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CONTROLLABILITY FOR SEMILINEAR FUNCTIONAL
DIFFERENTIAL EQUATIONS WITHOUT UNIQUENESS

TRAN DINH KE

Abstract. We study the controllability for a class of semilinear control prob-

lems in Hilbert spaces, for which the uniqueness is unavailable. Using the
fixed point theory for multivalued maps with nonconvex values, we show that

the nonlinear problem is approximately controllable provided that the corre-
sponding linear problem is. We also obtain some results on the continuity of

solution map and the topological structure of the solution set of the mentioned

problem.

1. Introduction

We are concerned with the control problem

x′(t) = Ax(t) + F (t, x(t), xt) +Bu(t), t ∈ J := [0, T ], (1.1)

x(s) = ϕ(s), s ∈ [−h, 0] (1.2)

where the state function x(t) takes values in a Hilbert space X, u(t) belongs to a
Hilbert space V , F : J ×X × C([−h, 0];X)→ X is a nonlinear mapping, A is the
generator of a strongly continuous semigroup {S(t)}t≥0 in X and B : L2(J ;V ) →
L2(J ;X) is a bounded linear operator. The history xt is defined by xt(s) := x(t+s)
for s ∈ [−h, 0].

The controllability problems governed by differential equations have been pre-
sented in a great work of literature. In dealing with control systems involving
abstract differential equations in Banach spaces, semigroup theory has been an ef-
fective tool. Following this approach, one can find the comprehensive researches in
the monographs [1, 3, 8, 12]. To solve nonlinear control problems like (1.1)-(1.2), a
typical assumption used in many works (see, e.g. [5, 6, 16, 19]) is that the operator

Wu =
∫ T

0

S(T − s)Bu(s)ds has a pseudo-inverse (1.3)

(see [23] for the definition). This requires W to be surjective. In [19], the authors
pointed out an affirmative example, in which the semigroup S(·) is not compact.
However, for many application models, in which X is infinite dimensional and the
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semigroup S(·) is compact (or B is compact), the operator W is not surjective (see
[21, 22] for details). Then (1.3) has been seen as a too strong assumption.

In [18], Naito introduced an approach to study the approximate controllability
for control systems in Hilbert spaces. The goal is to find suitable conditions en-
suring the positive invariance of reachable set of control systems under nonlinear
perturbations; that is

RT (0) ⊂ RT (F ), (1.4)
where RT (F ) and RT (0) are the reachable sets of the nonlinear system and cor-
responding linear system, respectively. Using a similar approach, there were some
works, see e.g. [13, 15, 17, 24], that proved the controllability results for numerous
semilinear differential and integro-differential equations. A crucial assumption in
these works is that, control systems have a unique solution and the solution oper-
ator W (u) = x(·;u) is compact. This is usually obtained by the compactness of
the semigroup S(·) and the Lipschitz continuity of nonlinearity. Then some well-
known fixed point theorems, such as the Schauder fixed point theorem and Banach
contraction principle, were employed to demonstrate (1.4).

In this article, we address the case when the uniqueness of (1.1)-(1.2) is unavail-
able and this turns out that W , in general, becomes a multivalued mapping. This
fact leads to a difficulty in proving (1.4), namely, fixed point theory for singlevalued
maps does not work in this situation. To overcome the obstacle, we will show that
W is an Rδ-map. This property enables us to deploy the fixed point theory for
nonconvex valued maps to obtain the inclusion RT (0) ⊂ RT (F ), that derives the
controllability results.

The rest of our paper is as follows. In the next section, we prove the existence
result in general case. Specifically, for the nonlinearity, the Lipschitz condition
is replaced by a regular assumption expressed by measures of noncompactness.
Sect. 3 shows the result describing the structure of the solution set. In fact, the
solution set is compact and, moreover, it is an Rδ-set. This enable us to prove the
controllability results in Sect. 4. Finally, we give a simple example to show that
our approach allows relaxing the Lipschitz condition and uniform boundedness of
the nonlinearity.

2. Existence results

In this section, we consider system (1.1)-(1.2) under some regular conditions
which guarantee the existence but not provide the uniqueness of solutions. To
show the existence results, we make use of the fixed point theory for condensing
maps (see e.g. [14]).

Let E be a Banach space. Denote by B(E) the collection of nonempty bounded
subsets of E . We will use the following definition of measure of noncompactness.

Definition 2.1. Let (A,≤) be a partially ordered set. A function β : B(E)→ A is
called a measure of noncompactness (MNC) in E if

β(co Ω) = β(Ω) for Ω ∈ P(E),

where co Ω is the closure of the convex hull of Ω. An MNC β is called
(i) monotone, if Ω0,Ω1 ∈ P(E), Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1);
(ii) nonsingular, if β({a} ∪ Ω) = β(Ω) for any a ∈ E ,Ω ∈ P(E);

(iii) invariant with respect to union with compact sets, if β(K ∪ Ω) = β(Ω) for
every relatively compact set K ⊂ E and Ω ∈ P(E);
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If A is a cone in a normed space, we say that β is
(iv) algebraically semi-additive, if β(Ω0 +Ω1) ≤ β(Ω0)+β(Ω1) for any Ω0,Ω1 ∈

P(E);
(v) regular, if β(Ω) = 0 is equivalent to the relative compactness of Ω.

