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PERSISTENCE AND EXTINCTION IN STOCHASTIC SIRS
MODELS WITH GENERAL NONLINEAR INCIDENCE RATE

YANLI ZHOU, WEIGUO ZHANG, SANLING YUAN, HONGXIAO HU

Abstract. In this article, a SIRS epidemic model with general nonlinear inci-

dence rate is proposed and investigated. We briefly discuss the global stability
of the deterministic system by using Lyapunov function. For the stochastic

version, the global existence and positivity of the solution are studied, and the

global stability in probability and pth-moment of the system are proved under
suitable assumptions on the white noise perturbations. Furthermore, the suffi-

cient conditions for the persistence and extinction of the disease are obtained.

Finally, the theoretical results are illustrated by numerical simulations.

1. Introduction

In this article we shall consider the stochastic differential system

dS = (b− βSI

1 + αIh
− dS + γR)dt− σ SI

1 + αIh
dB(t),

dI = [
βSI

1 + αIh
− (d+ µ+ η)I]dt+ σ

SI

1 + αIh
dB(t),

dR = [µI − (d+ γ)R]dt,

(1.1)

as a stochastically perturbed system of the ordinary deterministic system

Ṡ = b− βSI

1 + αIh
− dS + γR,

İ =
βSI

1 + αIh
− (d+ η + µ)I,

Ṙ = µI − (d+ γ)R,

(1.2)

where S(t) + I(t) + R(t) ≡ N(t), denotes the total number of a population at
time t; S(t), I(t) and R(t) denote the numbers of the population susceptible to the
disease, of the infective members, and of the members who have been removed from
the possibility of infection through full immunity, respectively. It is assumed that all
newborns are susceptible. The assumptions on system (1.2): b is the recruitment
rate of the population; β is the daily contact rate, i.e., the average number of
contacts per infective per day. The contact of an infective is an interaction which
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results in infection of the other individual if it is susceptible; d the natural death
rates, η the additional disease-caused rate suffered by the infectious individuals and
µ is the daily recovery rate of infective individuals; γ is the rate at which recovered
individuals lose immunity and return to the susceptible class and α, h are positive
parameters. Of course, b, β, d, η, µ, γ ∈ R+.

In the past the classical infectious disease model with bilinear incidence βSI is
often used. But in the actual incidence S and I may not be linear relationship. The
nonlinear incidence rate g(I) = βI

(1+αI) was used by Capasso and Serio [6] in their
modeling of cholera. Then, Liu, Levin and Iwasa introduced a more general nonlin-
ear rate g(I) = βIq

(1+αIh)
(h ≥ 1) into epidemic models [15], where βIq measures the

infection fore of the disease and 1
(1+αIh)

measures the inhibition effect from the be-
havioral change of the susceptible individuals when their number increases or from
the crowding effect of the infective individuals. This incidence rate seems more
reasonable than the bilinear incidence rate βSI, because it includes the behavioral
change and crowding effect of the infective individuals and prevents the unbound-
edness of the contact rate by choosing suitable parameters. A variety of nonlinear
incidence rates have been used in the literatures [8, 9, 13, 16, 19, 21, 23, 22, 25].

These important and useful studies on deterministic models provide a great
insight into the effect of epidemic models. As a matter of fact, the epidemic models
are often subject to environmental noise, i.e., due to environmental fluctuation,
parameters involved in epidemic models are not absolutely constant, and they may
fluctuate around some average values. Based on these factors, more and more
people investigated stochastic epidemic system [3, 5, 7, 10, 11, 12, 20, 24, 26].

Taking into account the effect of randomly environment, we incorporate white
noise in system (1.2), by replacing the contact rate β in system (1.2) by β + σḂ,
where Ḃ is a white noise (i.e., B(t) is a Brownian motion) and σ represent the
intensity of the white noise. Therefore, system (1.2) can be described by stochastic
system (1.1).

This paper is organized as follows: for system (1.2), we firstly consider the global
stability of the equilibrium by means of constructing suitable Lyapunov functions.
In section 3.1, we prove the existence, uniqueness and positivity of the solution of
the stochastic system (1.1). In section 3.2, we show pth-moment exponential sta-
bility and almost surely exponential stability of the disease-free equilibrium under
certain conditions. In section 3.3, we obtain that stochastic system is stochastically
permanent and persistence in mean. In section 3.4, we discuss the stochastic extinc-
tion of system (1.1). Finally, we perform some numerical simulations to compare
the dynamic behaviors of stochastic system (1.2) and deterministic system (1.1).

