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MILD SOLUTIONS FOR MULTI-TERM TIME-FRACTIONAL
DIFFERENTIAL EQUATIONS WITH NONLOCAL

INITIAL CONDITIONS

EDGARDO ALVAREZ-PARDO, CARLOS LIZAMA

Abstract. We prove the existence of mild solutions for the multi-term time-

fractional order abstract differential equation

Dα+1
t u(t)+c1D

β1
t u(t)+ · · ·+cdD

βk
t u(t) = Au(t)+Dα−1

t f(t, u(t)), t ∈ [0, 1],

with nonlocal initial conditions, where A is the generator of a strongly contin-

uous cosine function, 0 < α ≤ βd ≤ · · · ≤ β1 ≤ 1 and ck ≥ 0 for k = 1, . . . , d.

1. Introduction

This article concerns the existence of mild solutions for fractional-order differen-
tial equations of the form

Dγ
t u(t) +

d∑
k=1

ckD
βk
t u(t) = Au(t) + F (s, u(s)), t ∈ [0, 1], 0 < γ ≤ 2, (1.1)

with prescribed nonlocal initial conditions u(0) = 0 and u′(0) = g(u), where X
is a Banach space, A : D(A) ⊂ X → X is a closed linear operator, F and g are
vector-valued functions, Dγ

t denotes the Caputo fractional derivative of order γ,
and βk are positive real numbers.

Fractional order differential equations represent a subject of interest in different
context and areas of research, see e.g. [1, 3, 5, 7, 8, 11, 16, 17], the survey paper
[6], and the references therein.

Multi-term time-fractional differential equations increasingly begin to receive at-
tention of a number of authors. For instance, in the papers [13] and [10] a two-term
time fractional differential equation, which includes a concrete case of fractional
diffusion-wave problem, is studied in the abstract context. On the other hand, the
case of the multi-term time-fractional diffusion-wave equation with the constant
coefficients was recently considered in [4]. In the paper [15], a general class of
multi-term time-fractional diffusion equations with variable coefficients is consid-
ered. In particular, the notion of the generalized solution of the initial-boundary-
value problem for the generalized multi-term time-fractional diffusion equation is
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introduced and some existence results for the generalized solution are given. In the
paper [9], analytical solutions for a multi-term time-fractional diffusion-wave equa-
tion was analyzed and in the paper [12], the authors present numerical methods for
the solution of time-fractional diffusion equations where the fractional differential
operator with respect to the time variable is assumed to be of Caputo type and to
have a multi-term structure.

Equation (1.1) is a general model that include recent investigations in the subject.
Indeed, in the interesting paper [14] the authors Li, Kostic, Li and Piskarev studied
(1.1) with γ = α, α > β1 > · · · > βd, and initial conditions. They have obtained
existence of resolvent families, algebraic equations, approximations and a complex
inversion formulae by means of constructive arguments based on Laplace transform
theory. On other hand, in the reference [13] the author studied mild solutions
for the equation (1.1) with γ = α + 1, c1 = µ, c2 = · · · = cd = 0 and nonlocal
conditions. Then, it is natural to ask: Under which conditions mild solutions for
the general equation (1.1) with nonlocal initial conditions exists? In this paper,
we answer such question finding a subordination condition on the indexes of the
time-fractional derivatives, and assuming that the operator A is the generator of
a bounded cosine operator function. It is remarkable that our condition contrasts
with those hypothesis used in [13] where it is assumed that A is sectorial, i.e. the
generator of an analytic semigroup. From a certain perspective, our condition seems
to be more natural in the sense that equation (1.1) represents fractional oscillation
for 1 < γ ≤ 2. See Theorem 3.5 below. As in [13], we use a method based on
operator theory, which consist in the construction of a family of strongly continuous
operators whose properties are analogous to the theory of C0-semigroups. Indeed,
it corresponds to an extension of such theory and has been proposed in the recent
reference [14].

