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SHARP BOUNDS OF THE NUMBER OF ZEROS OF ABELIAN
INTEGRALS WITH PARAMETERS

XIANBO SUN, JUNMIN YANG

Abstract. In this article, we study four Abelian integrals over compact level

curves of four sixth-degree hyper-elliptic Hamiltonians with parameters. We
prove that the sharp bound of the number of zeros for each Abelian integral

is 2. The proofs rely mainly on the Chebyshev criterion for Abelian integrals

and asymptotic expansions of Abelian integrals.

1. Introduction and main result

The second part of Hilbert’s 16th problem and its weak version are two open
problems in the qualitative theory of planar differential equations. The first one
asks for the maximal number of limit cycles and their distribution for the following
planar polynomial differential equation of degree n,

ẋ = Pn(x, y), ẏ = Qn(x, y). (1.1)

A special form of (1.1) is

ẋ = Hy + εp(x, y, δ), ẏ = −Hx + εq(x, y, δ), (1.2)

where H(x, y), p(x, y), q(x, y) are polynomials of x and y, and their degrees satisfy
max{deg p, deg q} = n and deg(H) = n+1, and ε is a positive and sufficiently small
parameter. The unperturbed form of (1.2) is

ẋ = Hy, ẏ = −Hx. (1.3)

The Hamiltonian function H(x, y) defines at least one family of closed curves Lh
which form a period annulus of (1.3) denoted by {Lh}, where h is energy parameter
on an open interval J . Corresponding to system (1.2), the following integral is called
Abelian integral or first order Melnikov function,

An(h) =
∮
Lh

q(x, y)dx− p(x, y)dy, h ∈ J, (1.4)

which plays an important role in studying the limit cycles of (1.2) (see the Poincaré-
Pontryagin Theorem [5]), and finding the upper bound of the maximal number of
zeros of An(h) is the weak version of the second part of Hilbert’s 16th problem
(usually called weak Hilbert’s 16th problem). Its research advances and the recent
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popular and efficient methods for special forms of (1.2) can be found in the survey
works [17, 18].

Since both problems are difficult, mathematicians try to study special and sim-
pler forms of (1.1) and (1.2). Smale 13th problem restricts Hilbert’s 16th problem
to the Liénard system

ẋ = y − f(x), ẏ = −x.
To study the number of zeros of An(h), many mathematicians concentrate on a
simpler form of (1.2) as follows

ẋ = y, ẏ = g(x) + εf(x)y, (1.5)

which is called Liénard system of type (m,n) if g(x) and f(x) are polynomials of
degree respectively m and n.

A comprehensive study has been made in [7] for the cases m+ n ≤ 4, except for
(m,n) = (1, 3). In all these cases, it has proven that at most one limit cycle can
appear and for (m,n) = (1, 3) the same result has been conjectured (see [6]). For
type (3, 2), there are several cases according to the portraits of the unperturbed
system. Dumortier and Li [8, 9, 10, 11] have made a complete study on these
cases and obtained different sharp upper bounds of the number of zeros of Abelian
integrals for different cases. Li, Mardešić and Roussarie [19] investigated some
Liénard systems of type (3, 2) with symmetry and also obtained the sharp bound.
Wang and Xiao [27, 28] investigated some Liénard system of type (4, 3) and proved
that 4 is the least upper bound and 3 is the maximum lower bound of the number
of the zeros for the corresponding Abelian integral. Some other cases of type (4, 3)
are investigated in [4, 25], and the least upper bound and the maximal lower one
are obtained. The results of the maximum lower bound for other systems of type
(4, 3) can be found in [30, 31, 32].

For the type (5, 4), many works concentrate on the following Liénard systems
with symmetry

ẋ = y, ẏ = ηx(x2 − a)(x2 − b) + ε(α+ βx2 + γx4)y, (1.6)

where η = ±1, α, β and γ are real bounded number. Assume the portraits of
system (1.6)ε=0 has at least one periodic annulus, there are 12 cases according to
the value of a, b and η, see Figure 1.