2. Global stability of (1.2)

For system (1.2), the basic reproduction number R0 = βb
d(d+η+µ) is the threshold

of the system for an epidemic to occur. It is easy, by simple computations, to
conclude that system (1.2) has two equilibrium states. If R0 ≤ 1, system (1.2) has
only a disease-free equilibrium P 0 = ( bd , 0, 0), which is globally asymptotical stable.
That is to say, the disease will disappear and the entire population will become sus-
ceptible. If R0 > 1, P 0 becomes unstable and there is a unique positive equilibrium
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P ∗ = (S∗, I∗, R∗), which is called the endemic equilibrium and determined by

S∗ =
b− (d+ η + µ)I∗

d
and R∗ =

µ

d
I∗,

where
αd(d+ µ+ η)(d+ γ)(I∗)h + β[d(d+ γ)(d+ η) + dµ]I∗

+ (d+ γ)[d(d+ µ+ η)− bβ] = 0.
(2.1)

Through calculation, we can prove the equation (2.1) has only a positive root I∗ if
and only if d(d+ µ+ η)− bβ < 0.

The objectives of this section are to prove the global stability of the disease-free
equilibrium and endemic equilibrium. It is easy to see that

Γ = {(S, I,R) : S ≥ 0, I ≥ 0, R ≥ 0, S + I +R ≤ b

d
}

is a positive invariant set of system (1.2).

Theorem 2.1. When R0 ≤ 1, the disease-free equilibrium P 0 is globally asymptot-
ically stable in Γ.

Proof. Define a Lyapunov function

V (t) = I(t).

Then the derivative of V along the positive solution of system (1.2), we obtain

V̇ |(1.2) = İ =
βSI

1 + αIh
− (d+ η + µ)I.

Notice that 1 + αIh > 1, S + I +R < b
d and R0 ≤ 1, from the above, we have that

V̇ |(1.2) ≤ [
βb

d
− (d+ η + µ)]I = (d+ η + µ)(R0 − 1)I ≤ 0.

Thus, the disease-free equilibrium P 0 is globally asymptotically stable. �

Theorem 2.2. Whenever R0 > 1, the unique endemic equilibrium P ∗ is globally
asymptotically stable in Γ.

Proof. Through summing the equations of system (1.2), we obtain that the total
population size verifies the equation,

Ṅ = b− dN − ηI. (2.2)

It is convenient to choose the variable (N, I,R) instead of (S, I,R). Then, we
consider the system

Ṅ = b− dN − ηI,

İ =
β(N − I −R)I

1 + αIh
− (d+ η + µ)I,

Ṙ = µI − (d+ γ)R.

(2.3)

So the endemic equilibrium P ∗(S∗, I∗, R∗) of system (1.2) corresponds to the en-
demic equilibrium P̃ ∗(N∗, I∗, R∗) of system (2.3). In order to simplify the expres-
sions, we define

f(I) = 1 + αIh.
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So system (2.3) becomes

Ṅ = −d(N −N∗)− η(I − I∗),

İ =
[ (N −N∗)− (R−R∗)

f(I∗)
− (N − I −R)[f(I)− f(I∗)]

f(I)f(I∗)
]
βI +

(I − I∗)f(I)
f(I)f(I∗)

βI,

Ṙ = µ(I − I∗)− (d+ γ)(R−R∗).
(2.4)

Let us consider the function

V (I,R,N) =
1
β

(I − I∗ − I∗ ln
I

I∗
) +

(R−R∗)2

2µf(I∗)
+

(N −N∗)2

2ηf(I∗)
.

Then the derivative of V along the solution of (2.4) is

V̇ |(2.4) = − (d+ γ)(R−R∗)2

µf(I∗)
− d(N −N∗)2

ηf(I∗)
− (I − I∗)2

f(I∗)

− (N − I −R)(I − I∗)[f(I)− f(I∗)]
f(I)f(I∗)

.

It is clear that f ′(I) > 0, so (I − I∗)(f(I) − f(I∗)) > 0. Obviously, V is positive
definite and V̇ is negative definite. Therefore the function V is a Lyapunov function
for system (2.4) and consequently, by Lyapunov asymptotic stability theorem [17],
the equilibrium state P ∗ is globally asymptotically stable. �

3. Stochastic SIRS model

In this paper, unless otherwise specified, we let (Ω,F , {Ft}t≥0, P ) be a complete
probability space with a filtration satisfying the usual conditions (i.e., it is right
continuous and F0 contains all P-null sets). Let B(t) be the Brownian motion
defined on this probability space. Denote

Rn+ = {x ∈ Rn : xi > 0 for all 1 ≤ i ≤ n}.