An important example of MNC is the Hausdorff MNC χ(·), which is defined as
follows

χ(Ω) = inf{ε : Ω has a finite ε-net}.
We also make use of the following MNCs: for any bounded set D ∈ C(J ; E),

• the modulus of fiber noncompactness of D is given by

γL(D) = sup
t∈J

e−Ltχ(D(t)), (2.1)

where L is a positive constant.
• the modulus of equicontinuity of D is

ωC(D) = lim
δ→0

sup
y∈D

max
|t1−t2|<δ

‖y(t1)− y(t2)‖E ; (2.2)

As remarked in [14], these MNCs satisfy all properties stated in Definition 2.1, but
regularity. Consider now the function

χ∗ : B(C(J ; E))→ R2
+, χ∗(Ω) = max

D∈∆(Ω)
(γL(D), ωC(D)), (2.3)

where the MNCs γL and ωC are defined in (2.1) and (2.2) respectively, ∆(Ω) is the
collection of all countable subsets of Ω and the maximum is taken in the sense of
the partial order in the cone R2

+. By the arguments given in [14], χ∗ is well defined.
That is, the maximum is achieved in ∆(Ω) and χ∗ is an MNC in the space C(J ; E),
which satisfies all properties in Definition 2.1 (see [14, Example 2.1.3] for details).

Definition 2.2. A continuous map F : Z ⊆ E → E is said to be condensing with
respect to an MNC β (β-condensing) if for any bounded set Ω ⊂ Z, the relation

β(Ω) ≤ β(F(Ω))

implies the relative compactness of Ω.

Let β be a monotone nonsingular MNC in E . The application of the topological
degree theory for condensing maps (see, e.g., [14]) yields the following fixed point
principle.

Theorem 2.3. [14, Corollary 3.3.1] Let M be a bounded convex closed subset of
E and let F : M → M be a β-condensing map. Then the fixed point set of F ,
Fix(F) := {x = F(x)}, is a nonempty compact set.

Now we consider the nonlinearity F : J×X×C([−h, 0];X)→ X in our problem
(1.1)-(1.2). Denote

‖ψ‖h = ‖ψ‖C([−h,0];X) := sup
τ∈[−h,0]

‖ψ(τ)‖,

here ‖ · ‖ := ‖ · ‖X . We assume that, F satisfies the following:
(F1) F (·, ζ, ψ) is measurable for each ζ ∈ X,ψ ∈ C([−h, 0];X) and F (t, ·, ·) is

continuous for each t ∈ J ;
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(F2) there exist functions a, b, c ∈ L1(J) such that

‖F (t, ζ, ψ)‖ ≤ a(t)‖ζ‖+ b(t)‖ψ‖h + c(t),

for all (ζ, ψ) ∈ X × C([−h, 0];X);
(F3) there are nonnegative functions h, k : J × J → R such that h(t, ·), k(t, ·) ∈

L1(0, t) for each t > 0 and

χ(S(t− s)F (s,Ω,Q)) ≤ h(t, s)χ(Ω) + k(t, s) sup
−h≤θ≤0

χ(Q(θ)),

for all bounded subsets Ω ⊂ X, Q ⊂ C([−h, 0];X) and for a.e. t, s ∈ J .

Remark 2.4. Let us give a note on assumption (F3). In the case X = Rm, (F3)
can be deduced from (F2). That is the locally bounded property implies that
the set S(t − s)F (s,Ω,Q) is bounded in Rm and then it is precompact for each
t, s ∈ J . Especially, if S(t) is compact for t > 0 then (F3) is testified obviously with
k = h = 0.

Definition 2.5. A function x ∈ C([−h, T ];X) is called a mild solution of (1.1)-
(1.2) corresponding to control u if

x(t) =

{
ϕ(t), for t ∈ [−h, 0],
S(t)ϕ(0) +

∫ t
0
S(t− s)[F (s, x(s), xs) +Bu(s)]ds, for t ∈ J.

Let
Cϕ = {y ∈ C(J ;X) : y(0) = ϕ(0)},

and for y ∈ Cϕ, we set

y[ϕ](t) =

{
ϕ(t), for t ∈ [−h, 0],
y(t), for t ∈ J.

For each u ∈ L2(J ;V ), denote by Fu the operator acting on Cϕ such that

Fu(x)(t) = S(t)ϕ(0) +
∫ t

0

S(t− s)[F (s, x(s), x[ϕ]s) +Bu(s)]ds. (2.4)

Define a mapping S : L1(J ;X)→ C(J ;X) as

S(f)(t) =
∫ t

0

S(t− s)f(s)ds. (2.5)

Additionally, putting
NF (x)(t) = F (t, x(t), x[ϕ]t), (2.6)

we have
Fu(x) = S(·)ϕ(0) + S(NF (x) +Bu).

