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EXISTENCE OF MINIMIZERS IN RESTRICTED
HARTREE-FOCK THEORY

FABIAN HANTSCH

Abstract. In this note we establish the existence of ground states for atoms
within several restricted Hartree-Fock theories. It is shown, for example, that

there exists a ground state for closed shell atoms with N electrons and nuclear

charge Z ≥ N − 1. This has to be compared with the general Hartree-Fock
theory where the existence of a minimizer is known for Z > N − 1 only.

1. Introduction

Computations of the electronic structure of atoms and molecules in quantum
chemistry in general rely on numerical solutions of simplified versions of the quan-
tum many-body problem at hand. Among those, the Hartree-Fock approximation
often serves as a starting point for more accurate approximations such as multi-
configuration methods, see for example [8, 16]. In the simplest version of Hartree-
Fock theory the energy is minimized with respect to antisymmetric tensor products
of orthonormal one-electron orbitals, the so-called single Slater determinants, and
further restrictions are imposed in numerical procedures implementing this varia-
tional problem [4]. In any case the question arises whether a minimizer exists. This
paper is concerned with several restricted Hartree-Fock theories for atoms where
the one-electron orbitals are products of space and spin wave functions. For each
of the considered restrictions we investigate the existence of a minimizer both for
neutral atoms and positive ions, as well as for simply charged negative ions.

The existence of a minimizer in the general Hartree-Fock (GHF) theory for neu-
tral atoms or positive ions was first established in 1977 by Lieb and Simon [11].
No constraints were imposed in their work besides the orthonormality of the one-
electron orbitals. In the meantime there has been remarkable further progress in
the study of the variational problem for the Hartree-Fock energy functional. It is
known, for example, that there exists a sequence of critical points for this functional
[12], and convergence properties of various algorithms used for the approximation
of critical points were investigated in [5, 3, 9].

The main concern of this article is the minimization of the Hartree-Fock en-
ergy functional under additional constraints. Our general assumption is that the
one-electron states are products of space and spin functions. First, we treat the
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restricted Hartree-Fock (RHF) functional for closed shell atoms with prescribed
angular momentum quantum numbers. Second, we drop the latter requirement,
i.e. we consider atoms with an even number of electrons, where only pairs of spin
up and spin down electrons with the same spatial function occur. The correspond-
ing energy functional will be called spin-restricted Hartree-Fock (SRHF) functional.
We prove that there exists a ground state in both cases, if Z ≥ N − 1, where Z
denotes the nuclear charge and N the number of electrons. The existence of a
ground state in the case Z = N − 1 reminds of the well-known stability of closed
shell configurations in chemistry. Third, we look at another restricted Hartree-Fock
functional, which is called unrestricted Hartree-Fock (UHF) functional in the chem-
ical literature, and must not be confused with the GHF functional. In the UHF
setting, we impose that the spatial functions corresponding to spin up resp. spin
down functions are chosen independently from each other, but still are assumed to
have prescribed angular momenta. In this case a ground state exists if Z > N − 1,
and we provide sufficient conditions under which this is also true if Z = N − 1.
For example, there exists a ground state for Z = N − 1 in the spinless case (i.e. if
all spins point in the same direction) with two angular momentum shells `1 = 0,
`2 > 0.

For certain closed shell atoms (e.g. He, Ne) it is known that the minimization
problems for the general and restricted Hartree-Fock functionals coincide, if Z � N
[7]. On the other hand there are also cases where they differ [14], see [7] for
an explanation of this fact. Nevertheless, the restricted ground states are always
critical points of the GHF functional. This is due to the fact that the considered
constraints do not require additional Lagrange multipliers in the Euler–Lagrange
equations. Thus, this paper also establishes the existence of critical points for the
GHF functional in the case Z = N − 1. To our knowledge, the only previous
result providing the existence of critical points for the GHF functional in the case
Z = N − 1 is given in the paper [5] of Cancès and Le Bris, which in fact even holds
for arbitrary Z > 0. But in general, the critical points constructed in their paper
only correspond either to local (not global) minima or saddle points.

