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HÖLDER CONTINUITY FOR A PERIODIC 2-COMPONENT
µ-B SYSTEM

XIAOHUAN WANG

Abstract. In this article, we consider the Cauchy problem of a periodic 2-
component µ-b system. We show that the date to solution for the periodic

2-component µ-b system is Hölder continuous from bounded set of Sobolev

spaces with exponent s > 5/2 measured in a weaker Sobolev norm with index
r < s for the periodic case.

1. Introduction

In this article, we reconsider the Cauchy problem of the following two-component
periodic µ-b system

µ(u)t − utxx = bux(µ(u)− uxx)− uuxxx + ρρx, t > 0, x ∈ R,
ρt = (ρu)x, t > 0, x ∈ R,

u(0, x) = u0(x), ρ(0, x) = ρ0(x), x ∈ R,
u(t, x+ 1) = u(t, x), ρ(t, x+ 1) = ρ(t, x), t ≥ 0, x ∈ R,

(1.1)

where b ∈ R, µ(u) =
∫

S udx and S = R/Z := (0, 1).
Recently, Zou [23] introduced the system

µ(u)t − utxx = 2µ(u)ux − 2uxuxx − uuxxx + ρρx − γ1uxxx, t > 0, x ∈ R,
ρt = (ρu)x − 2γ2ρx, t > 0, x ∈ R,

u(0, x) = u0(x), ρ(0, x) = ρ0(x), x ∈ R,
u(t, x+ 1) = u(t, x), ρ(t, x+ 1) = ρ(t, x), t ≥ 0, x ∈ R,

(1.2)

where µ(u) =
∫

S udx, S = R/Z and γi ∈ R, i = 1, 2. By integrating both sides of
the first equation in the system (1.2) over the circle S and using the periodicity of
u, one obtains

µ(ut) = µ(u)t = 0,

2000 Mathematics Subject Classification. 35G25, 35B30, 35L05.
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which implies the following 2-component periodic µ-Hunter-Saxton system

−utxx = 2µ(u)ux − 2uxuxx − uuxxx + ρρx − γ1uxxx, t > 0, x ∈ R,
ρt = (ρu)x − 2γ2ρx, t > 0, x ∈ R,

u(0, x) = u0(x), ρ(0, x) = ρ0(x), x ∈ R,
u(t, x+ 1) = u(t, x), ρ(t, x+ 1) = ρ(t, x), t ≥ 0, x ∈ R.

(1.3)

This system is a 2-component generalization of the generalized Hunter-Saxton equa-
tion obtained in [10]. Zou [23] shows that this system is both a bi-Hamiltonian
Euler equation and a bi-variational equation. Liu-Yin [14] established the local
well-posedness, precise blow-up scenario and global existence result to the system
(1.3).

If b = 2, then system (1.1) becomes the system (1.3) with γ1 = γ2 = 0. Therefore,
system (1.1) generalizes system (1.3) in some sense.

If ρ ≡ 0, then system (1.1) becomes the system

µ(ut)− uxxt + uuxxx − bux(µ(u)− uxx) = 0, t > 0, x ∈ S,
u(0, x) = u0(x), x ∈ S.

(1.4)

The above equation is called µ-b equation. If b = 2, then equation (1.4) becomes
the well-known µ-CH equation. Lenells, Misio lek and Tiğlay [13] introduced the
µ-CH, the µ-DP as well as µ-Burgers equations, and the µ-b equation (see also [11]).
In the case b = 3, the µ-b equation reduces to the µ-DP equations. In addition,
if µ(u) = 0, they reduce to the HS and µ-Burgers equations, respectively. It is
remarked that the µ-Hunter-Saxton equation has a very close relation with the
periodic Hunter-Saxton and Camassa-Holm equations, that is, (1.4) will reduce to
the Hunter-Saxton equation [9, 19, 21] if µ(u) = 0 and b = 2.

The local well-posedness of the µ-CH and µ-DP Cauchy problems have been
studied in [10] and [13]. Recently, Fu et. al. [3] described precise blow-up scenarios
for µ-CH and µ-DP.

When ρ 6≡ 0 and γi = 0 (i = 1, 2), Constanin-Ivanov [2] considered the peakon
solutions of the Cauchy problem of system (1.3). In paper [20], Wunsch studied the
the Cauchy problem of 2-component periodic Hunter-Saxton system, see also [12].
The local well-posedness of system (1.1) was established in our paper [17].