In general, consider the n-dimensional stochastic differential equation [11]

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t), for t ≥ t0. (3.1)

Denote by C2,1(Rn × [t0,∞); R+) the family of all nonnegative functions V (x, t)
defined on Rn × [t0,∞) such that they are continuously twice differentiable in x
and once in t. Define the differential operator L associated with (3.1) by

L =
∂

∂t
+

n∑
i=1

fi(x, t)
∂

∂xi
+

1
2

n∑
i,j=1

[gT (x, t)g(x, t)]ij
∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1(Rn × [t0,∞); R+), then

LV (x(t), t) = Vt(x, t) + Vx(x, t)f(x, t) +
1
2

trace[gT (x, t)Vxx(x, t)g(x, t)],

where Vt = ∂V
∂t , Vx = ( ∂V∂x1

, · · ·, ∂V∂xn
) and Vxx = ( ∂2V

∂xixj
)n×n. By Itô formula,

dV (x(t), t) = LV (x(t), t)dt+ Vx(x(t))g(x(t), t)dB(t).
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3.1. Positive and global solutions.

Theorem 3.1. For any given initial condition (S(0), I(0), R(0)) ∈ Γ, there is a
unique positive solution (S(t), I(t), R(t)) to (1.1) on t ≥ 0, and the solution will
remain in Γ with probability one. Namely, (S(t), I(t), R(t)) ∈ Γ for all t ≥ 0 almost
surely.

Proof. Let (S(0), I(0), R(0)) ∈ Γ. Obviously, since the coefficients of system (1.1)
are locally Lipschitz continuous, for any given initial value (S(0), I(0), R(0)) ∈ Γ,
there is a unique local solution (S(t), I(t), R(t)) on t ∈ [0, τe), where τe is the
explosion time. First, we show S(t) + I(t) + R(t) ≤ b

d for all t ∈ [0, τe]. The total
population in system (1.1) verifies the equation

dN(t) = [b− dN − ηI]dt ≤ [b− dN ]dt. (3.2)

Assume X(t) is the solution of differential equation

dX(t) = (b− dX(t))dt,

X(0) = N(0),

where N(0) = S(0) + I(0) +R(0). By comparison theorem, we obtain

N(t) ≤ X(t) ≤ b

d
, t ∈ [0, τe) a.s. (3.3)

Next, we show the solution is global, we have only to prove that τe =∞ a.s. We
consider an integer k0 > 0 sufficiently large such that (S(0), I(0), R(0)) ∈ [ 1

k0
, k0]3.

For each integer k > k0 we define the stopping time

τk = inf{t ∈ [0, τe) : S(t) 6∈ (
1
k
, k), I(t) 6∈ (

1
k
, k) or R(t) 6∈ (

1
k
, k)}, (3.4)

where throughout this paper we set inf ∅ =∞ (as usual ∅ denotes the empty set).
Obviously, τk is increasing as k → ∞. Set τ∞ = limt→∞τk, whence τ∞ ≤ τe a.s.
If we can show that τ∞ = ∞ a.s. then τe = ∞ a.s. and (S(t), I(t), R(t)) ∈ Γ a.s.
for all t ≥ 0. So we need only to prove that τ∞ =∞ a.s. If this statement is false,
there are two constants ε ∈ (0, 1) and T > 0 such that

P{τ∞ ≤ T} > ε. (3.5)

Hence, there is an integer k1 ≥ k0 such that

P{τk ≤ T} ≥ ε, for any k > k1.

Consider the function V (S(t), I(t), R(t)) defined for (S(t), I(t), R(t)) ∈ Γ by

V (S(t), I(t), R(t)) = − ln
dS

b
− ln

dI

b
− ln

dR

b
.

Using Itô formula,

dV = LV dt+
σ(I − S)
1 + αIh

dB(t),

where

LV = −b+ γR

S
+ d+

βI

1 + αIh
− βS

1 + αIh
+ d+ η+ µ− µI

R
+ d+ γ +

σ2(I2 + S2)
2(1 + αIh)2

.

By (3.3), we obtain

LV ≤ 3d+ η + µ+ γ + β
b

d
+ σ2(

b

d
)2 =: K.
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Therefore, we obtain

dV ≤ Kdt+
σ(I − S)
1 + αIh

dB(t). (3.6)

By integrating both sides of (3.6) from 0 to τk ∧T and then taking the expectation
of both sides, it yields

E[V (S(τk ∧ T ), I(τk ∧ T ), R(τk ∧ T ))] ≤ V (S(0), I(0), R(0)) +KT.

Let Ωk = {τk ≤ T}, then P (Ωk) ≥ ε. Note that for every ω ∈ Ωk, there is at least
S(τk, ω), I(τk, ω), R(τk, ω) equals k or 1

k , since

− ln
d

bk
= − ln

dk

b
· 1
k2

= − ln
dk

b
+ 2 ln k ≥ − ln

dk

b
, (k > k0 ≥ 1),

so

V (S(τk, ω), I(τk, ω), R(τk, ω)) ≥ − ln
dk

b
∧ − ln

d

bk
≥ − ln

dk

b
.