The outline of this paper is as follows: In the second section, we fix some notation
and basic notions on fractional derivatives and Laplace transforms. The third
section, deals with a notion - introduced in [14] - of a family of bounded and linear
operators defined on a Banach space X which provides the right framework for
the analysis of the given abstract fractional differential equation by means of an
operator-theoretical approach, in the same spirit of the well known theory of C0-
semigroups and their correspondence with the abstract Cauchy problem of first
order.

The novelty here is our assumption on the operator A, because we assume that
such operator is the generator of a bounded strongly continuous cosine function,
which is a typical choice in hyperbolic problems. Moreover, we prove in this section
that this class of operators A (generators of cosine functions) are contained in the
more general class of operators defined in section 3 (see Theorem 3.2 below). Finally,
the last section 4, deals with the main result of this paper, concerning existence
of mild solutions for the semilinear given problem. Here the main novelty is that
no additional hypothesis on the qualitative behaviour of the family of operators
generated by A is needed, such as e.g. compactness, because more regularity is
automatically obtained thanks to the representation of the mild solution by means
of a kind of variation of parameters formula (see formula (3.6) below). Finally, our
main theorem in this section is Theorem 3.5, which extends to the general case
presented here, the main result in the article [13]. We complete this article with an
illustrative example.
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2. Preliminaries

Let α > 0 be given. We define

gα(t) :=

{
1

Γ(α) t
α−1, t > 0

0, t ≤ 0,

where Γ is the usual Gamma function. These functions satisfy the following prop-
erties gα ∗ gβ = gα+β , for α, β > 0 and ĝα(λ) = 1

λα for Reλ > 0 and α > 0.
Here, the hat ·̂ denotes Laplace transform. Recall that for a locally integrable and
exponentially bounded function f : R+ → X (i.e. there exists M > 0 and ω ∈ R
such that ‖f(t)‖ ≤Meωt) the Laplace transform

f̂(λ) :=
∫ ∞

0

e−λsf(s)ds,

exists for Re(λ) > ω. We also recall the following definitions.

Definition 2.1. Let f : R+ → X be a locally integrable function and α > 0. The
Riemann-Liouville fractional integral of order α > 0 is defined as follows:

Jαt f(t) := (gα ∗ f)(t) =
∫ t

0

gα(t− τ)f(τ) dτ, t > 0, α > 0; (2.1)

and Jα0 f(t) := f(t).

This integral satisfy the following properties Jαt ◦ J
β
t = Jα+β

t and Ĵαt f(λ) =
1
λα f̂(λ) for Re(λ) > 0. We denote

Dn
t f(t) :=

dn

dtn
f(t), for n ∈ N .

Then (Dn
t ◦ Jnt )f(t) = f(t) for t > 0; and

(Jnt ◦Dn
t )f(t) = f(t)−

n−1∑
k=0

f (k)(0)
k!

tk, t > 0, n ∈ N.

In particular, if f(0) = f ′(0) = · · · = f (n−1)(0) = 0, then

(Jnt ◦Dn
t )f(t) = f(t), t > 0.

Definition 2.2. Let α > 0 be given and denote m = dαe. The Riemann-Liouville
fractional derivative of order α > 0 is defined for all f : R+ → X as follows

Dαt f(t) := Dm
t (gm−α ∗ f)(t) = Dm

t J
m−α
t f(t), m− 1 < α ≤ m. (2.2)

Furthermore, D0
tf(t) := f(t).

We have the following property (Dαt ◦ Jαt )f(t) = f(t) for t > 0.

Example 2.3. Let α ≥ 0 and γ > −1. Then
(i) Jαt t

γ = Γ(γ+1)
Γ(γ+1+α) t

γ+α, t > 0;
(ii) Jαt gγ(t) = gγ+α(t), t > 0;
(iii) Dαt tγ = Γ(γ+1)

Γ(γ+1+α) t
γ−α, t > 0.

