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BLOW UP OF MILD SOLUTIONS OF A SYSTEM OF PARTIAL
DIFFERENTIAL EQUATIONS WITH DISTINCT

FRACTIONAL DIFFUSIONS

JOSÉ VILLA-MORALES

Abstract. We give a sufficient condition for blow up of positive mild solutions

to an initial value problem for a nonautonomous weakly coupled system with

distinct fractional diffusions. The proof is based on the study of blow up of a
particular system of ordinary differential equations.

1. Introduction

Let i ∈ {1, 2} and j = 3 − i. In this paper we study blow up of positive mild
solutions of

∂ui(t, x)
∂t

= gi(t)∆αi
ui(t, x) + hi(t)u

βi

j (t, x), t > 0, x ∈ Rd,

ui(0, x) = ϕi(x), x ∈ Rd,
(1.1)

where ∆αi = −(−∆)αi/2, 0 < αi ≤ 2, is the αi-Laplacian, βi ≥ 1 are constants,
ϕi are non negative, not identically zero, bounded continuous functions and hi, gi :
(0,∞)→ [0,∞) are continuous functions.

If there exist a solution (u1, u2) of (1.1) defined in [0,∞) × Rd, we say that
(u1, u2) is a global solution, on the other hand if there exists a number te <∞ such
that (u1, u2) is unbounded in [0, t]×Rd, for each t > te, we say that (u1, u2) blows
up in finite time.

The associated integral system of (1.1) is

ui(t, x) =
∫

Rd

pi(Gi(t), y − x)ϕi(y)dy

+
∫ t

0

∫
Rd

pi(Gi(s, t), y − x)hi(s)u
βi

j (s, y) dy ds.
(1.2)

Here pi(t, x) denote the fundamental solution of ∂
∂t −∆αi

and

Gi(s, t) =
∫ t

s

gi(r)dr, 0 ≤ s ≤ t,
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where Gi(t) = Gi(0, t). We say that (u1, u2) is a mild solution of (1.1) if (u1, u2) is
a solution of (1.2).

Our main result reads as follows.

Theorem 1.1. Assume that βiβj > 1 and

lim
t→∞

Gi(t) =∞. (1.3)

Let a ∈ {1, 2} such that

αa = min{α1, α2} and b = 3− a. (1.4)

Define

fi(t) = hi(t)
( Gb(t)

(Gj(t)αb/αj +Gb(t))βi

)d/αb

, t > 0. (1.5)

Then the positive solution of (1.2) blows up in finite time if∫ ∞
·

F (s)ds =∞, (1.6)

where

F (t) =
(
fi(t)1/(βi+1)fj(t)1/(βj+1)

)(βi+1)(βj+1)/(βi+βj+2)

. (1.7)

It is well known that a classical solution is a mild solution. Therefore, if we
give a sufficient condition for blow up of positive solutions to (1.2) then we have a
condition for blow up of classical solutions to (1.1).

Corollary 1.2. Moreover, assume that ρi > 0, σi > −1 and

dρb
αb

+
σi(1 + βj) + σj(1 + βi)

βi + βj + 2
+ 1

≥ d

βi + βj + 2
[
βi(βj + 1) max{ ρj

αj
,
ρb
αb
}+ βj(βi + 1) max{ ρi

αi
,
ρb
αb
}
]
,

(1.8)

then each (classical) solution to

∂ui(t, x)
∂t

= ρit
ρi−1∆αi

ui(t, x) + tσiuβi

j (t, x), t > 0, x ∈ Rd,

ui(0, x) = ϕi(x), x ∈ Rd.
(1.9)

blow up in finite time.