It is evident that x ∈ Cϕ is a fixed point of Fu if and only if x[ϕ] is a mild solution
of (1.1)-(1.2). We have the first property of the solution operator Fu.

Lemma 2.6. Let (F1) and (F2) hold. Then Fu({yn}) is relatively compact for
all bounded sequence {yn} ⊂ Cϕ satisfying γL({yn}) = 0. In particular, we have
ωC(Fu({yn})) = 0.

Proof. We use an assertion that, if {fn} ⊂ L1(J ;X) is a semicompact sequence,
that is

• there exists q ∈ L1(J) such that ‖fn(t)‖ ≤ q(t) for all n and for a.e. t ∈ J ;
• χ({fn(t)}) = 0 for a.e. t ∈ J ,
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then S(fn) is relatively compact in C(J ;X) (see [14]). Now let {yn} ⊂ Cϕ be
a bounded sequence such that γL({yn}) = 0. Then it follows from (F2) that,
fn(t) = F (t, yn(t), yn[ϕ]t) satisfies the estimate

‖fn(t)‖ ≤ a(t)‖yn(t)‖+ b(t)( sup
s∈[0,t]

‖yn(s)‖+ ‖ϕ‖h) + c(t)

≤ q(t) := M [a(t) + b(t)] + b(t)‖ϕ‖h + c(t),

where M is an upper bound for {yn} in C(J ;X). As γL({yn}) = 0 one has
χ({yn(t)}) = 0 for all t ∈ J ; i.e. {yn(t)} is relatively compact for each t ∈ J . Then
it is readily seen that {yn[ϕ]t} is a relatively compact set in C([−h, 0];X). Since
F (t, ·, ·) is continuous, we get that {F (t, yn(t), yn[ϕ]t)} is relatively compact for
a.e. t ∈ J . Thus {fn} is a semicompact sequence and then Fu({yn}) = S({fn}) +
S(Bu) + S(t)ϕ(0) is relatively compact in C(J ;X). In particular, Fu({yn}) is an
equicontinuous set, or equivalently, ωC(Fu({yn})) = 0. The proof is complete. �

Now choosing L in the definition of γL in (2.1) such that

` := 2 sup
t∈J

∫ t

0

e−L(t−s)[h(t, s) + k(t, s)]ds < 1, (2.7)

we will show that Fu is χ∗-condensing. To this aim, we need the following assertion,
whose proof can be found in [14].

Proposition 2.7. If {wn} ⊂ L1(J ;X) such that ‖wn(t)‖ ≤ ν(t), for a.e. t ∈ J ,
and for some ν ∈ L1(J), then

χ({
∫ t

0

wn(s)ds}) ≤ 2
∫ t

0

χ({wn(s)})ds, for t ∈ J.

Lemma 2.8. Let (F1)–(F3) hold. Then the solution operator Fu is χ∗-condensing.

Proof. By (F1)–(F2), it is clear that Fu is a continuous mapping. Let Ω ⊂ Cϕ be
a bounded set such that

χ∗(Ω) ≤ χ∗(Fu(Ω)). (2.8)
Then we show that Ω is relatively compact in C(J ;X). By the definition of χ∗,
there exists a sequence {yn} ⊂ Ω such that

χ∗(Fu(Ω)) =
(
γL(Fu({yn})), ωC(Fu({yn}))

)
≥
(
γL({yn}), ωC({yn})

)
. (2.9)

We first give an estimate for γL(Fu({yn})). By Proposition 2.7 and (F3), we have

χ(Fu({yn})(t)) ≤ χ
(
{
∫ t

0

S(t− s)F (t, yn(s), yn[ϕ]s)ds}
)

≤ 2
∫ t

0

χ(
{
S(t− s)F (t, yn(s), yn[ϕ]s)}

)
ds

≤ 2
∫ t

0

[h(t, s)χ({yn(s)}) + k(t, s) sup
τ∈[−h,0]

χ({yn[ϕ](s+ τ)})]ds

≤ 2
∫ t

0

[h(t, s)χ({yn(s)}) + k(t, s) sup
ρ∈[0,s]

χ({yn(ρ)})]ds

≤ 2
∫ t

0

[h(t, s) + k(t, s)] sup
ρ∈[0,s]

χ({yn(ρ)})ds.
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Then

e−Ltχ(Fu({yn})(t)) ≤ 2
∫ t

0

e−L(t−s)[h(t, s) + k(t, s)] sup
ρ∈[0,s]

e−Lρχ({yn(ρ)})ds

≤ 2γL({yn})
∫ t

0

e−L(t−s)[h(t, s) + k(t, s)]ds.