Definition 2.4. Let α > 0 be given and denote m = dαe. The Caputo fractional
derivative of order α > 0 is defined by

Dα
t f(t) := Jm−αt Dm

t f(t) = (gm−α ∗Dm
t )f(t) =

∫ t

0

gm−α(t− τ)
dm

dtm
f(τ) dτ. (2.3)
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Note that f(0) = f ′(0) = · · · = f (m−1)(0) = 0 is a necessary condition for the
equality between the Riemann-Liouville and Caputo derivative, that is

Dαt f(t) = Dα
t f(t), t > 0.

Finally, we recall the following property concerning the Laplace transform. Let
m− 1 < α ≤ m. Then

(Jαt ◦Dα
t )f(t) = f(t)−

m−1∑
k=0

f (k)(0)gk+1(t), (2.4)

D̂α
t f(λ) = λαf̂(λ)−

m−1∑
k=0

f (k)(0)λα−1−k. (2.5)

Remark 2.5. If f(0) = f ′(0) = · · · = f (m−1)(0) = 0, then Jαt D
α
t f(t) = f(t) and

D̂α
t f(λ) = λαf̂(λ).

3. Mild solutions and families of linear operators

We consider the linear equation

Dα+1
t u(t) +

d∑
k=1

ckD
βk
t u(t) = Au(t) + h(t), t ≥ 0. (3.1)

Our objective in this section is to give a representation of the solution in terms
of certain family of bounded and linear operators defined below. The obtained
representation will be then used to give an appropriate definition of mild solution
for the associated semilinear problem.

Definition 3.1 ([14]). Let α > 0, βk, ck be real numbers and let A be a closed
linear operator with domain D(A) on a Banach space X. We call A the generator
of an (α, βk)-resolvent family if there exist ω ≥ 0 and a strongly continuous function
Sα,βk : R+ → B(X) such that {λα+1 +

∑d
k=1 ckλ

βk : Reλ > ω} ⊂ ρ(A) and

λα
(
λα+1 +

d∑
k=1

ckλ
βk −A

)−1

x =
∫ ∞

0

e−λtSα,βk(t)x dt, Reλ > ω, x ∈ X. (3.2)

Now we consider the initial valued problem

Dα+1
t u(t) + c1D

β1
t u(t) + c2D

β2
t u(t) + · · ·+ cdD

βd
t u(t) = Au(t) + h(t), t ∈ [0, 1],

u(0) = x0, u′(0) = x1

(3.3)
where 0 < α ≤ βd ≤ · · · ≤ β1 ≤ 1.

By taking Riemann-Liouville integral of order α + 1 in the Equation (3.3) we
have

Jα+1
t Dα+1

t u(t) + c1J
α+1
t Dβ1

t u(t) + c2J
α+1
t Dβ2

t u(t) + · · ·+ cdJ
α+1
t Dβd

t u(t)

= Jα+1
t Au(t) + Jα+1

t h(t).

Since α+ 1− βk > 0 and βk > 0 for all k = 1, . . . , d, then Jα+1
t = Jα+1−βk

t Jβkt for
all k = 1, 2, . . . , d. Hence we can rewrite the preceding equation as

Jα+1
t Dα+1

t u(t) + c1J
α+1−β1
t (Jβ1

t Dβ1
t u(t)) + c2J

α+1−β2
t (Jβ2

t Dβ2
t u(t))

+ · · ·+ cdJ
α+1−βd
t (Jβdt Dβd

t u(t))
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= Jα+1
t Au(t) + Jα+1

t h(t).

Now, applying the definition of the Riemann-Liouville integral and the identity
(2.4) we obtain

u(t)−
dα+1e−1∑
j=0

gj+1(t)u(j)(0) +
d∑
k=1

ckJ
α+1−βk
t

(
u(t)−

dβke−1∑
j=0

gj+1(t)u(j)(0)
)

= (gα+1 ∗Au)(t) + (gα+1 ∗ h)(t).