For case 1, Zhang et al. [34] proved that system (1.6) with a = 1/2, b = 2 has
at most 3 zeros of the corresponding Abelian integral. For case 2, Asheghi and
Zangeneh studied (1.6) with a = b = 1 and proved that the least upper bound
for the number of zeros of the related Abelian integral inside the eye-figure loop
is 2 in [1] and both inside and outside the eye-figure loop is 4 in [2]. For case 3,
Asheghi and Zangeneh [3] studied (1.6) by taking a = 0, b = 1 and proved that the
corresponded Abelian integral has at most 2 zeros inside the double cuspidal loops.
For case 3, Zhao [35] studied system (1.6) with a = 0 and b = 1 and obtained that
2 is the sharp bound of the number of zeros of Abelian integral associated on the
the two bounded period annuluses. For case 8, Xu and Li [29] proved that system
(1.6) has at least 5 limit cycles bifurcated from 3 annuluses of the system (1.6))ε=0

with a = 1/4, b = 1. For case 9, Sun [26] proved there are at most 4 zeros for
the corresponding Abelian integral. Later, Zhao [23] proved the sharp bound of
number of zeros for the corresponding Abelian integral is 2. For case 10, Qi and
Zhao [24] proved that system (1.6) with a = 21−

√
41

20 and b = 21+
√

41
20 has at most 2

limit cycles bifurcated from each annulus.
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1: η = −1, a > 0,
b > 0, a 6= b

2: η = −1, ab 6= 0,
a = b

3: η = −1, ab = 0,
sgn(a)+sgn(b) = 1 4: η = −1, ab < 0

5: η = −1, ab = 0,
sgn(a) + sgn(b) =
−1

6: η = −1, a2 +
b2 = 0

7: η = −1, a < 0,
b < 0

8: η = 1, 0 < b
a <

1
3 or b

a > 3

9: η = 1, b
a = 1

3 or
b
a = 3

10: η = 1, 1
3 <

b
a < 1 or 1 < b

a < 3
11: η = 1, ab = 0,
sgn(a)+sgn(b) = 1 12: η = 1, ab < 0

Figure 1. Twelve cases of (1.6) each having at least one annulus
surrounding a center

In this article, we study the cases 5, 6, 7 and 12 with some parameters. Without
loss of generality we fix γ = 1 in all cases. For case 12 we take a = 1, b = −λ
without loss of generality. For convenience we assume λ ≥ 1, then system (1.6)
becomes

ẋ = y, ẏ = x(x2 − 1)(x2 + λ) + ε(α+ βx2 + x4)y, (1.7)

with the Hamiltonian function

H̃(x, y) =
y2

2
+
λ

2
x2 − λ− 1

4
x4 − 1

6
x6. (1.8)

The level sets (i.e. H̃(x, y) = h) of Hamiltonian function (1.8) are sketched in
Figure 2. H̃(x, y) = h defines one family of ovals which correspond to a period
annulus of system (1.7)ε=0 denoted by {Γh}. H(x, y) = 3λ+1

12 defines a 2-polycycles
Γ∗ = {(x, y)|H(x, y) = 3λ+1

12 } which consists of two heteroclinic orbits. Γ0 is an
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elementary center. The Abelian integral on Γh is

I(h, δ) =
∮

Γh

(α+ βx2 + x4)ydx ≡ αI0(h) + βI1(h) + I2(h), (1.9)

for h ∈ (0, (3λ+ 1)/12), where δ = (α, β, 1), Ii(h) =
∮

Γh
x2iydx, i = 0, 1, 2.