It then follows that

V (S(0), I(0), R(0)) +KT ≥ E[IΩk
(ω)V (S(τk ∧ T ), I(τk ∧ T ), R(τk ∧ T ))]

= E[IΩk
(ω)V (S(τk, ω), I(τk, ω), R(τk, ω))]

≥ E[−IΩk
(ω) ln

dk

b
]

= − ln
dk

b
E[IΩk

(ω)]

≥ −ε ln
dk

b
,

where IΩk
(ω) is the indicator function of Ωk(ω). Letting k → ∞, it leads to the

contradiction
∞ > V (S(0), I(0), R(0)) +KT =∞,

so we have τe =∞ a.s., which completes the proof. �

3.2. Behavior of (1.1) when R0 < 1. For the deterministic SIRS system (1.2),
we prove that P 0 = ( bd , 0, 0) is the disease-free equilibrium and it is globally stable
if R0 = bβ

d(d+η+µ) ≤ 1. Notice that P 0 = ( bd , 0, 0) is also the disease-free equilibrium
for the stochastic system (1.1). In this section, we present the following theorem
which gives some conditions for the pth-moment exponential stability of the disease-
free equilibrium of stochastic system (1.1) in terms of Lyapunov function [1].

Moment exponential stability.

Lemma 3.2. Let p, c1, c2 and c3 be positive numbers. Suppose that there exists a
function V (t, x) ∈ C1,2(R+,Rn) such that

c1|x|p ≤ V (t, x) ≤ c2|x|p,

and
LV (t, x) ≤ −c3|x|p, t ≥ 0,

the equilibrium of system (3.1) is pth-moment exponentially stable. When p = 2, it
is usually said to be mean square exponentially stable and the equilibrium x = 0 is
globally asymptotically stable.
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Lemma 3.3. Set p ≥ 2 and ε, x, y > 0. Then

xp−1y ≤ (p− 1)ε
p

xp +
1

pεp−1
yp and xp−2y2 ≤ (p− 2)ε

p
xp +

2

pε
p−2
2

yp.

This lemma can be proved easily by using the elementary inequality

uqv1−q ≤ qu+ (1− q)v, 0 < q < 1,

so we omit its proof.

Theorem 3.4. Set p ≥ 2. If R0 ≤ 1 and 1
2 (p − 1)σ2( bd )2 < (d + µ + η)(1 − R0)

hold, the disease-free equilibrium P 0 of system (1.1) is pth-moment exponentially
stable in Γ.

Proof. Set p ≥ 2 and (S(0), I(0), R(0)) ∈ Γ, in view of Theorem 3.1 the solution of
system (1.1) remains in Γ. Considering the Lyapunov function

V = (
b

d
− S)p +

1
p
Ip +Rp,

by Itô formula, we obtain

dV = LV dt+ pσ(
b

d
− S)p−1 SI

1 + αIh
dB +

pσSIp

1 + αIh
dB,

where

LV = −pd(
b

d
− S)p + pβ(

b

d
− S)p−1 SI

1 + αIh
− pγ(

b

d
− S)p−1R

+ p(p− 1)(
b

d
− S)p−2 σ2S2I2

2(1 + αIh)2
− (d+ η + µ)Ip +

βSIp

1 + αIh

+ (p− 1)
σ2S2Ip

2(1 + αIh)2
+ pµIRp−1 − p(d+ γ)Rp.

In view of Theorem 3.1, we have max{S, I,R} ≤ b
d , hence

LV ≤ −pd(
b

d
− S)p +

b

d
pβI(

b

d
− S)p−1

+
p(p− 1)

2
σ2(

b

d
)2I2(

b

d
− S)p−2 − (d+ η + µ)Ip +

b

d
βIp

+
(p− 1)

2
σ2(

b

d
)2Ip + pµIRp−1 − p(d+ γ)Rp.

Simplifying the above, we obtain

LV ≤ −pd(
b

d
− S)p − [p(d+ η + µ)− b

d
pβ − p(p− 1)

2
σ2(

b

d
)2]Ip − p(d+ γ)Rp

+
b

d
pβI(

b

d
− S)p−1 +

p(p− 1)
2

σ2(
b

d
)2I2(

b

d
− S)p−2 + pµIRp−1.