In applied mathematics it is well known the importance of the study of equations
such as (1.1). In fact, for example, they arise in fields like molecular biology,
hydrodynamics and statistical physics [13]. Also, notice that generators of the
form gi(t)∆αi

arise in models of anomalous growth of certain fractal interfaces [8].
There are many related works. Here are some of them:
• When α1 = α2 = 2, ρ1 = ρ2 = 1, σ1 = σ2 = 0 and ϕ1 = ϕ2 in (1.9), Fujita [3]

showed that if d < α1/β1, then for any non-vanishing initial condition the solution
of (1.9) is infinite for all t large enough.
• When α1 = α2, ρ1 = ρ2, σ1 = σ2 and ϕ1 = ϕ2 in (1.9), Pérez and Villa [11]

showed that if σ1 + 1 ≥ dρ1(β1−1)/α1, then the solutions of (1.9) blow up in finite
time.
• When α1 = α2 = 2 and ρ1 = ρ2 = 1 in (1.9), Uda [15] proved that all positive

solutions of (1.9) blow up if max{ (σ2+1)β1+σ1+1
β1β2−1 , (σ1+1)β2+σ2+1

β1β2−1 } ≥ d
2 .
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• When α1 = α2, g1(t) = g2(t) = tρ−1, ρ > 0, and h1(t) = h2(t) = 1 in
(1.1), Pérez [10] proved that every positive solution blows up in finite time if
min{ α1

ρ(β1−1) ,
α1

ρ(β2−1)} > d.
• When ρ1 = ρ2 = 1 and the nonlinear terms in (1.9) are of the form h(t, x)uβi ,

h(t, x) = O(tσ|x|γ), Guedda and Kirane [5] also studied blow up.
Other related results (when α1 = α2 = 2) can be found, for example in [1, 2, 6, 9]

and references therein.
It is worth while to mention that Guedda and Kirane [5] observed that to reduce

the study of blow up of (1.1) to a system of ordinary differential equations we must
have a comparison result between pi(t, x) and pj(t, x). Therefore, the goal of this
paper is to use the comparison result given in [7, Lemma 2.4] to follow the usual
approach, see among others [14] or [4].

When α1 = α2 = 2, ρ1 = ρ2 = 1 and σ1 = σ2 = 0 the Uda condition (1.10), the
Pérez condition (1.11) and the condition (1.8) become

d ≤ 2(max{β1, β2}+ 1)
β1β2 − 1

= CU , (1.10)

d <
2

max{β1, β2} − 1
= CA, (1.11)

d ≤ β1 + β2 + 2
β1β2 − 1

= CV , (1.12)

respectively. Since CA ≤ CV ≤ CU we see that the Uda condition (1.10) is the
best. Also, from this we see that CV , given in (1.12), is not the optimal bound
(critical dimension), but we believe that it is the best we can get by constructing a
convenient subsolution of the solution of (1.2). In fact, the condition (1.8) coincides
with the condition for blow up given by Pérez and Villa [11].

This article is organized as follows. In Section 1 we prove the existence of local
solutions for the equation (1.2). In Section 2 we give some preliminary results
and discuses a sufficient condition for blow up of a system of ordinary differential
equations, finally in Section 3 we prove the main result and its corollary.

2. Existence of local solution

The existence of local solutions for the weakly coupled system (1.2) follows form
the fix-point theorem of Banach. We begin introducing some normed linear spaces.
By L∞(Rd) we denote the space of all real-valued functions essentially bounded
defined on Rd. Let τ > 0 be a real number that we will fix later. Define

Eτ = {(u1, u2) : [0, τ ]→ L∞(Rd)× L∞(Rd), |||(u1, u2)||| <∞},
where

|||(u1, u2)||| = sup
0≤t≤τ

{‖u1(t)‖∞ + ‖u2(t)‖∞}.

Then Eτ is a Banach space and the sets, R > 0,

Pτ = {(u1, u2) ∈ Eτ , u1 ≥ 0, u2 ≥ 0},
Bτ = {(u1, u2) ∈ Eτ , |||(u1, u2)||| ≤ R},

are closed subspaces of Eτ .

Theorem 2.1. There exists a τ = τ(ϕ1, ϕ2) > 0 such that the integral system (1.2)
has a local solution in Bτ ∩ Pτ .
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Proof. Define the operator Ψ : Bτ ∩ Pτ → Bτ ∩ Pτ , by

Ψ(u1, u2)(t, x)

=
(∫

Rd

p1(G1(t), y − x)ϕ1(y)dy,
∫

Rd

p2(G2(t), y − x)ϕ2(y)dy
)

+
(∫ t

0

∫
Rd

p1(G1(s, t), y − x)h1(s)uβ1
2 (s, y) dy ds,∫ t

0

∫
Rd

p2(G2(s, t), y − x)h2(s)uβ2
1 (s, y) dy ds

)
.