Since α + 1 ≤ 2, βk ≤ 1 and u(0) = x0, u
′(0) = x1 it follows that dα + 1e = 2 and

dβke = 1. Therefore, using (ii) in Example 2.3 we obtain that the equation (2.5) is
equivalent to the integral equation

u(t) = g1(t)x0 + g2(t)x1 −
d∑
k=1

ck(gα+1−βk ∗ u)(t)

+
d∑
k=1

ckgα+2−βk(t)x0 +A(gα+1 ∗ u)(t) + (gα+1 ∗ h)(t).

(3.4)

The next theorem guarantees the existence of (α, βk)-resolvent families.

Theorem 3.2. Let 0 < α ≤ βd ≤ · · · ≤ β1 ≤ 1 and ck ≥ 0 be given and A be a
generator of a bounded and strongly continuous cosine family {C(t)}t∈R. Then A
generates a bounded (α, βk)-resolvent family {Sα,βk(t)}t≥0.

Proof. By the subordination principle (see [3, Theorem 3.1]) we have that A gen-
erates an (α+ 1)-times resolvent family given by

Sα+1(t)x =
∫ ∞

0

1
t(α+1)/2

Φ(α+1)/2(ut−(α+1)/2)C(u)x du, x ∈ X, t > 0,

where

Φα+1(z) :=
∞∑
n=0

(−z)n

n!Γ(−(α(n+ 1))− n)
, z ∈ C,

is the Wright function. From [3, Theorem 3.3]), the family Sα+1(t) admits analytic
extension to the sector

∑
( 1−α
1+α )π2

:= {λ ∈ C \ {0} : | arg(λ)| < π
2

1−α
1+α}. The

conclusion follows from [14, Theorem 3.7]. For the boundedness, we note that

‖Sα+1(t)x‖ =
∫ ∞

0

1
t(α+1)/2

Φ(α+1)/2(ut−(α+1)/2)‖C(u)x‖du

≤M
∫ ∞

0

1
t(α+1)/2

Φ(α+1)/2(ut−(α+1)/2)du‖x‖

= M

∫ ∞
0

Φ(α+1)/2(s)ds‖x‖ ≤ C‖x‖,

for all x ∈ X, proving the theorem. �

With the goal of constructing a representation of the solution of (3.3) in terms of
the family {Sα,βk(t)}t≥0, we apply the Laplace transform method. Then we obtain

λα+1û(λ)−
dα+1e−1∑
j=0

u(j)(0)λα−j +
d∑
k=1

ck

[
λβk û(λ)−

dβke−1∑
j=0

u(j)(0)λβk−1−j
]

= Aû(λ) + ĥ(λ).
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Applying the given initial conditions, we have

λα+1û(λ)− λαx0 − λα−1x1 +
d∑
k=1

ckλ
βk û(λ)−

d∑
k=1

ckλ
βk−1x0 = Aû(λ) + ĥ(λ).

This is equivalent to(
λα+1 +

d∑
k=1

ckλ
βk −A

)
û(λ) = λαx0 + λα−1x1 +

d∑
k=1

ckλ
βk−1x0 + ĥ(λ).

Hence, assuming the existence of the family Sα,βk(t) we obtain

û(λ)

= λα
(
λα+1 +

d∑
k=1

ckλ
βk −A

)−1

x0 + λα−1
(
λα+1 +

d∑
k=1

ckλ
βk −A

)−1

x1

+
d∑
k=1

ckλ
βk−1

(
λα+1 +

d∑
k=1

ckλ
βk −A

)−1

x0 +
(
λα+1 +

d∑
k=1

ckλ
βk −A

)−1

ĥ(λ).

Equivalently,

u(t) = Sα,βk(t)x0+(1∗Sα,βk)(t)x1+
d∑
k=1

ck(gα+1−βk ∗Sα,βk)(t)x0+(gα∗Sα,βk ∗h)(t).