Using Lemma 3.3, for any ε > 0, we obtain

(
b

d
− S)p−1I ≤ (p− 1)ε

p
(
b

d
− S)p +

1
pεp−1

Ip,

Rp−1I ≤ (p− 1)ε
p

Rp +
1

pεp−1
Ip,

I2(
b

d
− S)p−2 ≤ (p− 2)ε

p
(
b

d
− S)p +

2

pε
p−1
2

Ip.
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Substituting these three inequalities in the above inequality, we obtain

LV ≤ −[pd− (
(p− 1)(p− 2)

2
σ2(

b

d
)2 + β

b

d
(p− 1))ε](

b

d
− S)p

− [p(d+ γ)− µ(p− 1)ε]Rp − [(d+ η + µ)(1−R0)− (p− 1)
2

σ2(
b

d
)2

− β b
d
ε1−p − (p− 1)σ2(

b

d
)2ε

2−p
p − µε1−p]Ip.

We choose ε sufficiently small such that the coefficients of ( bd − S)p and Rp be
negative, and since (d+η+µ)(1−R0)− (p−1)

2 σ2( bd )2 > 0, the coefficient of Ip must
be negative. According to Lemma 3.2, the proof is complete. �

Remark 3.5. From Lemma 3.2, Theorem 3.4 and the case p = 2, we get that if
the conditions R0 < 1 and 1

2σ
2( bd )2 < (d+ η+ µ)(1−R0) hold, the disease-free P 0

of system (1.1) is globally asymptotically stable in Γ.

Almost sure exponential stability.

Theorem 3.6. If 1
2β

2 < dσ2 hold, then the disease-free equilibrium P 0 of system
(1.1) is almost sure exponential stable in Γ.

Proof. The proof is similar to [14]. In view of Theorem 3.1, we define the function

V = ln[(
b

d
− S) + I +R].

With the multi-dimensional Itô formula, we obtain

dV =
1

b
d − S + I +R

[−b+
2βSI

1 + αIh
+ dS − (d+ 2γ)R

− (d+ η)I − 2σ2S2I2

( bd − S + I +R)2(1 + αIh)2
]dt

+
2σSI

( bd − S + I +R)(1 + αIh)
dB(t).

Set U = SI
( b

d−S+I+R)(1+αIh)
, from the above equation, we obtain

dV = [−2σ2U2 + 2βU −
d( bd − S) + (d+ η)I + (d+ 2γ)R

b
d − S + I +R

]dt+ 2σUdB(t)

≤ [−2σ2U2 + 2βU − d]dt+ 2σUdB(t)

≤ β2 − 2dσ2

2σ2
dt+ 2σUdB(t),

namely,

dV ≤ β2 − 2dσ2

2σ2
dt+ 2σUdB(t). (3.7)

Integrating both sides from 0 to t, we have

ln[(
b

d
−S)+I+R] ≤ ln[(

b

d
−S(0))+I(0)+R(0)]+

β2 − 2dσ2

2σ2
t+
∫

0

t

2σUdB(t). (3.8)
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Let M(t) =
∫

0

t2σUdB(t). Obviously, M(t) is continuous local martingale and
M(0) = 0. Furthermore,

lim sup
t→∞

〈M,M〉t
t

≤ 4σ2(
b

d
)2 <∞.

By the strong law of large numbers [18, 2], we obtain

lim
t→∞

M(t)
t

= 0 (3.9)

Under the condition 1
2β

2 < dσ2 and it follows from (3.8) and (3.9) that

lim sup
t→∞

1
t

ln[(
b

d
− S) + I +R] ≤ β2 − 2dσ2

2σ2
< 0

This completes the proof. �

Remark 3.7. It is easy to see that if h = 1, then Theorems 3.4 and 3.6 become
Theorem 4 and Theorem 5 in [14]. For detailed information of the asymptotic
behavior, we refer the reader to see [14].

3.3. Behavior of (1.1) when R0 > 1. There is the endemic equilibrium P ∗ of
system (1.2), but not the endemic equilibrium P ∗ of system (1.1). Because system
(1.1) does not have the endemic equilibrium, we wish to find out whether or not
the solution goes around P ∗.

Asymptotic behavior around the positive equilibrium P ∗. In this section,
we will investigate whether or not the solution goes around P ∗. The following
results give a positive answer.

Theorem 3.8. If 2d − γ > 0 and 2d − µ > 0, for any positive initial value
(S(0), I(0), R(0)), the solution (S(t), I(t), R(t)) of system (1.1) satisfies

lim sup
t→∞

1
t

∫ t

0

[(S − S∗)2 + (I − I∗)2 + (R−R∗)2]ds

≤
( bd )2σ2(2d+ η + µ)(1 + αI∗h)I∗

mβ
,

where m = min{2d− γ, 2d− µ} > 0.

Proof. Define a C2-function

V (S, I,R) = V1 +
2(2d+ η + µ)(1 + αI∗h)

β
V2 + V3,

where

V1 = (S − S∗ + I − I∗)2, V2 = (I − I∗ − I∗ ln I
I∗

), V3 = (R−R∗)2.