In the literature the existence of minimizers for restricted Hartree-Fock function-
als has previously been studied for special cases. Based on Reeken’s paper [13] on
the solutions of the Hartree equation, Bazley and Seydel [2] proved the existence
of a minimizer for the spin-restricted Hartree-Fock functional of Helium (N = 2),
which is given by the restricted Hartree functional. For this functional it is known
that there exists a minimizer even if Z = 1 = N − 1, see [12, Theorem II.2]. In our
paper we extend this result to arbitrary numbers of filled shells. Lieb and Simon
generalize their GHF existence result [11] to certain restricted situations in [10], but
their theorem does not cover the restrictions discussed in this paper. However, this
article has been strongly inspired by their work [11]. In [12], Lions treats restricted
Hartree-Fock equations, which arise as the Euler–Lagrange equations of the RHF
functional. He proves the existence of a sequence of solutions to these equations
provided Z ≥ N . Lions’ proof relies, however, on the unproven assertion that all
eigenvalues of a radial Fock operator are simple. His approach is motivated by the
paper of Wolkowisky [17] who shows the existence of solutions for a system of re-
stricted Hartree-type equations. A numerical approach to restricted Hartree-Fock
theory may be found in the book of Froese Fischer [6]. Finally, we mention the
article of Solovej [15], where he proves the existence of a universal constant Q > 0
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so that there is no GHF minimizer for Z ≤ N −Q. This establishes the ionization
conjecture within the Hartree-Fock theory. The question whether or not there is a
GHF minimizer for Z = N − 1 is open.

The paper, which forms a part of the author’s Ph.D. thesis, is organized as
follows: In Section 2 we introduce the restricted Hartree-Fock functional for closed
shell atoms with prescribed angular momentum quantum numbers and prove an
existence theorem for minimizers of this functional. The Section 3 is devoted to
generalizations of the RHF existence theorem to the SRHF and UHF functionals. A
derivation of the RHF functional in the closed shell case can be found in Section 4.
Finally, there is an appendix containing technical lemmas.

2. Minimizers for Closed Shell Atoms

The simplest Hartree-Fock approximation for atoms consists in restricting the
admissible N -electron states to the set of single Slater determinants, which are of
the form

(ϕ1 ∧ · · · ∧ ϕN )(x1, . . . , xN ) =
1√
N !

∑
σ∈SN

sgn(σ)ϕσ(1)(x1) . . . ϕσ(N)(xN ), (2.1)

where SN denotes the symmetric group of degree N , sgn(σ) is the sign of a per-
mutation σ, and ϕ1, . . . , ϕN denote orthonormal L2(R3; C2)-functions with xi =
(xi, µi) ∈ R3×{±1} containing the space and spin variables of the i-th electron. It
is well-known, that the energy of an atom with nuclear charge Z and N electrons
in the state (2.1) is given by the general Hartree-Fock (GHF) functional

EHF (ϕ1, . . . , ϕN )

=
N∑
j=1

∫
|∇ϕj |2 −

Z

|x|
|ϕj |2 dx+

1
2

∫∫
ρ(x)ρ(y)− |τ(x, y)|2

|x− y|
dx dy

(2.2)

where

τ(x, y) :=
N∑
j=1

ϕj(x)ϕj(y), ρ(x) :=
N∑
j=1

|ϕj(x)|2

denote the density matrix and the electronic density, respectively. The notation∫
dx refers to integration with respect to the product of Lebesgue and counting

measure, and |x− y| = |x− y|.
Given a closed shell atom with s0 ∈ N shells of prescribed angular momen-

tum quantum numbers `1, . . . , `s0 ∈ N0, we impose the following form on the one-
electron orbitals

ϕjmσ(x, µ) =
fj(|x|)
|x|

Y`jm(x)δσµ, j = 1, . . . , s0, m = −`j , . . . ,+`j , σ = ±1,

(2.3)
where the radial functions fj are in L2(R+) and

〈fi, fj〉 :=
∫

R+

fifj dr = δij , if `i = `j , (2.4)

to ensure the orthonormality of the functions (2.3). Here Y`m denote the usual
spherical harmonics. The Hartree-Fock energy of the Slater determinant built by
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the orbitals (2.3) is given by the restricted Hartree-Fock (RHF) functional (derived
in Section 4):

ERHF (f1, . . . , fs0) = 2
s0∑
j=1

(2`j + 1)
(∫

R+

|f ′j |2 +
`j(`j + 1)

r2
|fj |2 −

Z

r
|fj |2 dr

)
+

1
2

s0∑
j,k=1

(2`j + 1)(2`k + 1)
(∫∫

(R+)2
4
|fj(r)|2|fk(s)|2

max{r, s}

− 2fj(r)fk(s)U`j`k(r, s)fk(r)fj(s) dr ds
)
.