Figure 2. The level set of H̃(x, y)

For case 7, we take a = −λ1, b = −λ2, where λ1, λ2 > 0, then system (1.6)
becomes

ẋ = y, ẏ = −x(x2 + λ1)(x2 + λ2) + ε(α+ βx2 + x4)y. (1.10)
For case 6, we take a = 0, b = −λ3, where λ3 > 0, then system (1.6) becomes

ẋ = y, ẏ = −x3(x2 + λ3) + ε(α+ βx2 + x4)y. (1.11)

For case 5, we take a = b = 0, then system (1.6) becomes

ẋ = y, ẏ = −x5 + ε(α+ βx2 + x4)y. (1.12)

The corresponding Abelian integrals of systems (1.10), (1.11), (1.12) are, respec-
tively,

Ib(h, δ) =
∮

Γb
h

(α+ βx2 + x4)ydx ≡ αIb0(h) + βIb1(h) + Ib2(h),

Ic(h, δ) =
∮

Γc
h

(α+ βx2 + x4)ydx ≡ αIc0(h) + βIc1(h) + Ic2(h),

Id(h, δ) =
∮

Γd
h

(α+ βx2 + x4)ydx ≡ αId0 (h) + βId1 (h) + Id2 (h),

where I(h), Ib(h) and Ic(h) have parameters λ, λ1, λ2, λ3. Using some algebraic
method, some polynomial techniques and expansions of Abelian integrals, the fol-
lowing results are obtained.

Theorem 1.1. For all α and β, each of I(h, δ), Ib(h, δ), Ic(h, δ) and Id(h, δ) has
at most 2 zeros, counting the multiplicity. Taking 0 < α � −β � 1, two zeros of
each Abelian integral appear in some small intervals near h = 0. Therefore, 2 is
the sharp bound.

By the Poincaré-Pontryagin theorem and Theorem 1.1, each of system (1.7),
(1.10), (1.11), (1.12) has at most 2 limit cycles bifurcated from the corresponding
period annulus, and there exist some (α, β) and 0 < ε � 1 such that each system
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has 2 limit cycles bifurcated from the corresponding period annulus. The rest of the
article is organized as follows: in section 2 we will introduce some definitions and
the new criteria which are used to determine the number of zeros of the Abelian
integrals. In sections 3 and 4, we will prove the main results.

2. Preliminary lemmas and definitions

The method we will introduce proposes some criterion functions defined directly
by Hamiltonian and integrands of Abelian integrals, through which the problem
whether the basis of the vector space generated by Abelian integrals is a Chebyshev
system could be reduced to the problem whether the family of criterion functions
form a Chebyshev system, since the latter can be tackled by checking the nonva-
nishing properties of its Wronskians. For this paper to be self-contained, we list
some related definitions and criterions. For more details, [21, 12] is referred.

Definition 2.1. Suppose f0, f1, f2, . . . , fn−1 are analytic functions on an real open
interval J .

(i) The family of polynomials {f0, f1, f2, . . . , fn−1} is called Chebyshev system
(T-system for short) provided that any nontrivial linear combination

k0f0(x) + k1f1(x) + · · ·+ kn−1fn−1(x)

has at most n− 1 isolated zeros on J .
(ii) An ordered set of n functions {f0, f1, f2, . . . , fn−1} is called complete Cheby-

shev system (CT-system for short) provided any nontrivial linear combination
k0f0(x) + k1f1(x) + · · ·+ ki−1fi−1(x) has at most i− 1 zeros for all i = 1, 2, . . . , n,
moreover it is called extended complete Chebyshev system (ECT-system for short)
if the multiplicities of zeros taken into account.

(iii) The continuous Wronskian of {f0, f1, f2, . . . , fn−1} at x ∈ R is

W [f0, f1, f2, . . . , fk−1] = det(f ji )0≤i,j≤k−1

=

∣∣∣∣∣∣∣∣
f0(x) f1(x) . . . fk−1

f ′0(x) f ′1(x) . . . f ′k−1(x)
. . . . . . . . . . . .

f
(k−1)
0 (x) f

(k−1)
1 (x) . . . f

(k−1)
k−1 (x)

∣∣∣∣∣∣∣∣ ,
where f ′(x) is the first order derivative of f(x) and f (i)(x) is the ith order derivative
of f(x), i ≥ 2.