Obviously, V1, V2 and V3 are positive definite. By Itô formula, we compute

dV1 = LV1dt,

dV2 = LV2dt+
σS(I − I∗)

1 + αIh
dB,

dV3 = LV3dt,

dV = dV1 +
2(2d+ η + µ)(1 + αI∗h)

β
dV2 + dV3.
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In detail,

LV1 = 2(S − S∗ + I − I∗)[b− dS + γR− (d+ η + µ)I]

= 2(S − S∗ + I − I∗)[dS∗ − dS + (d+ η + µ)I∗ − γR∗ + γR− (d+ η + µ)I]

= 2(S − S∗ + I − I∗)[−d(S − S∗)− (d+ η + µ)(I − I∗) + γ(R−R∗)]
= −2d(S − S∗)2 − 2(d+ η + µ)(I − I∗)2 − 2(2d+ η + µ)(S − S∗)(I − I∗)
+ 2γ(R−R∗)(S − S∗) + 2γ(R−R∗)(I − I∗)

(3.10)
and

LV2 = (I − I∗)β(
S

1 + αIh
− S∗

1 + αI∗h
) +

I∗σ2S2

2(1 + αIh)2

= (I − I∗)β(
S

1 + αIh
− S

1 + αI∗h
+

S

1 + αI∗h
− S∗

1 + αI∗h
) +

I∗σ2S2

2(1 + αIh)2

=
β

1 + αI∗h
(S − S∗)(I − I∗) + βαS

(I − I∗)(I∗h − Ih)
(1 + αIh)(1 + αI∗h)

+
I∗σ2S2

2(1 + αIh)2

≤ β(S − S∗)(I − I∗)
1 + αI∗h

+
I∗σ2

2
(
b

d
)2.

(3.11)
Next, we calculate

LV3 = 2(R−R∗)[µI − (d+ γ)R]

= 2(R−R∗)[−(d+ γ)(R−R∗) + µ(I − I∗)]
= −2(d+ γ)(R−R∗)2 + 2µ(R−R∗)(I − I∗).

(3.12)

It follows from (3.10), (3.11) and (3.12) that

LV ≤ −2d(S − S∗)2 − 2(d+ η + µ)(I − I∗)2 − 2(2d+ η + µ)(S − S∗)(I − I∗)

+ 2γ(R−R∗)(S − S∗) + 2γ(R−R∗)(I − I∗) +
2(2d+ η + µ)(1 + αI∗h)

β

× [
β

1 + αI∗h
(S − S∗)(I − I∗) +

I∗σ2S2

2
]− 2(d+ γ)(R−R∗)2

+ 2µ(R−R∗)(I − I∗).

Since 2ab ≤ a2 + b2, we have

2(R−R∗)(I − I∗) ≤ (R−R∗)2 + (I − I∗)2,

2(S − S∗)(R−R∗) ≤ (S − S∗)2 + (R−R∗)2.

The, we have

LV ≤ −(2d− γ)(S − S∗)2 − [2(d+ η) + µ− γ](I − I∗)2

− (2d− µ)(R−R∗)2 +
I∗σ2( bd )2(2d+ η + µ)(1 + αI∗h)

β
.

Substituting these inequalities into dV , we obtain

dV ≤ −m[(S − S∗)2 + (I − I∗)2 + (R−R∗)2]dt

+
I∗σ2( bd )2(2d+ η + µ)(1 + αI∗h)

β
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+
2(2d+ η + µ)(1 + αI∗h)σS(I − I∗)

β(1 + αIh)
dB(t),

where m = min{2d− γ, 2d− µ} > 0. This implies

V (t)− V (0) ≤
∫

0

t

LV ds+M(t)

≤
∫

0

t

{−m[(S − S∗)2 + (I − I∗)2 + (R−R∗)2]

+
I∗σ2( bd )2(2d+ η + µ)(1 + αI∗h)

β
}ds+M(t),

(3.13)

where M(t) is a martingale defined by

M(t) =
∫

0

t 2(2d+ η + µ)(1 + αI∗h)σ bd (I − I∗)
β(1 + αIh)

dB(t).

The quadratic variation of this martingale is

〈M,M〉t =
∫

0

t 4(2d+ η + µ)2(1 + αI∗h)2σ2( bd )2(I − I∗)2

β2(1 + αIh)2
ds

≤
4(2d+ η + µ)2(1 + αI∗h)2σ2( bd )2( bd + I∗)2

β2
t.