The last inequality implies

γL(Fu({yn})) ≤ `γL({yn}).
Taking into account (2.9), we have γL({yn}) ≤ `γL({yn}). Then γL({yn}) = 0 due
to the fact that ` < 1 as chosen in (2.7). This turns out that γL(Fu({yn})) =
0 and by Lemma 2.6, we have ωC(Fu({yn})) = 0. Using (2.9) again, we have
χ∗(Fu(Ω)) = 0. Hence χ∗(Ω) = 0 due to (2.8). The proof is complete. �

We are in a position to state the existence result.

Theorem 2.9. Assume hypotheses (F1)–(F3). Then the solution set of problem
(1.1)-(1.2) is nonempty and compact. In addition, any solution of (1.1)-(1.2) obeys
the following estimate

sup
τ∈[0,t]

‖x(τ)‖X ≤ C0(Mϕ + ‖Bu‖L1(J;X)) exp{C0

∫ t

0

[a(s) + b(s)]ds}, t ∈ J, (2.10)

where C0 = supt∈J ‖S(t)‖X→X ,Mϕ = ‖ϕ(0)‖+ ‖ϕ‖h‖b‖L1(J) + ‖c‖L1(J).

Proof. By the hypotheses, the solution operator Fu is χ∗-condensing due to Lemma
2.8. Let ξ ∈ C(J ;X) be the solution of the integral equation

ξ(t) = C0‖ϕ(0)‖+ C0‖ϕ‖h‖b‖L1(J) + C0‖c‖L1(J)

+ C0‖Bu‖L1(J;X) + C0

∫ t

0

[a(s) + b(s)]ξ(s)ds,

and
M = {y ∈ Cϕ : sup

s∈[0,t]

‖y(s)‖ ≤ ξ(t), t ∈ J},

where C0 = supt∈J ‖S(t)‖L(X) (‖ · ‖L(X) stands for operator norm). Then it is easy
to check that M is a bounded, closed and convex set. In addition, if y ∈M then

‖Fu(y)(t)‖

≤ ‖S(t)ϕ(0)‖+
∫ t

0

‖S(t− s)[F (s, y(s), y[ϕ]s) +Bu(s)]‖ds

≤ C0‖ϕ(0)‖+ C0‖Bu‖L1(J;X) + C0

∫ t

0

[a(s)‖y(s)‖+ b(s)‖y[ϕ]s‖h + c(s)]ds

≤ C0‖ϕ(0)‖+ C0‖Bu‖L1(J;X) + C0‖c‖L1(J)

+ C0

∫ t

0

[a(s)‖y(s)‖+ b(s)( sup
τ∈[0,s]

‖y(τ)‖+ ‖ϕ‖h)]ds

≤ C0‖ϕ(0)‖+ C0‖Bu‖L1(J;X) + C0‖c‖L1(J) + C0‖ϕ‖h‖b‖L1(J)

+ C0

∫ t

0

[a(s) + b(s)] sup
τ∈[0,s]

‖y(τ)‖ds

≤ C0‖ϕ(0)‖+ C0‖Bu‖L1(J;X) + C0‖c‖L1(J) + C0‖ϕ‖h‖b‖L1(J)
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+ C0

∫ t

0

[a(s) + b(s)]ξ(s)ds = ξ(t).

Due to the fact that ξ is increasing, we have

‖Fu(y)(ρ)‖ ≤ ξ(ρ) ≤ ξ(t),
for all 0 ≤ ρ ≤ t. Thus Fu(y) ∈ M; that is Fu(M) ⊂ M. The application of
Theorem 2.3 yields the conclusion of existence result. Now let x be a solution of
(1.1)-(1.2) then by the same estimate as that for Fu, we have

‖x(t)‖ ≤ C0‖ϕ(0)‖+ C0‖Bu‖L1(J;X) + C0‖c‖L1(J) + C0‖ϕ‖h‖b‖L1(J)

+ C0

∫ t

0

[a(s) + b(s)] sup
τ∈[0,s]

‖x(τ)‖ds

≤ C0(Mϕ + ‖Bu‖L1(J;X)) + C0

∫ t

0

[a(s) + b(s)] sup
τ∈[0,s]

‖x(τ)‖ds.

Since the right hand side is increasing with respect to t, one has

sup
τ∈[0,t]

‖x(τ)‖ ≤ C0(Mϕ + ‖Bu‖L1(J;X)) + C0

∫ t

0

[a(s) + b(s)] sup
τ∈[0,s]

‖x(τ)‖ds.

Hence we obtain estimate (2.10) by using the Gronwall inequality. The proof is
complete. �

3. Topological structure of the solution set

Let Y and Z be metric spaces. A multi-valued map (multimap) G : Y → P(Z)
is said to be: (i) upper semi-continuous (u.s.c.) if the set

G−1
+ (V ) = {y ∈ Y : G(y) ⊂ V }

is open for any open set V ⊂ Z; (ii) closed if its graph ΓG ⊂ Y × Z,
ΓG = {(y, z) : z ∈ G(y)}

is a closed subset of Y × Z.
The multimap G is called quasi-compact if its restriction to any compact set

is compact. The following statement gives a sufficient condition for upper semi-
continuity.