Recently, some properties of solutions to the Camassa-Holm equation have been
studied by many authors. Himonas et al. [5] studied the persistence properties and
unique continuation of solutions of the Camassa-Holm equation, see [4, 22] for the
similar properties of solutions to other shallow water equation. Himonas-Kenig [6]
and Himonas et al. [7] considered the non-uniform dependence on initial data for
the Camassa-Holm equation on the line and on the circle, respectively. Lv et al. [16]
obtained the non-uniform dependence on initial data for µ-b equation. Lv-Wang
[15] considered the system (1.1) with ρ = γ − γxx and obtained the non-uniform
dependence on initial data. Just recently, Chen et al. [1] and Himonas et al.
[8] studied the Hölder continuity of the solution map for shallow water equations.
Thompson [18] also studied the Hölder continuity for the CH system, which is
obtained from (1.1) by replacing the operator µ− ∂2

x with the operator 1− ∂2
x.

Our work has been inspired by [1, 8]. In this paper, we shall study the problem
(1.1). We remark that there is significant difference between system (1.1) and CH
system because of the two operators 1−∂2

x and µ−∂2
x. Moreover, the properties of u

and γ are different, see Proposition 2.1. So the system (1.1) will have the properties
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unlike the signal equation, for example, µ-b equation. And this is different from
the CH system.

This paper is organized as follows. In section 2, we will recall some known
results about the well-posedness and then state out our main results. Section 3 is
concerned with the proof of the main results.

Notation In this paper, the symbols ., ≈ and & are used to denote inequal-
ity/equality up to a positive universal constant. For example, f(x) . g(x) means
that f(x) ≤ cg(x) for some positive universal constant c. In the following, we de-
note by ∗ the spatial convolution. Given a Banach space Z, we denote its norm
by ‖ · ‖Z . Since all space of functions are over S, for simplicity, we drop S in our
notations of function spaces if there is no ambiguity. Let [A,B] = AB−BA denotes
the commutator of linear operator A and B. Set ‖z‖2Hs×Hs−1 = ‖u‖2Hs + ‖ρ‖2Hs−1 ,
where z = (u, ρ).

2. Some known results and main result

In this section we first recall the known results, and then state out our main
result.

As µ(u)t = 0 under spatial periodicity, we can re-write (1.1) as follows:

ut − uux = ∂xA
−1
(
bµ(u)u+

3− b
2

u2
x +

1
2
ρ2
)
, t > 0, x ∈ S,

ρt − uρx = uxρ, t > 0, x ∈ S,
u(0, x) = u0(x), ρ(0, x) = ρ0(x), x ∈ S,

(2.1)

where A = µ− ∂2
x is an isomorphism between Hs(S) and Hs−2(S) with the inverse

v = A−1u given by

v(x) = (
x2

2
− x

2
+

13
12

)µ(u) + (x− 1/2)
∫ 1

0

∫ y

0

u(s)dsdy

−
∫ x

0

u(s)dsdy +
∫ 1

0

∫ y

0

∫ s

0

u(r)drdsdy.

Since A−1 and ∂x commute, the following identities hold:

A−1∂xu(x) = (x− 1/2)
∫ 1

0

u(x)dx−
∫ x

0

u(y)dy +
∫ 1

0

∫ x

0

u(y)dydx, (2.2)

A−1∂2
xu(x) = −u(x) +

∫ 1

0

u(x)dx. (2.3)

It is easy to show that µ(Λ−1∂xu(x)) = 0.

Proposition 2.1 ([17, Theorem 2.1]). Given z0 = (u0, ρ0) ∈ Hs × Hs−1, s ≥ 2.
Then there exists a maximal existence time T = T (‖z0‖Hs×Hs−1) > 0 and a unique
solution z = (u, ρ) to system (2.1) such that

z = z(·, z0) ∈ C([0, T );Hs ×Hs−1) ∩ C1([0, T );Hs−1 ×Hs−2).

Moreover, the solution depends continuously on the initial data, i.e. the mapping

z0 → z(·, z0) : Hs ×Hs−1 → C([0, T );Hs ×Hs−1) ∩ C1([0, T );Hs−1 ×Hs−2)

is continuous.