(2.5)
The integral kernels U`j`k appearing in the last term on the right-hand side are
given in (4.8). We shall only need their properties collected in Lemma 5.1.

Let H1
0 (R+) denote the completion of C∞0 (R+) with respect to the H1(R+)-

norm. The RHF functional (2.5) is bounded below, if the functions f1, . . . , fs0 are
in H1

0 (R+) and obey the constraints (2.4), see Lemma 5.2. We define the RHF
ground state energy by

E(N,Z) = inf{ERHF (f1, . . . , fs0)|f1, . . . , fs0 ∈ H1
0 (R+), 〈fi, fj〉 = δij if `i = `j},

(2.6)
where the dependence of E(N,Z) on `1, . . . , `s0 is omitted. The main question of
this paper is whether the infimum in (2.6) is actually a minimum.

If there exist minimizing functions f1, . . . , fs0 obeying the constraints of (2.6),
then they are solutions of the corresponding Euler-Lagrange equations, which we
may assume to have the form (see Remark (b) below)

H`ifi = εifi, i = 1, . . . , s0, (2.7)

with radial Fock operators given by

H`i = −∂2
r +

`i(`i + 1)
r2

− Z

r
+ 2U −K`i , i = 1, . . . , s0, where

(Uf)(r) =
s0∑
j=1

(2`j + 1)
∫

R+

|fj(s)|2

max{r, s}
dsf(r),

(K`f)(r) =
s0∑
j=1

(2`j + 1)fj(r)
∫

R+

fj(s)f(s)U``j (r, s) ds.

We omit the dependence of the operators U , K` and thus H`i on the functions
f1, . . . , fs0 . The Euler-Lagrange equations (2.7), called Hartree-Fock equations,
form a set of s0 coupled non-linear eigenvalue equations for the functions f1, . . . , fs0 .

Remarks. (a) By Lemma 5.2, the operators H`i are symmetric semi-bounded
operators on C∞0 (R+). Therefore, minimizing functions f1, . . . , fs0 obeying the
constraints of (2.6) are in the domain D(H`i) of the Friedrichs extension of H`i ,
which is contained in H1

0 (R+).
(b) The Euler–Lagrange equations for minimizing functions f1, . . . , fs0 obeying

the constraints of (2.6) are given by H`ifi =
∑
j εijfj , where the sum runs over

all indices j with `j = `i. Since the functional ERHF is invariant under unitary
transformations of the subspaces of L2(R+) spanned by all radial functions fj with
equal angular momentum quantum numbers, the minimizing functions f1, . . . , fs0
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can always be chosen as eigenfunctions of the radial Fock operators. This follows
from standard arguments as used for the general Hartree-Fock theory, c. f. [4] for
example.

(c) The constraints (2.6) may be relaxed without lowering the ground state
energy, more precisely E(N,Z) = Ẽ(N,Z) for

Ẽ(N,Z) = inf
{
ERHF (f1, . . . , fs0)|f1, . . . , fs0 ∈ H1

0 (R+), 〈fi, fj〉 = 0

if `i = `j and i 6= j, ‖fi‖ ≤ 1 for all i
}
.

(2.8)

This can be seen using similar arguments as for the general Hartree-Fock functional
in [12, section II.2]. The following theorem shows that the relaxed minimization
problem always possesses a minimizer.

Theorem 2.1 (Existence of a RHF minimizer). Let s0 ∈ N, `1, . . . , `s0 ∈ N0, and
Z > 0. Then, there exist functions f1, . . . , fs0 ∈ H1

0 (R+), which minimize the RHF
functional (2.5) under the constraints

〈fi, fj〉 = 0 if `i = `j and i 6= j,

‖fi‖ ≤ 1 for all i.

Moreover, fi ∈ D(H`i), H`ifi = εifi, and:
(i) Either εi ≤ 0 or fi = 0. εi < 0 implies ‖fi‖ = 1.