Lemma 3.1 ([14]). Let Y and Z be metric spaces and G : Y → P(Z) a closed
quasi-compact multimap with compact values. Then G is u.s.c.

Consider the solution multimap

W : L2(J ;V )→ P(C(J ;X)), W (u) = {x : x = Fu(x)}. (3.1)

We need an additional assumption on the semigroup S(·):
(A1) The semigroup S(·) generated by A is compact, i.e. S(t) is compact for all

t > 0.

Proposition 3.2. Under assumption (A1), the restriction of operator S, given by
(2.5), on L2(J ;X) is compact; i.e., if Ω ⊂ L2(J ;X) is a bounded set, then S(Ω) is
relatively compact in C(J ;X).

The proof of the above proposition is standard and we omit it. To obtain further
properties of the solution multimap W , we justify (F2) as follows



8 T. D. KE EJDE-2014/36

(F2A) The nonlinearity F satisfies (F2) with a, b, c ∈ L2(J).

Lemma 3.3. Under assumptions (F1), (F2A), (A1), the solution multimap W
defined by (3.1) is completely continuous; i.e., it is u.s.c. and sends each bounded
set into a relatively compact set.

Proof. Let Q ⊂ L2(J ;V ) be a bounded set. We prove that W (Q) is relatively
compact in C(J ;X). Suppose that {xn} ⊂ W (Q). Then there exists a sequence
{un} ⊂ Q such that

xn(t) = S(t)ϕ(0) +
∫ t

0

S(t− s)[F (s, xn(s), xn[ϕ]s) +Bun(s)]ds. (3.2)

Equivalently, we can write

xn(t) = S(t)ϕ(0) + S(fn +Bun)(t), (3.3)

where S is the operator defined in (2.5), fn(t) = F (t, xn(t), xn[ϕ]t). We observe
that {Bun} is a bounded set in L2(J ;X) since B is a bounded linear operator. This
implies, by Proposition 3.2, that {S(Bun)} is relatively compact in C(J ;X). On
the other hand, by some standard estimates we can obtain that {xn} is a bounded
sequence in C(J ;X). This together with (F2A) deduce that {fn} is also bounded
in L2(J ;X) and one ensures that {S(fn + Bun)} is compact. In view of (3.3), we
conclude that {xn} is compact as well.

To prove that W is u.s.c., it remains to show, according to Lemma 3.1, that W
has a closed graph. Let un → u in L2(J ;V ) and xn ∈ W (un), xn → x in C(J ;X).
We claim that x ∈W (u). Indeed, one has

xn(t) = S(t)ϕ(0) +
∫ t

0

S(t− s)[F (s, xn(s), xn[ϕ]s) +Bun(s)]ds. (3.4)

Since F (t, ·, ·) is a continuous function, we have fn(s) = F (s, xn(s), xn[ϕ]s) con-
verging to f(s) = F (s, x(s), x[ϕ]s) for a.e. s ∈ J . Due to the fact that {fn} is
integrably bounded, the Lebesgue dominated convergence theorem implies

fn − f → 0 in L1(J ;X).

In addition, since B is bounded, one can assert that

Bun −Bu→ 0 in L1(J ;X).

Therefore, taking (3.4) into account, we arrive at

x(t) = S(t)ϕ(0) +
∫ t

0

S(t− s)[F (s, x(s), x[ϕ]s) +Bu(s)]ds, t ≥ 0.

The proof is complete. �

Let us recall some notions which will be used in the sequel.

Definition 3.4. A subset B of a metric space Y is said to be contractible in Y if
the inclusion map iB : B → Y is null-homotopic; i.e., there exists y0 ∈ Y and a
continuous map h : B × [0, 1]→ Y such that h(y, 0) = y and h(y, 1) = y0 for every
y ∈ B.

Definition 3.5. A subset B of a metric space Y is called an Rδ-set if B can be
represented as the intersection of decreasing sequence of compact contractible sets.
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A multimap G : X → P(Y ) is said to be an Rδ-map if G is u.s.c. and for each
x ∈ X, G(x) is an Rδ-set in Y . Every single-valued continuous map can be seen as
an Rδ-map. The following lemma gives us a condition for a set of being Rδ.

Lemma 3.6 ([4]). Let X be a metric space, E a Banach space and g : X → E
a proper map; i.e., g is continuous and g−1(K) is compact for each compact set
K ⊂ E. If there exists a sequence {gn} of mappings from X into E such that

(1) gn is proper and {gn} converges to g uniformly on X;
(2) for a given point y0 ∈ E and for all y in a neighborhood N (y0) of y0 in E,

there exists exactly one solution xn of the equation gn(x) = y.
Then g−1(y0) is an Rδ-set.