Next, an explicit estimate for the maximal existence time T is given.
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Proposition 2.2. Let s > 5
2 . If z = (u, ρ) is a solution of system (2.1) with initial

data z0 described in Proposition 2.1, then the maximal existence time T satisfies

T ≥ T0 :=
1

2Cs‖z0‖Hs×Hs−1
,

where Cs is a constant depending only on s. Also, we have

‖z(t)‖Hs×Hs−1 ≤ 2‖z0‖Hs×Hs−1 , 0 ≤ t ≤ T0.

Now, we state our main result.

Theorem 2.3. Assume s > 5/2 and 3/2 < r < s. Then the solution map to (2.1)
with (2.2) is Hölder continuous with exponent α = α(s, r) as a map from B(0, h)
with Hr(S) norm to C([0, T0], Hr(S)), where T0 is defined as in Proposition 2.2.
More precisely, for initial data (u(0), ρ(0)) and (û(0), ρ̂(0)) in a ball B(0, h) :=
{u ∈ Hs : ‖u‖Hs ≤ h} of Hs, the solutions of (2.1) with (2.2) (u(x, t), ρ(x, t) and
û(x, t), ρ̂(x, t) satisfy the inequality

‖u(t)− û(t)‖C([0,T0];Hr) ≤ c‖u(0)− û(0)‖αHr ,

‖ρ(t)− ρ̂(t)‖C([0,T0];Hr) ≤ c‖ρ(0)− ρ̂(0)‖αHr ,
(2.4)

where α is given by

α =

{
1 if (s, r) ∈ Ω1,

s− r if (s, r) ∈ Ω2

(2.5)

and the regions Ω1 and Ω2 are defined by

Ω1 = {(s, r) : s > 5/2, 3/2 < r ≤ s− 1},
Ω2 = {(s, r) : s > 5/2, s− 1 < r < s}.

3. Proof of Theorem 2.3

In this section, we prove Theorem 2.3 by using energy method. We shall prove
that

‖z(t)− ẑ(t)‖C([0,T0];Hr×Hr−1) ≤ c‖z(0)− ẑ(0)‖αHr×Hr−1 ,

where ‖z(t)‖Hr×Hr−1 = ‖u(t)‖Hr + ‖ρ(t)‖Hr−1 .
We note that ‖u(0) − û(0)‖Hr > 0 and ‖ρ(0) − ρ̂(0)‖Hr−1 > 0. Indeed, due to

r > 3/2, it follows from Sobolev embedding H
1
2+(S) ↪→ C0(S) that

‖u(0)− û(0)‖C0 . ‖u(0)− û(0)‖Hr .

Hence u(0) ≡ û(0) if ‖u(0) − û(0)‖Hr = 0, and it follows from Proposition 2.1
that u(x, t) = û(x, t). Therefore, we will assume that ‖u(0) − û(0)‖Hr > 0 and
‖ρ(0)− ρ̂(0)‖Hr−1 > 0. To prove Theorem 2.3, we need the following Lemmas.

Lemma 3.1 ([8, Lemma 1]). If r + 1 ≥ 0, then

‖[Λr∂x, f ]v‖L2 ≤ c‖f‖Hs‖v‖Hr

provided that s > 3/2 and r + 1 ≤ s.

Proof of Theorem 2.3. Let u0(x), ρ(0), û0(x), ρ̂(0) ∈ B(0, h) and (u(x, t), ρ(x, t))
and (û(x, t), ρ̂(x, t)) be the two solutions to (2.1) with initial data (u0(x), ρ(0)) and
(û0(x), ρ̂(0)), respectively. Let

v = u− û, σ = ρ− ρ̂,
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then v and σ satisfy that

vt −
1
2
∂x[v(u+ û)] = −∂xA−1

[
bµ(u)v + bµ(v)û

+
3− b

2
(vx(u+ û)x) +

1
2
σ(ρ+ ρ̂)

]
, t > 0, x ∈ S,

σt = (vρ+ σû)x, t > 0, x ∈ S,
v(0, x) = u0(x)− û0(x), x ∈ S,
σ(0, x) = ρ0(x)− ρ̂0(x), x ∈ S.