(ii) If Z > N − 2(2`i + 1), then fi 6= 0.
If Z ≥ N − 1, then ‖fi‖ = 1 for all i = 1, . . . , s0.

(iii) If Z > N − 1, then εi < 0 and ‖fi‖ = 1 for all i = 1, . . . , s0.

Remarks. (a) Theorem 2.1 (ii) shows that for Z = N − 1 there always exists
a normalized minimizer for ERHF . In this case we do not know whether or not
εi < 0. Nevertheless, it is clear that Z > N − 2(2`i + 1) always implies E(N,Z) <
E(i)(N − 2(2`i + 1), Z) for all i = 1, . . . , s0, where E(i)(N − 2(2`i + 1), Z) denotes
the minimal energy in the case where all electrons of the i-th shell are dropped.
This can be seen as follows: Theorem 2.1 (iii) is applicable to the minimization
problem E(i)(N − 2(2`i + 1), Z) because Z > N − 2(2`i + 1). Hence, there exist
f1, . . . , fi−1, fi+1, . . . , fs0 ∈ H1

0 (R+) with ‖fj‖ = 1, j 6= i, so that

ERHF (f1, . . . , fi−1, 0, fi+1, . . . , fs0) = E(i)(N − 2(2`i + 1), Z). (2.9)

It can be shown (c.f. the proof of Theorem 2.1 (ii)) that there exists ψ ∈ H1
0 (R+),

‖ψ‖ ≤ 1, ψ ⊥ fj for all j 6= i, `j = `i, with

ERHF (f1, . . . , fi−1, ψ, fi+1, . . . , fs0) < ERHF (f1, . . . , fi−1, 0, fi+1, . . . , fs0). (2.10)

The desired inequality now follows from E(N,Z) = Ẽ(N,Z), (2.10) and (2.9).
(b) In general Hartree-Fock theory it is known that the minimizing functions

can be chosen as eigenfunctions to the N lowest eigenvalues of the corresponding
Fock operator. Moreover, there is a gap between the occupied and unoccupied
eigenvalues [1]. It would be interesting to know whether similar results hold also in
the restricted Hartree-Fock theory, where, unfortunately, the method of [1] is not
applicable.

Before turning to the proof of Theorem 2.1 we introduce the following notation
that will be used throughout this paper.

r> := max{r, s}, r< := min{r, s}, for r, s ≥ 0.
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We write ERHF (f1, . . . , f̂i, . . . , fs0) to denote the restricted Hartree-Fock functional
where the electrons of the i-th shell are dropped. The following lemma exhibits the
dependence of ERHF (f1, . . . , fi, . . . , fs0) on fi, and will be crucial for the existence
of a minimizer in the critical case Z = N − 1. It follows easily from the definition
of ERHF if we set Pi(r, s) := (2`i + 1)(2r−1

> − U`i`i(r, s)).

Lemma 2.2 (Decomposition property of the RHF functional). Let s0 ∈ N,
`1, . . . , `s0 ∈ N0, Z > 0 and f1, . . . , fs0 ∈ H1

0 (R+). Furthermore, let i ∈ {1, . . . , s0}
and let H(i)

`i
denote the Fock operator where all electrons of the i-th shell are dropped.

Then:

ERHF (f1, . . . , fi, . . . , fs0) = ERHF (f1, . . . , f̂i, . . . , fs0) + 2(2`i + 1)〈fi|H(i)
`i
|fi〉

+ (2`i + 1)〈fi ⊗ fi|Pi|fi ⊗ fi〉,
(2.11)

where Pi(r, s) = Pi(s, r) and

2`i + 1
max{r, s}

≤ Pi(r, s) ≤
4`i + 1

max{r, s}
, r, s ≥ 0.

Furthermore, for all λ ≥ 0, h ∈ H1
0 (R+),

ERHF (f1, . . . ,
fi + δh√
1 + λδ2

, . . . , fs0)

= ERHF (f1, . . . , fi, . . . , fs0) + 4(2`i + 1)δRe〈h|H`i |fi〉

+ 2(2`i + 1)δ2
(
〈h|H(i)

`i
|h〉 − λ〈fi|H`i |fi〉+ Re〈h⊗ h|Pi|fi ⊗ fi〉

+ 〈fi ⊗ h+ h⊗ fi|Pi|fi ⊗ h〉
)

+O(δ3)

(2.12)

for δ → 0.

