang; Non-uniform Dependence on Initial Data for the $\mu-b$ Equation, Z. Angew. Math. Phys. 64 (2013) 1543-1554.
[17] G. Y. Lv, X. H. Wang; On initial data problem for a periodic 2-component μ-b system, submitted.
[18] R. Thompson; The periodic Cauchy problem for the 2-component Camassa-Holm system, Differential and Integral Equations 26 (2013) 155-182.
[19] J. P. Wang; The Hunter-Saxton equation: remarkable structures of symmetries and conserved densities, Nonlinearity, 23 (2010) 2009.
[20] M. Wunsch; On the Hunter-Saxton system, Discrete Contin. Dyn. Syst. Ser. B 12 (2009) 647-656.
[21] Z. Yin; On the structure of solutions to the periodic Hunter-Saxton equation, SIAM J. Math. Anal. 36 (2004) 272-283.
[22] Y. Zhou, H. P. Chen; Wave breaking and propagation speed for the Camassa-Holm equation with $k \neq 0$, Nonlinear Anal. Real World Appl. 12 (2011) 1355-1358.
[23] D. Zuo; A 2-component μ-Hunter-Saxton equation, Inverse Problems 26 (2010) 085003.
Xiaohuan Wang
College of Mathematics and Information Science, Henan University, Kaifeng 475001, China

E-mail address: xiaohuanw@126.com

[^0]: 2000 Mathematics Subject Classification. 35G25, 35B30, 35L05.
 Key words and phrases. Hölder; μ-Hunter-Saxton system; energy estimates; initial value problem; μ-b system.
 © 2014 Texas State University - San Marcos.
 Submitted September 27, 2013. Published January 27, 2014.