To use this Lemma, we need the following result, which is called the Lasota-Yorke
Approximation Theorem (see e.g., [9]).

Lemma 3.7. Let E be a normed space and f : X → E a continuous map. Then
for each ε > 0, there is a locally Lipschitz map fε : X → E such that:

‖fε(x)− f(x)‖E < ε

for each x ∈ X.

The following theorem is the main result in this section.

Theorem 3.8. Assume the hypotheses of Lemma 3.3. Then for each u ∈ L2(J ;V ),
W (u) is an Rδ-set.

Proof. Since the nonlinearity F (t, ·, ·) in our problem is continuous, according to
Lemma 3.7, one can take a sequence {Fn} such that, Fn(t, ·, ·) are locally Lipschitz
functions and

‖Fn(t, ζ, ψ)− F (t, ζ, ψ)‖ < εn,

for a.e. t ∈ J and for all ζ ∈ X,ψ ∈ C([−h, 0];X), where εn → 0 as n → ∞.
Without loss of generality, we can assume that

‖Fn(t, ζ, ψ)‖ ≤ a(t)‖ζ‖+ b(t)‖ψ‖h + c(t) + 1,

for all n. Consider the equation

x(t) = y∗(t) +
∫ t

0

S(t− s)[Fn(s, x(s), x[ϕ]s) +Bu(s)]ds. (3.5)

Using the same arguments as in the previous section, one obtains the existence
result for (3.5). In addition, since Fn(t, ·, ·) is locally Lipschitz, the solution of (3.5)
is unique. Let

G(x) = (I −Fu)(x),

Fun(x) = S(t)ϕ(0) +
∫ t

0

S(t− s)[Fn(s, x(s), x[ϕ]s) +Bu(s)]ds,

Gn(x)(t) = (I −Fun)(x).

Then one claims that the maps G and Gn are proper. Indeed, we will prove this
assertion, e.g., for G. Let us show that G−1(K) is a compact set for each compact
set K ⊂ C(J ;X). Assume that

(I −Fu)(D) = K
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and {xn} ⊂ D is any sequence. Then there exists a sequence {yn} ⊂ K such that

xn −Fu(xn) = yn.

That is,

xn(t) = S(t)ϕ(0) + yn(t) +
∫ t

0

S(t− s)[fn(s) +Bu(s)]ds, (3.6)

where fn(s) = F (s, xn(s), xn[ϕ]s), s ∈ J .
Using (F2A) and the fact that {yn} is bounded in C(J ;X), we see that {xn}

is also bounded in C(J ;X). Then {fn}, in turn, is bounded in L2(J ;X). Thus
{S(fn))} is compact according to Proposition 3.2. Thus {xn} is relatively compact
and therefore D is a compact set.

On the other hand, {Gn} converges to G uniformly in C(J ;X) and equation
Gn(x) = y has a unique solution for each y ∈ Cϕ since it is in the form of (3.5).
Therefore, applying Lemma 3.6 we conclude that

W (u) = G−1(0)

is an Rδ-set. The proof is complete. �

4. Controllability results

Following the arguments in Section 2, the problem

y′(t) = Ay(t) + F (t, y(t), yt) + z(t), t ∈ J, (4.1)

y(s) = ϕ(s), s ∈ [−h, 0] (4.2)

has at least one mild solution y = y(·; z), for each z ∈ L2(J ;X). Furthermore, by
the same arguments in Section 3, we see that the solution map

W (z) = {y(·; z) : the solution of (4.1)-(4.2)}

is an Rδ-map. Moreover, in view of (F1)-(F2), the map NF defined by (2.6) is
continuous. Therefore, NF is also an Rδ-map.

Define a linear operator ST : L2(J ;X)→ X by

ST (v) =
∫ T

0

S(T − s)v(s)ds.

Denoting N = {v ∈ L2(J ;X) : ST v = 0}, one has that N is a closed subspace
of L2(J ;X). Let N⊥ be the orthogonal space of N in L2(J ;X) and Q be the
projection from L2(J ;X) into N⊥. Let R[B] be the range of B, we make use of
the following assumption

(B1) For any p ∈ L2(J ;X), there exists q ∈ R[B] such that

ST (p) = ST (q).

This assumption implies that {y +N} ∩ R[B] 6= ∅ for any y ∈ N⊥. Hence, by the
proof of [18, Lemma 1], the mapping P from N⊥ to R[B] by

Py =
{
y∗ : y∗ ∈ {y +N} ∩R[B], and

‖y∗‖L2(J;X) = min{‖x‖L2(J;X) : x ∈ {y +N} ∩R[B]}
}

is well-defined. Moreover, P is linear and bounded.
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Remark 4.1. We take assumption (B1) as the same one in [20]; i.e., it requires
q ∈ R[B], which is slightly stronger than that in [18] (q ∈ R[B]). In fact, this
requirement is necessary for our arguments when the solution to control system is
not unique. Moreover, in application, (B1) is much easier to verify than that in
[18]. In related works (e.g., [17, 18, 20, 24]), the authors checked (B1) only.