Proof of Theorem 2.1. First, we give a proof of the existence of a minimizer for
the relaxed minimization problem (2.8), which proceeds the same way as in the
paper of Lieb and Simon [11]. ERHF (g1, . . . , gs0) is bounded below independently
of g1, . . . , gs0 ∈ H1

0 (R+) with ‖gi‖ ≤ 1, see Lemma 5.2 (ii). Thus, let g(n)
1 , . . . , g

(n)
s0

be a minimizing sequence for the relaxed minimization problem (2.8). Again by
Lemma 5.2 (ii), (g(n)

j )n∈N, j = 1, . . . , s0, is bounded in H1
0 (R+). Hence, there exist

weakly-H1
0 (R+) convergent subsequences g(n)

j ⇀ gj (n → ∞). Fix i ∈ {1, . . . , s0}.
Without loss of generality we may assume that g1, . . . , gki are all functions gj with
`j = `i. The matrix M := (〈gj , gk〉)j,k=1,...,ki is hermitian and obeys 0 ≤ M ≤ 1
(c.f. [11, Lemma 2.2]), so there exists a unitary ki× ki matrix U with the property
U∗MU = D, where D is a diagonal matrix with eigenvalues in [0, 1]. If we define
fj =

∑ki
k=1 ukjgk, j = 1, . . . , ki, then 〈fj , fk〉 = λjδjk, 0 ≤ λj ≤ 1. It is easy to

see that ERHF is invariant under such transformations. Thus, transforming each
subspace of functions with equal angular momentum quantum numbers in this way,
we obtain functions f1, . . . , fs0 with 〈fi, fj〉 = 0, if `i = `j , i 6= j, ‖fi‖ ≤ 1 for all i.
Furthermore, f1, . . . , fs0 minimize ERHF , because

Ẽ(N,Z) ≤ ERHF (f1, . . . , fs0) = ERHF (g1, . . . , gs0)

≤ lim inf
n→∞

ERHF (g(n)
1 , . . . , g(n)

s0 ) = Ẽ(N,Z),
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where we used Lemma 5.2 (v). By further transformations we can achieve that
f1, . . . , fs0 are eigenfunctions of the operators H`i .

(i) Let fi 6= 0 and assume that εi > 0. Then, by (2.12) with λ = 0 and h = fi,
the energy decreases if we decrease the norm of fi. Let εi < 0 and assume that
‖fi‖ < 1. Then, the energy is decreased by increasing the norm of fi.

(ii) We prove the following more general statement: Let 0 ≤ µ ≤ 1 and let
Z ≥ N − 1− (1− µ)(4`i + 1), then µ ≤ ‖fi‖2 ≤ 1.

There is nothing to prove in the case µ = 0. Therefore, let µ > 0 and assume
that ‖fi‖2 < µ. We show that there exists h ∈ H1

0 (R+) with h ⊥ fj , if `j = `i,
such that

ERHF (f1, . . . , fi + δh, . . . , fs0) < ERHF (f1, . . . , fi, . . . , fs0)

for small δ 6= 0, which contradicts the minimization property of f1, . . . , fs0 . The
dependence of the left-hand side on h ∈ H1

0 (R+) is given by (2.12) with λ = 0.
The factor of δ in (2.12) vanishes since f1, . . . , fs0 is a minimizer. Therefore, it is
sufficient to show that there exist infinitely many normalized functions h ∈ H1

0 (R+)
with disjoint supports, such that the factor of δ2 in (2.12)

〈h|H(i)
`i
|h〉+ 〈fi ⊗ h|Pi|fi ⊗ h〉+ 〈fi ⊗ h|Pi|h⊗ fi〉+ Re〈h⊗ h|Pi|fi ⊗ fi〉 (2.13)

is negative. We may drop the Re-term because it becomes non-positive upon a
suitable choice of the phase of h. Let J ∈ C∞0 (R+), supp(J) ⊂ [1, 2], ‖J‖ =
1. Furthermore, we define JR(r) := R−1/2J(r/R) for R > 0, then supp(JR) ⊂
[R, 2R], ‖JR‖ = 1, JR ∈ C∞0 (R+). Using U(r) ≤ r−1