The above definitions imply that the function tuple {f0, f1, . . . , fk−1} is an ECT-
system on J , therefore it is a CT-system on J , and then a T-system on J , however
the inverse implications are not true at all.

Recall that the authors of [12] studied the number of isolated zero of Abelian
integrals using a purely algebraic criteria which is developed from the idea intro-
duced in [20]. Let H(x, y) = A(x)+ 1

2y
2 be an analytic function in some open subset

of the plane which has a local minimum at (0, 0). Then there exists a punctured
neighborhood P of the origin foliated by ovals Lh : H(x, y) = h which correspond
to the clockwise closed orbits of (1.3). The set of ovals Lh inside the period annulus,
is parameterized by the energy levels h ∈ (0, h1) = J for some h1 ∈ (0,+∞]. The
projection of P on the x-axis is an interval (xl, xr) with xl < 0 < xr. Under the
above assumptions it is easy to verify that xA′(x) > 0 for all x ∈ (xl, xr) \ {0},
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A(x) has a zero of even multiplicity at x = 0 and there exists an analytic involution
z(x) such that

A(x) = A(z(x))
for all x ∈ (xl, xr). It is obvious that z(x) = −x if A(x) is a even function.

For the number of isolated zeros of nontrivial linear combination of some integrals
of special form, the algebraic criterion in [12, Theorem B] can be stated as follows:

Lemma 2.2. Assume that the function fi(x) is analytic on the interval (xl, xr) for
i = 0, 1, . . . , n− 1, and consider

Ai(h) =
∫
Lh

fi(x)y2s−1dx, i = 0, 1, . . . , n− 1,

where for each h ∈ (0, h0), Lh is the oval surrounding the origin inside an level
curve {A(x) + 1

2y
2 = h}. We define

li(x) :=
fi(x)
A′(x)

− fi(z(x))
A′(z(x))

.

Then, {A0, A1, . . . , An−1} is an ECT-system on (0, h1) if {l0, l1, . . . , ln−1} is a CT-
system on (xl, 0) or (0, xr) and s > n− 2. And {l0, l1, . . . , ln−1} is an ECT-system
on (x0, xr) or (xl, x0) if and only if the continuous Wronskian of {l0, l1, . . . , lk−1}
does not vanish for ∀x ∈ (0, xr) or for all z ∈ (xl, 0) and k = 1, . . . , n.

Usually s is not big enough, Lemma 2.2 can not be applied directly. To overcome
this problem the next result (see [12, Lemma 4.1]) is useful to increase the power
of y in Ai(h).

Lemma 2.3. Let Lh be an oval inside the level curve A(x) + 1
2 (x)y2 = h and con-

sider a function F (x) satisfying F (x)
A′(x) is analytic at x = 0. Then, for any k ∈ N ,∮

Lh

F (x)yk−2dx =
∮
Lh

G(x)ykdx

where G(x) = 1
k ( FA′ )′(x).

3. Proof of main result

For briefness we prove only case 12, other cases can be proved similarly. In what
follows, we proved that the following generating elements of I(h, δ),

Ii(h) =
∫

Γh

x2iydx, i = 0, 1, 2

have the Chebyshev property for h ∈ (0, 3λ+1
12 ).

By Lemma 2.2, A(x) = H̃(x, 0) = − 3
2x

2 + x4 − 1
6x

6 and s = 1, n = 3 for system
(1.7). The period annulus is foliated by the ovals Γh, and the projection of the
period annulus on the plan is an open interval (−1, 1). Noting that xA′(x) > 0 for
all x ∈ (−1, 1) \ {0}, therefore there exists an analytic involution z(x) such that

A(x) = A(z(x)).