For given u0 ∈ L2(J ;V ), we construct the operator K : N⊥ → P(N⊥) given by

Kv = QBu0 −QNFWPv. (4.3)

We will show that K has a fixed point. For this purpose, we need the following
notions and facts in the sequel.

Definition 4.2. Let Y be a metric space.
(1) Y is called an absolute retract (AR-space) if for any metric space X and

any closed A ⊂ X, every continuous function f : A → Y extends to a
continuous f̃ : X → Y .

(2) Y is called an absolute neighborhood retract (ANR-space) if for any metric
space X, any closed A ⊂ X and continuous f : A → Y , there exists a
neighborhood U ⊃ A and a continuous extension f̃ : U → Y of f .

Obviously, if Y is an AR-space then Y is an ANR-space.

Proposition 4.3 ([7]). Let C be a convex set in a locally convex linear space Y .
Then C is an AR-space.

In particular, the last proposition states that every Banach space and its convex
subsets are AR-spaces. The following theorem is the main tool for this section. For
related results on fixed point theory for ANR-spaces, we refer the reader to [9, 11].

Theorem 4.4 ([10, Corollary 4.3]). Let Y be an AR-space. Assume that φ : Y →
P(Y ) can be factorized as

φ = φn ◦ φn−1 ◦ ... ◦ φ1

where
φi : Yi−1 → P(Yi), i = 1, .., N

are Rδ-maps and Yi, i = 1, .., N − 1 are ANR-spaces, Y0 = YN = Y are AR-spaces.
If there is a compact set D such that φ(Y ) ⊂ D ⊂ Y then φ has a fixed point.

Using this theorem, we get the following result.

Theorem 4.5. Let (F1), (F2A), (A1) hold. Assume that (B1) takes place. Then
the operator K defined in (4.3) has a fixed point in N⊥ provided that

C0

√
T‖P‖‖a+ b‖L2(J;X)e

C0‖a+b‖L1(J;X) < 1. (4.4)

Proof. The operator K can be factorized as

K = T ◦Q ◦NF ◦W ◦ P
where T (v) = QBu0 − v, a single-valued and continuous mapping. It is easy to
see that all component in above presentation is Rδ-map. Therefore, in order to
use Theorem 4.4, it suffices to show that there exists a convex subset D ⊂ N⊥
such that K(D) ⊂ D and K(D) is a compact set. We look for R > 0 such that
‖K(v)‖L2(J;X) ≤ R provided ‖v‖L2(J;X) ≤ R and then take

D = BR ∩N⊥, (4.5)
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thanks to the fact that N⊥ is a convex subset of L2(J ;X). For y ∈ W (Pv), it
follows from Theorem 2.9 that

sup
τ∈[0,t]

‖y(τ)‖ ≤ C0(Mϕ + ‖Pv‖L1(J;X)) exp{C0

∫ t

0

[a(s) + b(s)]ds} (4.6)

Now using (F2) and (4.6), we have

‖NF (y)(t)‖ = ‖F (t, y(t), yt)‖ ≤ a(t)‖y(t)‖+ b(t)‖yt‖h + c(t)

≤ [a(t) + b(t)] sup
τ∈[0,t]

‖y(τ)‖+ b(t)‖ϕ‖h + c(t)

≤ C0

(
Mϕ + ‖Pv‖L1(J;X)

)
[a(t) + b(t)] exp{C0

∫ t

0

[a(s) + b(s)]ds}

+ b(t)‖ϕ‖h + c(t).

Taking into account that ‖Q‖ ≤ 1, for any z ∈ K(v) we get

‖z(t)‖ ≤ ‖Bu0(t)‖+ C0

(
Mϕ + ‖Pv‖L1(J;X)

)
[a(t) + b(t)]

× exp{C0

∫ t

0

[a(s) + b(s)]ds}+ b(t)‖ϕ‖h + c(t).

This implies that
‖z‖L2(J;X) ≤ ‖Bu0‖L2(J;X)

+ C0

(
Mϕ +

√
T‖P‖‖v‖L2(J;X)

)
‖a+ b‖L2(J;X)e

C0‖a+b‖L1(J;X)

+ ‖b‖L2(J;X)‖ϕ‖h + ‖c‖L2(J;X).

(4.7)

Thanks to assumption (4.4), (4.7) ensures the existence of a number R > 0 such
that ‖z‖L2(J;X) ≤ R provided ‖v‖L2(J;X) ≤ R. That is, K(D) ⊂ D with the closed
bounded subset D denoted in (4.5). By Lemma 3.3 the set W ◦ P (D) is compact
and then K = K(D) is a compact set. Thus we get the desired conclusion. �

Remark 4.6. If the nonlinearity F is uniformly bounded with respect to the second
and third arguments; that is

‖F (t, ξ, η)‖ ≤ c(t), for a.e. t ∈ J and all ξ ∈ X, η ∈ C([−h, 0];X)

then condition (4.4) can be relaxed since in this case a = b = 0.