(3.5)
In particular, for x0 = 0 and x1 = g(u) we have

u(t) = (1 ∗ Sα,βk)(t)g(u) + (gα ∗ Sα,βk ∗ h)(t), t > 0. (3.6)

The above representation formula allows us to give the following definition.

Definition 3.3. We say that a function u : R+ → X is a mild solution of the
equation

Dα+1
t u(t)+c1D

β1
t u(t)+c2D

β2
t u(t)+ . . . cdD

βd
t u(t) = Au(t)+Dα−1

t f(t, u(t)), (3.7)

with nonlocal initial conditions u(0) = 0, u′(0) = g(u) if it satisfies the formula

u(t) = (1 ∗ Sα,βk)(t)g(u) +
∫ t

0

(1 ∗ Sα,βk)(t− s)f(s, u(s))ds, t > 0. (3.8)

We next use the Hausdorff measure of noncompactness and a fixed point ar-
gument to prove the existence of a mild solution for the equation (3.7) where
f : I ×X → X and g : C([0, 1];X)→ X are suitable functions.

Remark 3.4. Let Sα,βk(t) be the family generated by the operator A in the The-
orem 3.2. Since Sα,βk(t) is bounded, then the function t → g1 ∗ Sα,βk(t) is norm
continuous for t > 0. Indeed, we have for 0 < t < s that∥∥∫ t

0

Sα,βk(τ) dτ −
∫ s

0

Sα,βk(τ)
∥∥ ≤ ∫ s

t

‖Sα,βk(τ)‖ dτ ≤ sup
τ≥0
‖Sα,βk(τ)|t− s|

We will denote M := sup{‖g1 ∗ Sα,βk(t)‖ : t ∈ [0, 1]}. To give the main result of
this section, we consider the following assertions.

(H1) A is the generator of a bounded strongly continuous cosine family.
(H2) g : C([0, 1];X) → X is continuous, compact and there exists positive con-

stants c and d such that ‖g(u)‖ 6 c‖u‖+ d, ∀u ∈ C([0, 1];X).
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(H3) f : [0, 1]×X → X satisfies the Carathéodory type conditions, that is, f(·, x)
is measurable for all x ∈ X and f(t, ·) is continuous for almost all t ∈ [0, 1].

(H4) There exists a function m ∈ L1(0, 1; R+) (here L1(0, 1; R+) is the space of
R+-valued Bochner functions on [0, 1] with the norm ‖x‖ =

∫ 1

0
‖x(s)‖ds)

and a nondecreasing continuous function Φ : R+ → R+ such that

‖f(t, x)‖ 6 m(t)Φ(‖x‖)

for all x ∈ X and almost all t ∈ [0, 1].
(H5) There exists a function H ∈ L1(0, 1; R+) such that for any bounded B ⊆ X

γ(f(t, B)) 6 H(t)γ(B)

for almost all t ∈ [0, 1].
In (H5), γ denotes the Hausdorff measure of noncompactness which is defined by

γ(B) = inf{ε > 0 : B has a finite cover by balls of radius ε}.

We note that this measure of noncompactness satisfies interesting regularity prop-
erties. For more information, we refer to [2]. We are now in position to establish
our main result.

Theorem 3.5. Let 0 < α ≤ βd ≤ · · · ≤ β1 ≤ 1 and ck ≥ 0 be given. If the
hypothesis (H1)–(H5) are satisfied and there exists a constant R > 0 such that

M(cR+ d) +MΦ(R)
∫ 1

0

m(s)ds 6 R

then the problem (3.7) has at least one mild solution.

Proof. Define F : C([0, 1];X)→ C([0, 1];X) by

(Fx)(t) = (1 ∗ Sα,βk)(t)g(x) +
∫ t

0

(1 ∗ Sα,βk)(t− s)f(s, x(s))ds, t ∈ [0, 1].