∑s0
j=1(2`j + 1) and K` ≥ 0

(Lemma 5.2), we see that

〈JR|H(i)
`i
|JR〉 ≤ 〈JR| − ∂2

r +
`i(`i + 1)

r2
− Z

r
+
N − 2(2`i + 1)

r
|JR〉. (2.14)

This inequality combined with the estimate for Pi in Lemma 2.2 allows us to esti-
mate (2.13) with the choice h = JR

〈JR|H(i)
`i
|JR〉 ≤

1
R2
〈J | − ∂2

r +
`i(`i + 1)

r2
|J〉 − (4`i + 1)µ

R
〈J |1

r
|J〉,

〈fi ⊗ JR|Pi|fi ⊗ JR〉 ≤
(4`i + 1)‖fi‖2

R
〈J |1

r
|J〉,

〈fi ⊗ JR|Pi|JR ⊗ fi〉 = o
( 1
R

)
for R → ∞. The sum of the three terms on the right-hand side becomes negative
for R large enough, because ‖fi‖2 < µ, by assumption. This proves (ii).

(iii) It suffices to show that εj < 0, j = 1, . . . , s0, see (i) and (ii). Assume that
εi = 0. We show that there exists h ∈ H1

0 (R+), ‖h‖ = 1, h ⊥ fj , if `i = `j , so that

ERHF (f1, . . . ,
fi + δh√

1 + δ2
, . . . , fs0) < ERHF (f1, . . . , fi, . . . , fs0)

for small δ 6= 0. Again, the dependence on h of the left-hand side is given by (2.12)
with λ = 1. Since εi = 0, it suffices to show that the factor of δ2, which is the
same as in (2.13), can be made negative by suitable choices of h. This can be done
choosing the same scaled functions as in (ii), but now using Z > N − 1 instead of
‖fi‖2 < µ. �
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Remark. The crucial point in the proof of Theorem 2.1 (ii) for the case Z = N−1
is the fact that each radial function corresponds to at least two electrons (due to
the closed shell condition). Under the assumption that one of the minimizing radial
functions obeys ‖fi‖ < 1, the attractive Coulomb interaction of the nucleus allows
one to lower the energy by a suitable variation of the radial function fi. This
yields a contradiction, and the existence of a normalized minimizer can be proved
even in the case Z = N − 1. Contrarily, the analogous estimates for the general
Hartree-Fock functional, where the single electrons are independent, do not yield a
contradiction. As mentioned in the introduction, the question whether or not there
exists a normalized GHF minimizer for the case Z = N − 1 is still open.

3. Other Restricted Hartree-Fock Functionals

Theorem 2.1 can be readily generalized to other restricted Hartree-Fock func-
tionals which meet similar conditions as described in the remark after the proof
of Theorem 2.1. In this section we present analogous results for a spin-restricted
Hartree-Fock functional as well as for a so-called UHF functional.

The spin-restricted Hartree-Fock (SRHF) model is frequently used for atoms
with an even number of electrons [4]. It emerges from the RHF model in Section 2
by dropping the prescribed angular momentum quantum numbers. More precisely,
for an atom with atomic number Z and N = 2n we impose the following form on
the one-electron orbitals

ϕiσ(x, µ) = ϕi(x)δσµ, i = 1, . . . , n, σ = ±1,

where ϕi ∈ H1(R3) and 〈ϕi, ϕj〉 :=
∫

R3 ϕiϕj dx = δij . Then the restricted Hartree-
Fock functional reads
ESRHF (ϕ1, . . . , ϕn)

= 2
n∑
i=1

∫
|∇ϕi(x)|2 − Z

|x|
|ϕi(x)|2 dx +

1
2

∫∫
4
ρ(x)ρ(y)
|x− y|

− 2
|τ(x,y)|2

|x− y|
dx dy.

(3.1)
Here the electronic density matrix and the electronic density are given by

τ(x,y) =
n∑
i=1

ϕi(x)ϕi(y), ρ(x) =
n∑
i=1

|ϕi(x)|2.