By the strong law of large numbers for martingales [18, 2], we have limt→∞
M(t)
t = 0

a.s. Then by (3.13),

lim inf
t→∞

1
t

∫
0

t

LV ds ≥ 0. (3.14)

Dividing both sides of (3.13) by t, and letting t→∞, it follows that

lim sup
t→∞

1
t

∫
0

t

[(S − S∗)2 + (I − I∗)2 + (R−R∗)2]

≤
I∗σ2( bd )2(2d+ η + µ)(1 + αI∗h)

mβ
a.s.

The proof is therefore complete. �

Remark 3.9. The disturbance intensity is relevant to the value of σ. The smaller
the value of σ is, the smaller the oscillation is. In other words, if the stochastic
perturbations become small, the solution of system (1.1) will be close to the endemic
equilibrium P ∗ of system (1.2).

Stochastic Persistence in Mean. Let us continue to discuss the long time be-
havior of the stochastic system (1.1). In view of ecology, the bad thing happens
when the disease exist. In this section, we will consider another stochastic persis-
tence; that is, stochastic persistence in mean. Now, we present the definition of
persistence in mean.

Definition 3.10. System (1.1) is said to be persistent in mean [4], if

lim inf
t→∞

1
t

∫
0

t

S(s)ds > 0, lim inf
t→∞

1
t

∫
0

t

I(s)ds > 0, lim inf
t→∞

1
t

∫
0

t

R(s)ds > 0,

where (S(t), R(t), I(t)) is any positive solutions of system (1.1).
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Theorem 3.11. Under the condition

σ2 < min
{ (S∗)2md2β

I∗b2(2d+ η + µ)
,

I∗md2β

b2(2d+ η + µ)
,

(R∗)2md2β

I∗b2(2d+ η + µ)
}
,

system (1.1) is persistent in mean.

Proof. Using Theorem 3.8, we have

lim sup
t→∞

1
t

∫
0

t

(S − S∗)2ds ≤ I∗σ2b2(2d+ η + µ)
md2β

,

lim sup
t→∞

1
t

∫
0

t

(I − I∗)2ds ≤ I∗σ2b2(2d+ η + µ)
md2β

,

lim sup
t→∞

1
t

∫
0

t

(R−R∗)2ds ≤ I∗σ2b2(2d+ η + µ)
md2β

.

Notice that

2(S∗)2 − 2S∗S = 2S∗(S∗ − S) ≤ (S∗)2 + (S − S∗)2,

namely,

S ≥ S∗

2
− (S − S∗)2

2S∗
.

Then

lim inf
t→∞

1
t

∫
0

t

S(s)ds ≥ S∗

2
− lim sup

t→∞

1
t

∫
0

t (S − S∗)2

2S∗
ds

≥ S∗

2
− I∗σ2b2(2d+ η + µ)

2S∗md2β
> 0 a.s.

By the same way, we obtain

lim inf
t→∞

1
t

∫
0

t

I(s)ds ≥ I∗

2
− lim sup

t→∞

1
t

∫
0

t (I − I∗)2

2I∗
ds

≥ I∗

2
− σ2b2(2d+ η + µ)

2md2β
> 0 a.s.

and

lim inf
t→∞

1
t

∫
0

t

R(s)ds ≥ R∗

2
− lim sup

t→∞

1
t

∫
0

t (R−R∗)2

2I∗
ds

≥ R∗

2
− I∗σ2b2(2d+ η + µ)

2R∗md2β
> 0 a.s.

The theorem is thus proved. �

3.4. Extinction. In the previous sections we have showed that under certain con-
ditions, the original autonomous model (1.2) and the associated stochastic model
(1.1) behave similarly in the sense that both have positive solutions which will not
explode to infinity in a finite time and, in fact, will be ultimately bounded and
permanent. In other words, we show that under certain condition the noise will
not spoil these properties. However, we will show in this section that if the noise
is sufficiently large, the disease to the associated stochastic system (1.1) become
extinct, although the disease to the original system (1.2) may be persistent.
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Theorem 3.12. For any given initial value (S(0), I(0), R(0)) ∈ Γ, the solution
(S(t), I(t), R(t)) of system (1.1) has the property that

lim sup
t→∞

ln I(t)
t
≤ −(d+ η + µ) +

β2

4σ2
.

Proof. Define V (I(t)) = ln I(t), by the Itô formula, we have

dV (I(t)) =
1
I

dI(t)− 1
2I2(t)

(dI(t))2

= [
βS(t)

1 + αIh(t)
− (d+ η + µ)− σ2S2(t)

(1 + αIh(t))2
]dt+

σS(t)
1 + αIh(t)

dB(t)

≤ [βS − σ2S2(t)− (d+ η + µ)]dt+
σS(t)

1 + αIh(t)
dB(t)

≤ [−(d+ η + µ) +
β2

4σ2
]dt+

σS(t)
1 + αIh(t)

dB(t).