We choose R sufficiently large such that Ψ is onto Bτ ∩ Pτ . We are going to show
that Ψ is a contraction, therefore Ψ has a fix point. Let (u1, u2), (ũ1, ũ2) ∈ Bτ ∩Pτ
with ui(0) = ũi(0),

|||Ψ(u1, u2)−Ψ(ũ1, ũ2)|||

= |||
(∫ t

0

∫
Rd

p1(G1(s, t), y − x)h1(s)[uβ1
2 (s, y)− ũβ1

2 (s, y)] dy ds,∫ t

0

∫
Rd

p2(G2(s, t), y − x)h2(s)[uβ2
1 (s, y)− ũβ2

1 (s, y)] dy ds
)
|||

≤
2∑
i=1

sup
t∈[0,τ ]

∫ t

0

∫
Rd

pi(Gi(s, t), y − x)hi(s)‖uβi

j (s)− ũβi

j (s)‖∞ dy ds.

Let w, z > 0 and p ≥ 1, then

|wp − zp| ≤ p(w ∨ z)p−1|w − z|.
Using the previous elementary inequality we obtain

|uβi

j (s, x)− ũβi

j (s, x)| ≤ βi(uj(s, x) ∨ ũj(s, x))βi−1|uj(s, x)− ũj(s, x)|

≤ βiRβi−1‖uj − ũj‖∞,

from this we deduce

|||Ψ(u1, u2)−Ψ(ũ1, ũ2)||| ≤
2∑
i=1

sup
t∈[0,τ ]

∫ t

0

hi(s)βiRβi−1‖ui(s)− ũi(s)‖∞ds

≤ (
2∑
i=1

βiR
βi−1

∫ τ

0

hi(s)ds)|||(u1, u2)− (ũ1, ũ2)|||.

Since limt→0

∫ t
0
hi(s)ds = 0 , we can choose τ > 0 small enough such that Ψ is a

contraction. �

3. Preliminary results

Lemma 3.1. For any s, t > 0 and any x, y ∈ Rd, we have
(i) pi(ts, x) = t−d/αipi(s, t−1/αix).

(ii) pi(t, x) ≥ ( st )
d/αipi(s, x), for t ≥ s.

(iii) pi(t, 1
τ (x− y)) ≥ pi(t, x)pi(t, y), if pi(t, 0) ≤ 1 and τ ≥ 2.

(iv) There exist constants ci ∈ (0, 1] such that

pi(t, x) ≥ cipb(tαb/αi , x), (3.1)

where b is as in (1.4).
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For the proof of (i)-(iii) see [14, Section 2], and for (iv) see [7, Lemma 2.4].

Lemma 3.2. Let ui be a positive solution of (1.2), then

ui(t0, x) ≥ ci(t0)pb
(
2−αbGi(t0)αb/αi , x

)
, ∀x ∈ Rd, (3.2)

where

ci(t0) = ci2−d
∫

Rd

pb
(
Gi(t0)αb/αi , 2y

)
ϕi(y)dy

and t0 > 1 is large enough such that

pb(Gi(t0)αb/αi , 0) ≤ 1. (3.3)

Proof. By (i) of Lemma 3.1 and (1.3) there exist t0 large enough such that

pb
(
Gi(t0)αb/αi , 0

)
= Gi(t0)−d/αipb(1, 0) ≤ 1. (3.4)

Using (iii) and (i) of Lemma 3.1, we obtain

pb
(
Gi(t0)αb/αi , y − x

)
≥ pb

(
Gi(t0)αb/αi , 2x

)
pb(Gi(t0)αb/αi , 2y)

= 2−dpb
(
2−αbGi(t0)αb/αi , x

)
pb(Gi(t0)αb/αi , 2y).