Our goal is to prove that the vector space generated by Abelian integral Ii(h) has
the Chebyshev property for x ∈ (0, 1) by Lemma 2.2. However, for s = 1 and n = 3
it does not satisfy the hypothesis s > n−2 in Lemma 2.2. Thus the power s of y in
the integrand of Ii(h) should be increased such that the condition s > n− 2 holds.
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Lemma 3.1. For i = 0, 1, 2, we have

2hIi(h) =
∫

Γh

fi(x)y3dx,

where fi(x) = x2i efi(x)
18(x−1)2(x+1)2(x2+λ)2 with

f̃i(x) = 20x8 + 39x6λ+ 21λ2x4 − 39λ2x2 + 24λ2 + 4ix8 − 10ix6 + 6ix4

+ 12iλ2 + 10ix6λ− 28ix4λ+ 18iλx2 + 6iλ2x4 − 18iλ2x2

+ 21x4 − 70x4λ+ 39λx2 − 39x6.

Proof. It is clear that on every periodic orbits Γh : {H̃(x, y) = h}, 2A(x)+y2

2h = 1
holds. Therefore,

Ii(h) =
1

2h

∫
Γh

(2A(x) + y2)x2iydx =
1

2h

∫
Γh

2x2iA(x)ydx+
1

2h

∫
Γh

x2iy3dx, (3.1)

for i = 0, 1, 2. Noting that the functions 2x2iA(x)
A′(x) are analytic on x = 1, by Lemma

2.3, we have ∫
Γh

2x2iA(x)ydx =
∫

Γh

Gi(x)y3dx, (3.2)

where

Gi(x) =
x2igi(x)

(x− 1)2(x+ 1)2(x2 + λ)2

with

gi(x) = 2x8 + 3x6λ+ 3λ2x4 − 3λ2x2 + 6λ2 + 4ix8 − 10ix6 + 6ix4

+ 12iλ2 + 10ix6λ− 28ix4λ+ 18iλx2 + 6iλ2x4

− 18iλ2x2 + 3x4 + 2x4λ+ 3λx2 − 3x6.

Combine (3.1) and (3.2), so Lemma 3.1 is proved. �

Let
Ĩi(h) =

∫
Γh

fi(x)y3dx.

Then {I0, I1, I2} is an ECT-system on (0, 3λ+1
12 ) if and only if {Ĩ0, Ĩ1, Ĩ2} is as well.

Since s = 2, n = 3 and the condition s > n − 2 holds, lemma 2.2 can be used
to study if {Ĩ0, Ĩ1, Ĩ2} is an ECT-system on (0, 3λ+1

12 ). Thus, setting the criteria
functions

li(x) = (
fi
A′

)(x)− (
fi
A′

)(z(x)), 0 < x < 1, i = 0, 1, 2, (3.3)

where z(x) is the analytic involution z(x) defined by A(x) = A(z). By symmetry
of system (1.7), it is obvious z(x) = −x.

Inserting z(x) = −x in (3.3) gives

li(x) = − (x2i + (−x)2i)l̃i(x)
18(x− 1)3(x+ 1)3(x2 + λ)3x

with

l̃i(x) = 20x8 + 21λ2x4 − 39λ2x2 + 24λ2 + 4ix8 − 10ix6 + 6ix4

+ 12iλ2 + 39x6λ+ 10ix6λ− 28ix4λ+ 18iλx2 + 6iλ2x4
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− 18iλ2x2 + 21x4 − 70x4λ+ 39λx2 − 39x6.

Next, we check that the ordered set of criterion functions {l1(x), l2(x), l0(x)} is
an ECT-system for x ∈ (0, 1) by verifying the non-vanishing property of continuous
Wronskians W [l1], W [l1, l2], W [l1, l2, l0].

Lemma 3.2. The function tuple {l1(x), l2(x), l0(x)} is an ECT-system for x ∈
(0, 1).