First, we show that F is a continuous map. Let {xn}n∈N ⊆ C([0, 1];X) be a
sequence such that xn → x (in the norm of C([0, 1];X)). Note that

‖F (xn)− F (x)‖ 6M‖g(xn)− g(x)‖+M

∫ 1

0

‖f(s, xn(s))− f(s, x(s))‖ds. (3.9)

By the dominated convergence Theorem and assumptions (H1) and (H2) we con-
clude that ‖F (xn)− F (x)‖ → 0 as n→∞. Let

BR := {x ∈ C([0, 1];X) : ‖x(t)‖ 6 R for all t ∈ [0, 1]}.

Is clear that BR is bounded and convex. For any x ∈ BR we have

‖(Fx)(t)‖ 6 ‖Sα,βk(t)g(x)‖+
∥∥∫ t

0

Sα,βk(t− s)f(s, x(s))ds
∥∥

6M(cR+ d) +MΦ(R)
∫ 1

0

m(s)ds 6 R.

Therefore F : BR → BR is a bounded operator and F (BR) is a bounded set.
Moreover, by norm continuity of the function t → (1 ∗ Sα,βk)(t) we have that
F (BR) is an equicontinuous set of functions. Define B := co(F (BR)). Then B is
an equicontinuous set of functions and F : B → B is a continuous operator.
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Let ε > 0. By [18, Lemma 2.4] there exists {yn}n∈N ⊂ F (B) such that

γ(FB(t)) 6 2γ({yn(t)}n∈N) + ε

6 2γ
(∫ t

0

Sα,β(t− s)f(s, {yn(s)}n∈N)ds
)

+ ε

6 4M
∫ t

0

γ(f(s, {yn(s))}n∈N)ds+ ε

6 4M
∫ t

0

H(s)γ({yn(s)}n∈N)ds+ ε

6 4Mγ({yn})
∫ t

0

H(s)ds+ ε

6 4Mγ(B)
∫ t

0

H(s)ds+ ε.

(3.10)

Since H ∈ L1(0, 1;X) there exists ϕ ∈ C([0, 1]; R+) such that∫ 1

0

|H(s)− ϕ(s)|ds < α, (α <
1

4M
).

Let N := max{ϕ(t) : t ∈ [0, 1]}. Then

γ(FB(t)) 6 4Mγ(B)
[ ∫ t

0

|H(s)− ϕ(s)|ds+
∫ t

0

ϕ(s)ds
]

+ ε

6 4Mγ(B)
[
α+Nt

]
+ ε.

Since ε > 0 is arbitrary we obtain that

γ(FB(t)) 6 (a+ bt)γ(B) (3.11)

where a = 4αM and b = 4MN . Let ε > 0, by [18, Lemma 2.4] there exists
{yn}n∈N ⊆ co(F (B)) such that

γ(F 2(B(t))) 6 2γ
(∫ t

0

Sα,βk(t− s)f(s, {yn(s)}n∈N)ds
)

+ ε

6 4M
∫ t

0

γ(f(s, {yn(s)}n∈N))ds+ ε

6 4M
∫ t

0

H(s)γ(co(F 1B(s)))ds+ ε

6 4M
∫ t

0

H(s)γ(F 1B(s))ds+ ε

6 4M
∫ t

0

[
|H(s)− ϕ(s)|+ ϕ(s)](a+ bs)γ(B)ds+ ε

6 4M(a+ bt)
∫ t

0

|H(s)− ϕ(s)|ds+ 4MN
(
at+

bt2

2
)

+ ε

6 a(a+ bt) + b
(
at+

bt2

2
)

+ ε.

Since ε > 0 is arbitrary,

γ(F 2(B(t))) 6
(
a2 + 2bt+

(bt)2

2

)
γ(B). (3.12)
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By an iterative process we obtain

γ(Fn(B(t))) 6
(
an + C1

na
n−1bt+ C2

na
n−2 (bt)2

2!
+ · · ·+ (bt)n

n!