Integrating both sides from 0to t, we have

ln I(t)− ln I(0) ≤ [−(d+ η + µ) +
β2

4σ2
]t+M(t), (3.15)

where

M(t) =
∫

0

t σS(t)
1 + αIh(t)

dB(t).

Since

lim sup
t→∞

〈M,M〉t
t

≤ σ2(
b

d
)2 <∞,

so limt→∞
M(t)
t = 0 a.s. Dividing both sides of (3.15) by t, and letting t → ∞ we

obtain

lim sup
t→∞

ln t
t
≤ −[(d+ η + µ)− β2

4σ2
].

The proof is complete. �

Remark 3.13. Obviously, if σ2 is sufficiently large such that σ2 > β2

4(d+η+µ) , then
the disease to this stochastic system will become extinct. In other words, the
theorem reveals the important fact that the environmental noise may make the
disease extinct.

4. Simulations and discussions

In this section we analyze the stochastic behavior of system (1.1) by means of
numerical simulations and compare it with the deterministic behavior of system
(1.2). One of main aims of this section is to show that stochastic noises play an
important role in determining the persistence or extinction of disease. Making use
of this numerical simulation method and with the help of Matlab soft-ware, by
choosing suitable parameters, we get simulations of system (1.1) and system (1.2)
when h = 2. The blue lines and the red lines in the figures represent solutions of
deterministic system (1.2) and stochastic system (1.1) respectively.

In Figure 1, we choose S(0) = 0.6, I(0) = 0.2, R(0) = 0.2, b = 0.4, µ = 0.15,
η = 0.15, α = 4.0, β = 0.2, γ = 0.1, d = 0.2 and R0 < 1. The only difference
between conditions of Group(a) and Group(b) is that the values of σ is different.
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Figure 1. Trajectories of stochastic system (1.1) and determinis-
tic system (1.2) with S(0) = 0.6, I(0) = 0.2, R(0) = 0.2, b = 0.4,
µ = 0.15, η = 0.15, α = 4.0, β = 0.2, γ = 0.1 d = 0.2; σ = 0.3 in
Group (a) and σ = 0.2 in Group (b)

In Group(a), we choose σ = 0.3. At the same time, we choose σ = 0.2 in Group
(b). Figure 1 illustrates the situation where the intensity of noise σ verifies the
conditions of the Theorem 3.4. It is observed that disease-free equilibrium state P 0

is stochastically stable.
In Figure 2, we choose S(0) = 0.6, I(0) = 0.2, R(0) = 0.2, b = 2, µ = 0.15,

η = 0.15, α = 4.0, β = 0.5, γ = 0.1, d = 0.4 and R0 > 1. The only difference
between conditions of Group(a) and Group(b) is that the value of σ is different. In
Group (a), we choose σ = 0.02. At the same time, we choose σ = 0.1 in Group (b).
Figure 2 illustrates that the solution of system (1.1) fluctuates around the solution
of system (1.2), which supports the conclusion of Theorem 3.8. From the figure,
the fluctuation is getting smaller and smaller when the intensity decreases.

In Figure 3, we choose the same parameters with Figure 2. The only difference
between conditions of Figure 2 and Figure 3 is that the values of σ is different. In
Figure 3, we choose σ = 0.36. In view of Theorem 3.12, the system (1.1) will go to
extinction. Figure 3 confirms this. By comparing Figure 2 with Figure 3, we can
observe that small environmental noise can retain system (1.1) permanent, however
sufficiently large environmental noise can make disease to extinct. Theorem 3.12
reveals that a large white noise will force the disease to become extinct while the
disease may be persistent under a relatively small white noise.

The results we get and the work of Lahrouz, Omari and Kioach [14] differ in
that: in case of R0 > 1. When σ is small enough, the result consist with the
deterministic system; that is, the solution converge to the positive equilibrium P ∗;
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Figure 2. Trajectories of stochastic system (1.1) and determin-
istic system (1.2) with S(0) = 0.6, I(0) = 0.2, R(0) = 0.2, b = 2,
µ = 0.15, η = 0.15, α = 4.0, β = 0.2, γ = 0.1, d = 0.4; σ = 0.02 in
Group (a) and σ = 0.1 in Group (b)

When σ is getting larger, the behavior of system (1.1) become unstable; When σ
is getting large enough, the disease to this stochastic system will become extinct.
All the above results are new. In the case of R0 ≤ 1, we generalize the results
of [14]. Evidently, if h ≡ 1, Theorem 2.2, Theorem 3.4 and Theorem 3.6 become
respectively equal to Theorem 1, Theorem 4 and Theorem 5 in [14].
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