From (1.2), (iv) of Lemma 3.1 and the previous inequality we conclude

ui(t0, x) ≥ (ci2−d
∫

Rd

pb(Gi(t0)αb/αi , 2y)ϕi(y)dy)pb(2−αbGi(t0)αb/αi , x).

Getting the desired result. �

Observe that the semigroup property implies

ui(t+ t0, x)

=
∫

Rd

pi(Gi(t0, t+ t0), y − x)ui(t0, y)dy

+
∫ t

0

∫
Rd

pi(Gi(s+ t0, t+ t0), y − x)hi(s+ t0)uβi

j (s+ t0, y) dy ds.

(3.5)

Let

ūi(t) =
∫

Rd

pb(Gb(t), x)ui(t, x)dx, t ≥ 0. (3.6)

Lemma 3.3. If ui blow up in finite time, then ui also does.

Proof. Let t0 be given in Lemma 3.1. Take t0 < tj < ∞ the explosion time of uj .
From (1.3) we can choose t > tj large enough such that

Gi(tj + t0, t+ t0) > 2αiGb(tj + t0)αi/αb .

Thus, for each 0 ≤ s ≤ tj ,∫ t+t0

s+t0

gi(r)dr ≥
∫ t+t0

tj+t0

gi(r)dr

> 2αi

(∫ tj+t0

0

gb(r)dr
)αi/αb

≥ 2αi

(∫ s+t0

0

gb(r)dr
)αi/αb

,
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hence

τi =
Gi(s+ t0, t+ t0)1/αi

Gb(s+ t0)1/αb
≥ 2.

On the other hand, (3.4) implies

pb(Gb(s+ t0), 0) ≤ pb(Gb(t0), 0) = Gb(t0)−d/αbpb(1, 0) ≤ 1.

Using (i) and (iii) of Lemma 3.1 we obtain

pb(Gi(s+ t0, t+ t0)αb/αi , y − x) = τ−di pb(Gb(s+ t0),
1
τi

(y − x))

≥ τ−di pb(Gb(s+ t0), x)pb(Gb(s+ t0), y).

From (3.5), (iv) of Lemma 3.1 and Jensen’s inequality we deduce that

ui(t+ t0, x)

≥ ci
∫ tj

0

hi(s+ t0)
∫

Rd

pb
(
Gi(s+ t0, t+ t0)αb/αi , y − x

)
uj(s+ t0, y)βi dy ds

≥ ci
∫ tj

0

τ−di hi(s+ t0)pb(Gb(s+ t0), x)uj(s+ t0)βids.

Then ui(t+ t0, x) =∞. The definition (3.6) of ui implies that ui blows up in finite
time, and working as before we conclude that uj also blows up in finite time. �

In what follows by c we mean a positive constant that may change from place
to place. The following result is interesting in itself.

Proposition 3.4. Let vi, fi : [t0,∞)→ R be continuous functions such that

vi(t) ≥ k + k

∫ t

t0

fi(s)vj(s)βids, t ≥ t0,

where k > 0 is a constant. Then vi blow up in finite time if∫ ∞
t0

(
fi(s)1/(βi+1)fj(s)1/(βj+1)

)(βi+1)(βj+1)/(βi+βj+2)

ds =∞.

Proof. Consider the system

zi(t) =
k

2
+ k

∫ t

t0

fi(s)zj(s)βids, t ≥ t0. (3.7)

Let Ni = {t > t0 : zi(s) < vi(s),∀s ∈ [0, t]}. It is clear that Ni 6= ∅. Let ei = supNi.
Without loss of generality suppose that ei ≥ ej . If ei < ∞, then the continuity of
vj − zj , yields

0 = (vj − zj)(ej) ≥
k

2
+ k

∫ ej

t0

fj(s)[vi(s)βj − zi(s)βj ]ds ≥ k

2
.

Therefore, zi(t) ≤ vi(t) for each t ≥ t0. Define

Z(t) = log zi(t)zj(t), t ≥ t0. (3.8)

Then, by (3.7),

Z ′(t) =
fi(t)zj(t)βi

zi(t)
+
fi(t)zi(t)βj

zj(t)

=
(fi(t)1/(βi+1)zj(t))βi+1 + (fj(t)1/(βj+1)zi(t))βj+1

zi(t)zj(t)
.
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From [12, Proposition 1, p.259] we see that for each x, y > 0,

yβi+1 + xβj+1 ≥ c(xy)(βi+1)(βj+1)/(βi+βj+2).