)
γ(B). (3.13)

By [18, Lemma 2.1] we obtain that

γ(Fn(B)) 6
(
an + C1

na
n−1b+ C2

na
n−2 b

2

2!
+ · · ·+ bn

n!

)
γ(B). (3.14)

From [18, Lemma 2.5] we know that there exists n0 ∈ N such that(
an0 + C1

n0
an0−1b+ C2

n0
an0−2 b

2

2!
+ · · ·+ bn0

n0!

)
= r < 1. (3.15)

We conclude that
γ(Fn0B) 6 rγ(B). (3.16)

By [18, Lemma 2.6] , F has a fixed point in B, and this fixed point is a mild solution
of equation (3.7). �

4. Example

In this section, we give a simple example to illustrate the feasibility of the as-
sumptions made. Set X = L2(Rd), and let ε > 0 and βi > 0 for i = 1, 2, . . . , d be
given, satisfying 0 < α ≤ βd ≤ · · · ≤ β1 ≤ 1. We consider the equation

∂α+1
t u(t) + c1∂

β1
t u(t) + c2∂

β2
t u(t) + · · ·+ cd∂

βd
t u(t)

= ∆u(t) + ∂α−1
t [t−1/3 sin(u(t))], t ∈ [0, 1],

u(0, x) = 0,

ut(0, x) =
d∑
i=1

∫
Rd
εk(x, y)u(ti, y) dy, x ∈ Rd.

(4.1)

where 0 < t1 < · · · < td < 1; k(x, y) ∈ L2(Rd × Rd; R+), and ∆ is the Laplacian
with maximal domain {v ∈ X : v ∈ H2(Rd)}. Then (4.1) takes the form

Dα+1
t u(t) + c1D

β1
t u(t) + c2D

β2
t u(t) + · · ·+ cdD

βd
t u(t)

= ∆u(t) +Dα−1
t f(t, u(t)), t ∈ [0, 1],

u(0) = 0, u′(0) = gε(u).

(4.2)

where the function gε : C([0, 1], X) → X is given by gε(u)(x) = ε
∑m
i=1 kgu(ti)(x)

with (kgv)(x) =
∫

Rd k(x, y)v(y) dy, for v ∈ X,x ∈ Rd, and the function f :
[0, 1]×X → X is defined by f(t, u(t)) = t−1/3 sin(u(t)). Observe that ‖f(t, u(t))−
f(t, v(t))‖ ≤ t−1/3‖u − v‖, and hence f satisfies (H3). Note that ‖gε(v)‖ ≤
d
(∫

Rd
∫

Rd εk
2(z, y) dy dz

)1/2 ‖v‖, and the function kg is completely continuous. It
proves (H2). In addition ‖f(t, u(t))‖ ≤ Ct−1/3Φ(‖u‖) with Φ(‖u‖) ≡ 1, proving
(H4). Finally, given a bounded subset B of X, and from properties of γ, we ob-
tain that γ(f(t, B)) ≤ t−1/2γ(sin(B)) ≤ Ct−1/2γ(B) for some constant C > 0 and
therefore (H5) is also satisfied.

On the other hand, it follows from theory of cosine families that ∆ generates a
bounded cosine function {C(t)}t≥0 on L2(Rd). By Theorem 3.2, the operator A
in equation (4.2) generates a bounded (α, βk)-times resolvent family {Sα,βk(t)}t≥0.
Let K = sup{‖g1 ∗ Sα,βk‖ : t ∈ [0, 1]}. Observe that there exist ε > 0 such that
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Kc < 1 where c = εd
(∫

Rd
∫

Rd k
2(z, y) dy dz

)1/2. Therefore, there exist R > 0 such
that KcR+ 3K

2 < R. It follows that equation (4.1) has at least a mild solution for
all ε > 0 sufficiently small.
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