Proof. By the Definition 2.1 (iii) about the continuous Wronskian, with the aid of
Maple 13, we have

W [l1(x)] =
−xw1(x, λ)

9(x− 1)3(x+ 1)3(x2 + λ)3
,

W [l1(x), l2(x)] =
2x3w2(x, λ)

81(x− 1)5(x+ 1)5(x2 + λ)5
,

W [l1(x), l2(x), l0(x)] =
−16w3(x, λ)

243(x− 1)7(x+ 1)7(x2 + λ)7
,

where
w1(x, λ) = 24x8 + 27λ2x4 − 57λ2x2 + 36λ2 − 49x6 + 27x4 + 49x6λ

− 98x4λ+ 57λx2,

w2(x, λ) = 672x12 − 2072x10 + 2072x10λ− 6174x8λ+ 2295x8 + 2295x8λ2

− 891x6 + 6993x6λ− 6993λ2x6 + 891x6λ3 + 8382λ2x4 − 2871λ3x4

− 2871x4λ− 3672λ2x2 + 3672λ3x2 − 1728λ3,

w3(x, λ) = 13824λ4 + 6237x8 + 40392λ2x4 + 22275x6λ+ 6237λ4x8 − 22275λ4x6

+ 40392λ4x4 − 37152λ4x2 + 4480x16 − 17248x14 + 27636x12

− 20979x10 − 71280x8λ3 + 27636x12λ2 − 92073x10λ2 + 17248x14λ

− 59304x12λ+ 20979x10λ3 + 37152λ3x2 − 71280x8λ− 122265λ2x6

− 106128λ3x4 + 92073x10λ+ 149094x8λ2 + 122265x6λ3,

of degree 8, 12 and 16, respectively.
To check if three Wronskians vanish for x ∈ (0, 1), we only need check if three two-

variable polynomials w1(x, λ), w2(x, λ) and w3(x, λ) vanish for x ∈ (0, 1). In order
to avoid complicated symbolic computation, such as regular chains with parameter,
and real roots isolation, we introduce some transforms.

First, let α > 0 and introduce x = 1
1+α , which satisfies 0 < x < 1. Then w1(x, λ)

becomes w1(x, λ) = p1(α,λ)
(1+α)8 , where

p1(α, λ) = 2 + 8λ+ 6λ2 + 108α3 + 27α4 + 113α2 + 54λ2α+ 315λ2α2

+ 984λ2α3 + 1692λ2α4 + 1674λ2α5 + 951λ2α6 + 288λ2α7 + 36λ2α8

+ 48λα+ 316λα2 + 748λα3 + 757λα4 + 342λα5 + 57λα6 + 10α,

which does not vanish on {(α, λ)|α > 0, λ ≥ 1} since its coefficients are all positive.
Therefore, W [l1(x)] has not root for x ∈ (0, 1) obviously.

Second, let α > 0, β ≥ 0 and introduce

x =
1

1 + α
, λ = 1 + β.
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Then w2(x, λ) = −p2(α, β)/(1 + α)12, where p2(α, β) is a polynomial with positive
coefficients and has no root on {(α, λ) : α > 0, β ≥ 0} (see Appendix A). Hence,
W [l1(x), l2(x)] has no roots for x ∈ (0, 1).

Last, taking α > 0 and substituting x = 1/(1+α) into w3(x, λ) yields w3(x, λ) =
p3(α,λ)
(1+α)16 . The polynomial p3(α, λ) has positive coefficients (see Appendix A), and it
has no root on {(α, λ)|α > 0, λ ≥ 1}. Hence, W [l1(x), l2(x), l0(x)] has no root for
x ∈ (0, 1). Lemma 3.2 is proved. �

By Lemmas 2.2 and 3.2, {Ĩ1(h), Ĩ2(h), Ĩ0(h)} is an ECT-system on (0, (3λ +
1)/12), and so {I1, I2, I0} is as well. Therefore, I(h, δ) has at most 2 zeros.

Remark 3.3. With the same methods and techniques, it is not difficult to prove
each of Ib(h, δ), Ic(h, δ) and Id(h, δ) has at most 2 zeros, we omit the proofs here
for brevity.

4. Finding zeros in small intervals

Usually, it is difficult to find zeros of An(h). One popular method is to detect
the expansions of An(h) near a center, homoclinic loop and heteroclinic loop of
system (1.3), see [14]. When the annulus {Lh} of system (1.3) has a homoclinic
loop, a heteroclinic loop as the outer boundary, the expansions of An(h) near these
outer boundaries was studied in [15] and the expression of coefficients are also
given. When the inner boundary of {Lh} is a center, the expansion of An(h) near
an elementary center is investigated in [16]. and the expansion of An(h) near a
nilpotent center is investigated in [33].

By the results of [15, 16, 33], the expansions of I(h, δ), Ib(h, δ), Ic(h, δ) and
Id(h, δ) near the centers are as follows

I(h, δ) = b0(δ)h+ b1(δ)h2 + b2(δ)h3 + h.o.t., h ∈ (0, ε1),

Ib(h, δ) = b̃0(δ)h+ b̃1(δ)h2 + b̃2(δ)h3 + h.o.t., h ∈ (0, ε2),

Ic(h, δ) = b0(δ)h
3
4 + b1(δ)h

5
4 + b2(δ)h

7
4 + h.o.t., h ∈ (0, ε3),

Id(h, δ) = b̂0(δ)h
4
6 + b̂1(δ)h

8
6 + b̂2(δ)h

10
6 + h.o.t., h ∈ (0, ε4),

where 0 < ε1, ε2, ε3, ε4 � 1 and

b0(δ) = 2πα, b1(δ) =
3π
4

(λ− 1)α+ πβ,

b2(δ) =
5π
96

(21λ2 − 42λ+ 37)α+
5π
4

(λ− 1)β + π,

b̃0(δ) = 2πα, b̃1(δ) =
3π
4

(λ1 − λ2)α+ πβ,

b̃2(δ) =
105π
96

(λ2
1 + 2λ1λ2 + λ2

2 +
80
105

)α+
5π
4

(λ1 + λ2)β + π,

b0(δ) =
4π

3
2
√

2α
3Γ2( 3

4 ) 4
√
λ3

, b1(δ) =
8
√

2Γ2( 3
4 )(2λ3β − α)

5λ3
7
4
√
π

,

b2(δ) =
2
√

2π
3
2 (15α− 20λ3β + 24λ2

3)

63Γ2( 3
4 )λ3

13
4

, b̂0(δ) =
√

26
1
6π

3
2α

Γ( 5
6 )Γ( 2

3 )
,

b̂1(δ) =
2
√

3πβ
3

, b̂2(δ) =
3× 6

4
3 Γ( 5

6 )Γ( 2
3 )

8
√
π

,
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Taking α = β = 0, then b0 = b1 = b̃0 = b̃1 = b0 = b1 = b̂0 = b̂1 = 0 and
b2 = b̃2 = b2 = b̂2 = π. It is easy to find that

det
∂(b0, b1)
∂(a0, a1)

= det
∂(̃b0, b̃1)
∂(a0, a1)

= det
∂(b0, b1)
∂(a0, a1)

= det
∂(̂b0, b̂1)
∂(a0, a1)

= 2.

Let us take α� −β � 1, then b0 � −b1 � b2, b̃0 � −b̃1 � b̃2, b0 � −b1 � b2 and
b̂0 � −b̂1 � b̂2, which imply there exist 2 zeros for each Abelian integral I(h, δ),
Ib(h, δ), Ic(h, δ) and Id(h, δ).

4.1. Conclusion. The number of zeros of Abelian integral for system (1.6) has
been studied for all 12 cases except for case 4. Up to now, the sharp bounds of
the numbers of zeros for the corresponding Abelian integrals defined on all period
annuluses for one case of system (1.6) are obtained for case 5, 6, 7, 12 and case 9,
the sharp bound for other cases are our further research.