Let
RT (F ) = {x(T ;u) : u ∈ L2(J ;V )},

the set of all terminal state of solutions to the system (1.1)-(1.2). The set RT (F ) is
called the reachable set of the control system (1.1)-(1.2). When F = 0, the notation
RT (0) stands for the reachable set of the corresponding linear system.

Definition 4.7. The control system (1.1)-(1.2) is said to be exactly controllable (or
controllable) if RT (F ) = X. It is called approximately controllable if RT (F ) = X.

It is shown in [18, Lemma 2] that, by hypothesis (B1) one has RT (0) = X.
That is, (B1) is a sufficient condition for the approximate controllability of the
linear system corresponding to (1.1)-(1.2). One can find in [2, 13] for some other
conditions. The following theorem is our main result in this section.

Theorem 4.8. Under the hypotheses of Theorem 4.5, the control system (1.1)-(1.2)
is approximately controllable if the corresponding linear system is.
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Proof. We show that RT (0) ⊂ RT (F ). Let y0 ∈ RT (0), then there exists u0 ∈
L2(J ;V ) such that

y0 = S(T )ϕ(0) + STBu0.

Let v∗ be a fixed point of K, then we have

QBu0 = QNFWPv∗ + v∗. (4.8)

By the definition of P , it is evident that Pv∗ ∈ {v∗ +N} ∩R[B], and then

STPv∗ = ST v∗. (4.9)

On the other hand, Q is the projection from L2(J ;X) into N⊥, then

STQp = ST p, for all p ∈ L2(J ;X). (4.10)

Combining (4.8)-(4.10) yields

STBu0 = ST (f + Pv∗)

where f ∈ NFWPv∗. Therefore,

y0 = S(T )ϕ(0) + STBu0 = S(T )ϕ(0) + ST (f + Pv∗) = y(T ;Pv∗)

where y is a solution of (4.1)-(4.2). Since Pv∗ ∈ R[B], there exists a function u ∈
L2(J ;V ) such that Pv∗ = Bu. Then we have y(·;Pv∗) = y(·;Bu) = x(·;u), where
x is a mild solution of the system (1.1)-(1.2). This implies that RT (0) ⊂ RT (F )
and the proof is complete. �

An example. We end this note with an application to the control system involving
a semilinear partial differential equation

∂y

∂t
(t, x) =

∂2y

∂x2
(t, x) + f(t, y(t, x), y(t− h, x)) +Bu(t, x), x ∈ [0, π], t ∈ J,

(4.11)

y(t, 0) = y(t, π) = 0, t ∈ J, (4.12)

y(s, x) = ϕ(s, x), s ∈ [−h, 0], x ∈ [0, π], (4.13)

where y, u ∈ C(J ;L2(0, π)) is the state function and the control function, respec-
tively. The feature in this example is that, the nonlinearity has neither Lipschitz
property nor uniform boundedness, in comparison with the existing results in lit-
erature.

The operator A =
d2

dx2
, with the domain D(A) = H2(0, π) ∩ H1

0 (0, π), is the

infinitesimal generator of a compact semigroup S(·) in L2(0, π). Here H2(0, π) and
H1

0 (0, π) are usual Sobolev spaces. The expression for S(·) is as follows:

(S(t)h)(x) =
∞∑
n=1

e−n
2t
( 2
π

∫ π

0

h(x) sinnxdx
)

sinnx,

for h ∈ L2(0, π). We select B as in [18], that is the intercept operator Bα,T is

Bα,T v(t) =

{
0, 0 ≤ t < α,

v(t), α ≤ t ≤ T,

where v ∈ L2(0, T ;L2(0, π)). It is known that B = Bα,T satisfies (B1). Then the
linear system

∂y

∂t
(t, x) =

∂2y

∂x2
(t, x) +Bu(t, x), x ∈ [0, π], t ∈ J,
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y(t, 0) = y(t, π) = 0, t ∈ J,
y(0, x) = y0(x), x ∈ [0, π],

is approximately controllable. That is RT (0) = L2(0, π). As far as nonlinearity f
is concerned, we assume that:

(N1) f : J × R× R→ R is continuous;
(N2) there exist functions a, b, c ∈ L2(J) such that

|f(t, ξ, η)| ≤ a(t)|ξ|+ b(t)|η|+ c(t),

for all t ∈ J, ξ, η ∈ R.
Applying the abstract results in previous sections, we conclude that the control
system (4.11)-(4.13) is approximately controllable in L2(0, π) provided inequality
(4.4) holds. Furthermore, the solution set depends upper-semicontinuously in con-
trol function u and it is an Rδ-set.
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