(3.1)

Let Λ = (1−∂x)1/2. Applying Λr and Λr−1 to both sides of the first and second
equation of (3.1), then multiplying both sides by Λrv and Λr−1σ, respectively, and
integrating, we obtain

1
2
d

dt
‖v(t)‖2Hr

=
1
2

∫
S

Λr∂x[v(u+ û)] · Λrvdx−
∫

S
Λr∂xA−1

[
bµ(u)v + bµ(v)û

+
3− b

2
(
vx(u+ û)x

)
+

1
2
σ(ρ+ ρ̂)

]
· Λrvdx,

(3.2)

and
1
2
d

dt
‖σ(t)‖2Hr−1 =

∫
S

Λr−1(vρ+ σû)x · Λr−1σdx. (3.3)

It follows from Lemma 3.1 that∣∣1
2

∫
S

Λr∂x[v(u+ û)] · Λrvdx
∣∣

=
1
2

∣∣ ∫
S
[Λr∂x, u+ û]v · Λrvdx−

∫
S
(u+ û)Λr∂xv · Λrvdx

∣∣
.
∣∣ ∫

S
[Λr∂x, u+ û]v · Λrvdx

∣∣+
∣∣ ∫

S
(u+ û)Λr∂xv · Λrvdx

∣∣
.
∣∣ ∫

S
[Λr∂x, u+ û]v · Λrvdx

∣∣+
∣∣ ∫

S
∂x(u+ û) · (Λrv)2dx

∣∣
. ‖[Λr∂x, u+ û]v‖L2‖v(t)‖Hr + ‖∂x(u+ û)‖L∞‖v(t)‖2Hr

. (‖u+ û‖Hs + ‖∂x(u+ û)‖L∞)‖v(t)‖2Hr

. (‖u+ û‖Hs)‖v(t)‖2Hr ,

(3.4)

where we have used the facts that H
1
2+ ↪→ L∞ and s > 3/2. It is easy to show that∣∣− b∫

S
Λr∂xA−1[µ(u)v + µ(v)û] · Λrvdx

∣∣
. ‖∂xA−1[µ(u)v + µ(v)û]‖Hr · ‖v(t)‖Hr .

(3.5)

By (2.2) and (2.3), we have

‖∂xA−1u‖Hr =
∥∥(x− 1

2
) ∫ 1

0

u(x)dx−
∫ x

0

u(y)dy +
∫ 1

0

∫ x

0

u(y)dydx
∥∥
Hr

. ‖x− 1
2
‖Hr

∫ 1

0

|u(x)|dx+ ‖u(t)‖Hr−1 +
∫ 1

0

∫ x

0

|u(y)|dydx.
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Using the above inequality, we have

‖∂xA−1[µ(u)v + µ(v)û]‖Hr

. |µ(u)|
(
‖x− 1

2
‖Hr

∫ 1

0

|v(x)|dx+ ‖v(t)‖Hr−1 +
∫ 1

0

∫ x

0

|v(y)|dydx
)

+ |µ(v)|
(
‖x− 1

2
‖Hr

∫ 1

0

|û(x)|dx+ ‖û(t)‖Hr−1 +
∫ 1

0

∫ x

0

|û(y)|dydx
)

. (‖u‖Hs + ‖û‖Hs)‖v(t)‖Hr ,

(3.6)

where we have used the inequality

|µ(v)| =
∣∣ ∫

S
v(x, t)dx

∣∣ ≤ ∫
S
|v(x, t)|dx ≤ ‖v(t)‖Hr

provided that r ≥ 0. Substituting (3.6) into (3.5), we obtain∣∣− b∫
S

Λr∂xA−1 [µ(u)v + µ(v)û] · Λrvdx
∣∣ . (‖u‖Hs + ‖w‖Hs)‖v(t)‖2Hr . (3.7)

Similarly, integrating by parts, we have∣∣1
2

∫
S

Λr∂xA−1 (σ(ρ+ ρ̂)) · Λrvdx
∣∣

. ‖∂xA−1σ(ρ+ ρ̂)‖Hr · ‖v(t)‖Hr

. ‖σ(t)‖L2(‖ρ‖H1 + ‖ρ̂‖H1) · ‖v(t)‖Hr

. (‖ρ‖Hs−1 + ‖ρ̂‖Hs−1) · (‖v(t)‖2Hr + ‖σ(t)‖2Hr−1);

(3.8)

and ∣∣− 3− b
2

∫
S

Λr∂xA−1vx(u+ û)x · Λrvdx
∣∣

. ‖∂xA−1vx(u+ û)x‖Hr · ‖v(t)‖Hr

. ‖v(t)‖L2(‖u‖H2 + ‖û‖H2) · ‖v(t)‖Hr

. (‖u‖Hs + ‖û‖Hs) · ‖v(t)‖2Hr

(3.9)

provided that s ≥ 2. In the above inequality, we used∣∣ ∫
S
vx(x, t)ux(x, t)dx

∣∣ =
∣∣ ∫

S
v(x, t)uxx(x, t)dx

∣∣ ≤ ‖v(t)‖L2‖u‖H2 .

It follows from Lemma 3.1 that∣∣ ∫
S

Λr(vρ+ σû)x · Λrσdx
∣∣

≤ ‖vρ‖Hr‖v(t)‖Hr + ‖[∂xΛr−1, û]σ‖L2‖σ(t)‖Hr−1 + ‖ûx‖L∞‖σ(t)‖2Hr−1

. (‖û‖Hs + ‖ρ‖Hs)(‖v(t)‖2Hr + ‖σ(t)‖2Hr−1),

(3.10)

where we used the fact Hr ↪→ Hs (r ≤ s) again.
Lipschitz continuous Ω1. Substituting (3.4)-(3.9) and (3.10) into (3.2) and (3.3),
respectively, and adding the resulting equalities, we have

1
2
d

dt

(
‖v(t)‖2Hr + ‖σ(t)‖2Hr−1

)
. (‖u‖Hs + ‖û‖Hs + ‖ρ‖Hs−1 + ‖ρ̂‖Hs−1)(‖v(t)‖2Hr + ‖σ(t)‖2Hr−1).
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It follows from Proposition 2.2 that

‖u‖Hs + ‖û‖Hs + ‖ρ‖Hs−1 + ‖ρ̂‖Hs−1

. ‖u(0)‖Hs + ‖û(0)‖Hs + ‖ρ(0)‖Hs−1 + ‖ρ̂(0)‖Hs−1 . 1

since u0, ρ0, û0, ρ̂0 ∈ B(0, h). Consequently, we obtain

1
2
d

dt
‖z(t)‖2Hr×Hr−1 . c‖z(t)‖2Hr×Hr−1 ,

which implies that

‖z(t)‖Hr×Hr−1 ≤ ecT0‖z(0)‖Hr×Hr−1 . (3.11)

Or equivalently

‖u(t)− û(t)‖Hr + ‖ρ(t)− ρ̂(t)‖Hr−1 ≤ ecT0(‖u(0)− û(0)‖Hr + ‖ρ(0)− ρ̂(0)‖Hr−1).
(3.12)

In the beginning of section 3, we obtain that ‖u(0) − û(0)‖Hr > 0 and ‖ρ(0) −
ρ̂(0)‖Hr > 0. Indeed, if ‖u(0) − û(0)‖Hr = 0 or ‖ρ(0) − ρ̂(0)‖Hr = 0, it follows
from the Sobolev embedding Theorem and Proposition 2.1 that u(x, t) ≡ û(x, t) or
ρ(x, t) ≡ ρ̂(x, t), respectively. Thus we can assume that

‖u(0)− û(0)‖Hr = O(‖ρ(0)− ρ̂(0)‖Hr−1).

By (3.11), we have

‖u(t)− û(t)‖Hr ≤ C(‖u(0)− û(0)‖Hr ),

which is the desired Lipschitz continuity in Ω1.

Hölder continuous in Ω2. Since s − 1 < r < s, by interpolating between Hs−1

and Hs norms, we obtain

‖z(t)‖Hr×Hr−1 ≤ ‖z(t)‖s−rHs−1×Hs−2‖z(t)‖r−s+1
Hs×Hs−1 .

Moreover, from the Proposition 2.2, we have that

‖z(t)‖Hs×Hs−1 . ‖u0‖Hs + ‖û0‖Hs + ‖ρ0‖Hs−1 + ‖ρ̂0‖Hs−1 . h,

and thus we have

‖z(t)‖Hr×Hr−1 . ‖z(t)‖s−rHs−1×Hs−2 . (3.13)

We see that (3.11) is valid for r = s − 1, s > 5/2. Therefore, applying (3.11) into
(3.13), we obtain

‖z(t)‖Hr×Hr−1 . ‖z(0)‖s−rHs−1×Hs−2 ,

which is the desired Hölder continuity (similar to the discussion in Ω1). The proof
of Theorem 2.3 is completed. �
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