Appendix A. This section shows two polynomials with positive coefficients that
have no root on {(α, λ) : α > 0, λ ≥ 1}.
p2(α, β)

= 1728α12 + 380160α9 + 114048α10 + 20736α11 + 238656α3 + 672144α4

+ 1220736α5 + 1522752α6 + 1347456α7 + 852720α8 + 49632α2 + 5952α

+ 64β + 36β3 + 20736β3α11 + 1728β3α12 + 3622848βα7 + 2395560βα8

+ 3226296β2α7 + 2235831β2α8 + 950904β3α7 + 692991β3α8 + 1103760βα9

+ 338472βα10 + 1067040β2α9 + 334800β2α10 + 343440β3α9 + 110376β3α10

+ 62208βα11 + 5184βα12 + 62208β2α11 + 5184β2α12 + 11360βα+ 101296βα2

+ 496896βα3 + 1491744βα4 + 96β2 + 7356β2α+ 69162β2α2 + 349356β2α3

+ 1102515β2α4 + 2910624βα5 + 3875376βα6 + 2293896β2α5 + 3258564β2α6

+ 1638β3α+ 15831β3α2 + 82476β3α3 + 271845β3α4 + 598662β3α5

+ 905049β3α6.

p3(α, λ)

= 126 + 1012λ+ 1026λ4 + 2988λ3 + 2784λ2 + 40236α3 + 149541α4 + 223398α5

+ 153657α6 + 49896α7 + 6237α8 + 8519α2 + 12912λ2α+ 123300λ2α2

+ 832788λ2α3 + 3401511λ2α4 + 8976510λ2α5 + 15729117λ2α6

+ 18511416λ2α7 + 14641209λ2α8 + 2228λα+ 49054λα2 + 285564λα3

+ 1009941λα4 + 2174058λα5 + 2773983λα6 + 70α+ 484704λ2α11

+ 40392λ2α12 + 222750λα9 + 22275λα10 + 57553848λ3α7

+ 64464741λ3α8 + 52252794λ3α9 + 30306969λ3α10 + 12249792λ3α11

+ 3274704λ3α12 + 520128λ3α13 + 37152λ3α14 + 2102760λα7 + 931095λα8

+ 7663590λ2α9 + 2543607λ2α10 + 12906λ4α+ 116181λ4α2 + 780624λ4α3

+ 3723408λ4α4 + 12731364λ4α5 + 31954230λ4α6 + 60008256λ4α7

+ 85345326λ4α8 + 92431746λ4α9 + 76157037λ4α10 + 47344608λ4α11
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+ 21819240λ4α12 + 7221312λ4α13 + 1621728λ4α14 + 221184λ4α15

+ 13824λ4α16 + 24876λ3α+ 197154λ3α2 + 1274868λ3α3 + 5656527λ3α4

+ 17269902λ3α5 + 37205973λ3α6.
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[34] T. Zhang, M. Tadé, Y. Tian; On the zeros of the Abelian integrals for a class of Liénard

systems, Physics Letters A 358(2006), 262-274.
[35] L. Zhao; The perturbations of a class of hyper-elliptic Hamilton systems with a double ho-

moclinic loop through a nilpotent saddle, Nonlinear Analysis 95 (2014), 374-387.

Xianbo Sun
Department of Applied Mathematics, Guangxi University of Finance and Economics,

Nanning, 530003 Guangxi, China

E-mail address: xianbo01@126.com Tel +86 15977781786

Junmin Yang

College of Mathematics and Information Science, Hebei Normal University
Shijiazhuang, 050024 Hebei, China

E-mail address: jmyzhw@sina.com


	1. Introduction and main result
	2. Preliminary lemmas and definitions
	3. Proof of main result
	4. Finding zeros in small intervals
	4.1. Conclusion
	Appendix A
	Acknowledgements

	References