The corresponding Fock operator is given by

H = −∆− Z

|x|
+ 2

∫
ρ(y)
|x− y|

dy −K,

where (Kϕ)(x) :=
∫ τ(x,y)ϕ(y)

|x−y| dy. Using similar ideas as in the proof of Theo-
rem 2.1 the following existence theorem holds true for the spin-restricted Hartree-
Fock functional.

Theorem 3.1 (Existence of a SRHF minimizer). Let Z > 0 and N = 2n. Then,
there exist functions ϕ1, . . . , ϕn ∈ H1(R3), which minimize the SRHF functional
(3.1) under the constraints

〈ϕi, ϕj〉 = 0 if i 6= j,

‖ϕi‖ ≤ 1 for all i.

Moreover, ϕi ∈ D(H) = H2(R3), Hϕi = εiϕi, and:
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(i) Either εi ≤ 0 or ϕi = 0. εi < 0 implies ‖ϕi‖ = 1.
(ii) If Z > N − 2, then ϕi 6= 0 for all i = 1, . . . , n.

If Z ≥ N − 1, then ‖ϕi‖ = 1 for all i = 1 . . . , n.
(iii) If Z > N − 1, then εi < 0 and ‖ϕi‖ = 1 for all i = 1, . . . , n.

Remark. For this spin-restricted Hartree-Fock functional the minimizer exists for
all Z ≥ N−1. Again we do not know whether or not εj are the n lowest eigenvalues
of H, although there seem to be no numerical counterexamples [4].

The second generalization of Theorem 2.1 concerns the UHF functional. Here
we continue assuming that the electrons are in product states of space and spin but
we drop the condition that the spatial wave functions for spin up resp. spin down
electrons are equal in each shell with fixed angular momentum quantum numbers.
More precisely, we consider electrons that are in states of the form

ϕjm↑(x, µ) =
fαj (|x|)
|x|

Y`αjm(x)δµ,+1, j = 1, . . . , sα0 , m = −`αj , . . . ,+`αj , (3.2)

ϕjm↓(x, µ) =
fβj (|x|)
|x|

Y`βjm
(x)δµ,−1, j = 1, . . . , sβ0 , m = −`βj , . . . ,+`

β
j , (3.3)

where sα0 , s
β
0 ∈ N0, `α1 , . . . , `

α
sα0
, `β1 , . . . , `

β

sβ0
∈ N0, and for all ν ∈ {α, β}, i, j ∈

{1, . . . , sν0}
fνi ∈ H1

0 (R+), 〈fνi , fνj 〉 = δij , if `νi = `νj .

The corresponding Hartree-Fock functional, which is called unrestricted Hartree-
Fock (UHF) functional, takes the form

EUHF (fα1 , . . . , f
α
sα0

; fβ1 , . . . , f
β

sβ0
)

=
∑

ν∈{α,β}

sν0∑
j=1

(2`νj + 1)〈fνj | − ∂2
r +

`νj (`νj + 1)
r2

− Z

r
|fνj 〉

+
1
2

∑
ν∈{α,β}

sν0∑
j,k=1

(
D[fνj , f

ν
k ]− E[fνj , f

ν
k ]
)

+
sα0∑
j=1

sβ0∑
k=1

D[fαj , f
β
k ].

(3.4)

Here we use the shorthand notation

D[fνj , f
µ
k ] := (2`νj + 1)(2`µk + 1)〈fνj ⊗ f

µ
k |

1
r>
|fνj ⊗ f

µ
k 〉,

E[fνj , f
µ
k ] := (2`νj + 1)(2`µk + 1)〈fνj ⊗ f

µ
k |U`νj `µk |f

µ
k ⊗ f

ν
j 〉.

Given ν ∈ {α, β} and ` ∈ N0 we introduce Fock operators

Hν
` := −∂2

r + `(`+ 1)r−2 − Zr−1 + U −Kν
` ,

where

(Uf)(r) =
∑

κ∈{α,β}

sκ0∑
j=1

(2`κj + 1)
∫

R+

|fκj (s)|2

max{r, s}
dsf(r),

(Kν
` f)(r) =

sν0∑
j=1

(2`νj + 1)fνj (r)
∫

R+

fνj (s)U``νj (r, s)f(s) ds



10 F. HANTSCH EJDE-2014/44

for f ∈ L2(R+). