Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 34, pp. 1-7.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

ANOTHER PROOF OF THE REGULARITY OF HARMONIC
MAPS FROM A RIEMANNIAN MANIFOLD TO
THE UNIT SPHERE

JUNICHI ARAMAKI

ABSTRACT. We shall consider harmonic maps from n-dimensional compact
connected Riemannian manifold with boundary to the unit sphere under the
Dirichlet boundary condition. We claim that if the Dirichlet data is smooth
and so-called “small”; all minimizers of the energy functional are also smooth
and “small”.

1. INTRODUCTION

Let (M,g) be a n-dimensional Riemannian manifold with boundary OM en-
dowed with a smooth Riemannian metric g. For any p € M, let (x1,...,2,) be a
coordinate system near p. Then g can be represented by

n
9= gapdra ®dg
a,B=1
where (gag) is a positive definite symmetric n x n matrix. We write the inverse
matrix of (gag) by (9°°) and the volume element of (M, g) by dv, = \/gdz where
g = det(gag), and we use the notations that for any vector fields u,v, (u,v), =
g(u,v) and [u|? = (u,u),. We view maps from M into a k-dimensional unit sphere
Sk ¢ RF*HL| extrinsically. The Sobolev space W12(M, R¥*1) is standardly defined
and the space W12(M,S*) is defined by

Wh2(M,S*) = {u= (u',..., o) e WHE(M,R"™); u(z) € S* ae. z € M},
For any u € W42(M,S*), the Dirichlet energy density is defined by

1
e(u) = §|Vu|§ (1.1)
where [Vul? = Zfill [Vu'|2. In any local coordinate system z = (x1,...,z,), we
see that
1 & 3R o Out Ou’
— - B
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a,f=11=1

2000 Mathematics Subject Classification. 58 E20, 53C43, 58E30.

Key words and phrases. Harmonic maps; minimizing harmonic maps; weak Harnack inequality.
(©2014 Texas State University - San Marcos.

Submitted September 16, 2013. Published January 27, 2014.

1



2 J. ARAMAKI EJDE-2014/34

and the Dirichlet energy is defined by

E(u,M):/ e(u)du,. (1.2)

M

We say u € W12(M, S*) is weakly harmonic map, if

wg/ 00 0@ Ju Ou B
[, 2 (G gt G gy d)im=0

for any ¢ € C°(M,R**1) where - denotes the Euclidean inner product in R*+1.
Then u satisfies the harmonic map equation in the sense of distribution

n
ag Ou  Ou )
Agu+ > g f’%-a—xﬁuzo in M (1.4)
a,B=1

where A, is the Laplace-Beltrami operator on (M, g) given by

0
_— af
Z 336 (fg )
Next we say u € W12(M,S¥) is a minimizing harmonic map, if for any Q C M,
E(u,Q):= / e(u)dvy < E(v,Q) (1.5)
Q

for all v € W2(Q,S*) with v|par = ulons-

The regularity of minimizing harmonic maps has been studied by many authors
for a general target Riemannian manifold N instead of S*. For the case where
dim M = 2, Morrey [13] showed that if u € W12(M, N) is a minimizing harmonic
map, then u € C*°(M, N). For n > 3, Schoen and Uhlenbeck [14] have shown that
if we define the singular set of any minimizing map u € WH2(M, N) by

sing(u) = {x € M;u is discontinuous at z},
then sing(u) is a closed set, and it is discrete for n = 3, and
dimg (sing(u)) <n —3

for n > 4 where dimg (sing(u)) is the Hausdorff dimension of sing(u). Moreover, it
is well known that u is analytic in M \ sing(u) (cf. Borchers and Garber [5]).

For p € N,r > 0, let B,(p) = {q € N;disty(q,p) < r} be the closed geodesic
ball with center p and radius r, and let C(p) be the cut locus of p. We call B,.(p)
is a regular ball if the following two conditions hold.

(i) Vkr < /2 where k = max{0,supp_(, KN}, K is the sectional curvature
of N.
(i) C(p) N Br(p) = 0.
Hildebrandt et al. [J] have established the following existence theorem of smooth

harmonic maps with given boundary data contained in a regular ball. (see also Lin
and Wang [12] Theorem 3.1.7]).

Theorem 1.1 ([9]). Suppose that B.(p) C N is a regular ball and Q@ C M is a
bounded domain and g : Q@ — B,.(p) is continuous map and has finite energy. Then
there exists a harmonic map u € C**(Q, N) N C°(Q, N) with u|oym = g.



EJDE-2014/34 REGULARITY OF HARMONIC MAPS 3

As the first step of their proof, they considered the following variational problem.
Find a minimizer of
inf d
szl J, s
where the admissible space V is as follows. Choose r; € (r,m/2y/k) such that
B, (p) C N is also regular ball, and define

V ={ueW"*(Q,B,,(p):ulon = g}.

This admissible space seems to be restrictive. Thus in the present paper, we report
that in order to get the same result for the target manifold N = S*, we can take
the admissible space V. = W12(M, Sk, g) := {u € WL2(M,S¥);ulon = g}

We note that in the case where N = S*, since KV = 1 and C(p) = {-p}, if
0 < r < /2, then the ball B,(p) is regular.

2. PRELIMINARIES

Let M be a n-dimensional connected compact Riemannian manifold with smooth
boundary OM and S* C R**! the unit sphere in R**! (k > 2). For every p € SF
and r > 0, we denote the closed geodesic ball in S* with center p and radius
by B,(p). Throughout this paper we treat the B, (p) which is an closed ball with
0 < r < m/2,s0 B,(p) is a regular ball in this case. We denote the standard Sobolev
space by W12(Q, Rk*+1) and define

Wh2(Q,s*) = {u e WH2(Q,RF ) u(z) € S* ae. z € M},
Let e : OM — S* be a smooth given vector field, for instance, e € C?*T*(9M, S¥),
and define
Wh2(M,S* e) = {u c WH23(M,SF);ulon = e}

Here we assume the hypotheses

(H1) e € C***(OM,S¥) has a finite energy extension € € W2(M,S¥) such that

€lonm = e.

Remark 2.1. It is not trivial that W12(M,S¥ e) # (). However if M = Q C R"
is a bounded C? domain, Hardt and Lin [8, Theorem 6.2] (cf. [12, Lemma 2.2.10])
have proved the fact in the case where the target space is a more general simply
connected Riemannian manifold N (i.e., IIo(N) = II3(N) = 0) that any map
e € WY/22(9M, N) admits a finite energy extension € € W1H2(Q, N). Recall that
N = S* has To(S*) = I;(S*) = 0, unless k = 1.

u € WH2(M,SF) is called weakly harmonic map in the sense of Introduction
with boundary data e if for any v € W, "> (M, RFt1),

/ (Vu, Vv)y — [Vul2u - v)dz = 0, (2.1)
M

and ulpy = e where
k+1

(Vu,Vv), = Z(Vui, Vo',
i=1
foru= (u',...,u**!), v = (v!,...,v**1) and u- v is the standard Euclidean inner
product. Then u satisfies the following equations, in the sense of distributions,

Agu+ |Vullu=0 in M,

(2.2)
u=e on oM.
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We also say that u € W2(M,S*) is a minimizing harmonic map with boundary
data e if u is a minimizer of

inf Vu|%dv,. 2.3

ueWw?h.2(M,S* e) ]w‘ |g g ( )

Lemma 2.2. Any minimizing harmonic map u € W2(M,S¥) is a weakly har-
monic map.

The proof is well known. For example, see [12], Proposition 2.1.5].
We state the main theorem.

Theorem 2.3. Assume that M is a C*T connected compact Riemannian manifold
with boundary OM for some 0 < a < 1 and assume that a boundary data e €
C*(OM,S¥) satisfying (H1) is given, and satisfies that (OM) C B,.(p) for some
point p € S¥ and 0 < r < 7/2. Then if u is any minimizer of

where V.= WY2(M,Sk,e), then u(M) C B,(p) and u is a unique harmonic map
in O (M, SF).

Remark 2.4. In [9] and [12] Theorem 3.17], they took the admissible space V as
V ={ue HYM,Sk, e);u(M) C B,,(p)} for somer < ry < /2, and they call such
solution a “small solution”. However, we can remowve the rather stronger condition.
We emphasize that even if we take W'2(M,S* e) as the admissible space, we can
get the same result as [9], and we seem to make more natural. To do so, we shall use
the weak Harnack inequality (cf. Gilbarg and Trudinger [7, Theorem 8.18] or Chen
and Wu [0, Chapter 4, Lemma 1.3]) and the mazimum principle for minimizing
harmonic maps (cf. Jost [I1, Lemma 4.10.1]). Such strategy also appear in the
author’s papers Aramaki [, 2, B] and Aramaki, Chinen, Ito and Ono [4].

3. PROOF OF THEOREM [2.3]

For the proof we need the following lemma which is can be found for example in
[12, Proposition 2.1.5].

Lemma 3.1. Let V. =W42(M,SF e). Then

is achieved in V.

Let u € WY2(M,S* e) be a minimizer of (2.3). Then u satisfies the Euler-
Lagrange equation in the sense of distribution
—Agu = |Vu|3u in M,

3.1
u=e ondM. (3.1)

Proposition 3.2. Let e € C?***(OM,S*) for some 0 < a < 1 and assume that
e(OM) C B,(p) for some p € S¥ and 0 < r < 7/2. Then for any minimizer u of
(2.3) satisfies u(Q2) C B (p).
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Proof. After the rotation of coordinate axis of R¥*1, we can choose the center p
of B.(p) so that p = (1,0,...,0). We write e(zr) = (e'(x),...,e** 1 (x)). The

hypothesis means that e!(x) > cosr for x € M. Let u = (u',...,u**1) be any
minimizer of (2.3). Since u! € W12(M), it is well known that |u1\ € Wh2(M)
and |V|ul|| = |[Vu!| a.e. in M. Define w = (wq, ..., w*) = (jut],u?, ... ,uk ) €

WH2(M,RF1). Since u' = e! > 0 on OM, we can see that w € W1 2(M7 Sk, e),
and w is also a minimizer of . Therefore w also satisfies , and w € O%t«
near the boundary (cf. Schoen and Uhlenbeck [I5 Proposition 3.1]. In particular,
w! satisfies w! > 0 and

—A 't = |Vw|§w1 in M,

3.2
w'=¢e' on dM (3:2)

For any ¢ € M, choose a local coordinate neighborhood U, and a local coordinate

system (1,...,2,). Then w' is a bounded non-negative weak supersolution of

Nz Z 0Ty (\[gaﬂ : )

that is to say, Ayw! <0 in U,. We can apply the weak Harnack inequality (cf. [T}
Theorem 8.18] or [6, Chapter 4, Lemma 1.3]). Thus for any 1 < p < n/(n — 2),
Bog C Uq

1 1/p
essinfp, w' > c<7 (wl)pdx)
|Barl /s

where ¢ > 0 depends on n, p. Since w! € C?*® near the boundary and w! =

el > cosr > 0 on OM, there exists § > 0 such that if we define Ms = {z €
M;dist(x,0M) < 6}, then w' > ¢y := cosr/2 in Ms. Since dimy sing(w!) <n —3
(in the case where n = 3, sing(w!) is discrete), for any zo € M \ sing(w!), we
can choose 1 € Mj and a continuous curve [ in M joining x¢ and x; such that
I Nsing(w!) = (). For every = € I, there exists R > 0 such that Bagr(z) is contained
in a local coordinate neighborhood and

1/
essinfp () w! > c( (wl)pdx) p. (3.3)

|B2r(2)| J Byr(a)
Since [ is compact, there exist finitely many R; > 0 and z;) €1 (j = 1,2,...,N)
such that UFIBR]. (x¢;y) D land x(1) = wg, (n) = 1. Since ess 1nfBR(x(N)) wh >0,
it follows from (3.3) that ess fpp 1) w! > 0. Repeating this procedure, we
have essinfp,, (z,) w! > 0. In particular, w!(zg) > 0. Thus we see that w! > 0 in
M \ sing(w!). Hence we see that u! > 0 in M \ sing(u') or u* < 0 in M \ sing(ul).
Since u! = e; > 0 on dM, we have u' > 0 in M \ sing(u'). Since u® is continuous
near M, there exist & > 0 and ¢y > 0 such that u! > ¢y on Ms. Define M = {z €
M;dist(x,0M) > §}. Choose R > 0 so that 2R < ¢ and fix 1 < p < n/(n—2). For
any y € M?, there exists ¢/ = ¢/(n,p) > 0 such that for any Byr(y) contained in a
local coordinate neighborhood,

1

(ul)Pdvg) 1/p.
|B2r(W)] JByn(y)

essinfp, () ul > ’(
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Since M? is compact, there exists finitely many points y; and positive numbers
R;(i=1,2,...,L) such that U, Bg, (y;) D M°. If we define

, 1 1 /p .
ci:ci(i (u )pdx) (i=1,2,...,L),
|Bar, (yi)] Bar, (i)
and ¢ = min{cy,c1,...,cr}, we have u! > ¢ a.e. on M. Therefore we can find r’
with r < 7’ < 7/2 such that n(M) C B, (p). O

Next, we use the following maximum principle by Jost.

Lemma 3.3 ([I1]). Let By and By be closed subsets of S* and By C By. Suppose

that there exists a C' retraction map 11 : By — By satisfying the condition
|VII(z)(v)| < [v| for all x € By \ By, and all v € T,SF.

For any boundary data e : OM — By, ifu € WH2(M,S* e) : M — By is an energy

minimizing map of (2.3) with the boundary data e, then u(x) € By a.e. x € M.

We apply this lemma with By = B,.(p), B = B,/(p), we see that u(M) C B,(p).
Then we can see that u € C2T(M,R¥*1) by the regularity theory in [14} [I5] and
[9]. The uniqueness of the solution follows from Jager and Kaul [I0]. This completes
the proof.
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