Using this and (3.8) we obtain

Z ′(t) ≥ c
(
fi(t)1/(βi+1)fj(t)1/(βj+1)

)(βi+1)(βj+1)/(βi+βj+2)

×
(
zi(t)zj(t)

)(βiβi−1)/(βi+βj+2)

= cF (t) exp(
βiβi − 1

βi + βj + 2
Z(t)),

where F is like (1.7). Consider the equation

H ′(t) = cF (t) exp(cH(t)), t > t0, H(t0) = 2 log
k

2
.

whose solution is

H(t) = log
(
e−cH(t0) − c2

∫ t

t0

F (s)ds
)−1/c

.

Since H ≤ Z then the result follows from (1.6). �

4. Blow up results

Proof of Theorem 1.1. From (3.5) and (3.1),

ui(t+ t0, x)

≥
∫

Rd

cipb(Gi(t0, t+ t0)αb/αi , y − x)ui(t0, y)dy

+
∫ t

0

hi(s+ t0)
∫

Rd

cipb(Gi(s+ t0, t+ t0)αb/αi , y − x)uβi

j (s+ t0, y) dy ds.

Multiplying by pb(Gb(t+ t0), x) and integrating with respect to x we obtain

ūi(t+ t0) ≥ ci
∫

Rd

pb(Gi(t0, t+ t0)αb/αi +Gb(t+ t0), y)ui(t0, y)dy

+ ci

∫ t

0

hi(s+ t0)
∫

Rd

pb(Gi(s+ t0, t+ t0)αb/αi +Gb(t+ t0), y)

× uβi

j (s+ t0, y) dy ds.

The property (ii) of Lemma 3.1 and Jensen’s inequality, rendering

ūi(t+ t0) ≥ ci
∫

Rd

pb

(
Gi(t0, t+ t0)αb/αi +Gb(t+ t0), y

)
ui(t0, y)dy

+ ci

∫ t

0

(
Gb(s+ t0)

Gi(s+ t0, t+ t0)αb/αi +Gb(t+ t0)
)d/αb

× hi(s+ t0)(ūj(s+ t0))βids.

Moreover, (3.2) and that Gi(s, ·) is increasing implies

ūi(t+ t0) ≥ cici(t0)pb(1, 0)(2Gi(t+ t0)αb/αi + 2Gb(t+ t0))−d/αb

+ ci

∫ t

0

hi(s+ t0)(
Gb(s+ t0)

2Gi(t+ t0)αb/αi + 2Gb(t+ t0)
)d/αb(ūj(s+ t0))βids.
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Let
vi(t+ t0) = ūi(t+ t0)(Gi(t+ t0)αb/αi +Gb(t+ t0))d/αb ,

then

vi(t+ t0) ≥ c+ c

∫ t

0

fi(s+ t0)vj(s+ t0)βids,

where fi is defined in (1.5). The result follows from Proposition 3.4 and Lemma
3.3. �

Proof of Corollary 1.2. Let

fi(t) =
tσi+dρb/αb

(tρjαb/αj + tρb)dβi/αb
,

then

F (t) =
tθ1

(tθ2 + tθ3)θ4(tθ5 + tθ3)θ6
where

θ1 =
dρb
αb

+
σi(1 + βj) + σj(1 + βi)

2 + βi + βj
,

θ2 =
ρjαb
αj

, θ3 = ρb, θ4 =
dβi(βj + 1)

αb(2 + βi + βj)
,

θ5 =
ρiαb
αi

, θ6 =
dβj(βi + 1)

αb(2 + βi + βj)
.

Using the elementary inequality

(tθ2 + tθ3)θ4(tθ5 + tθ3)θ6 ≤ (2tmax{θ2,θ3})θ4(2tmax{θ5,θ3})θ6 , t > 1,

the result follows. �
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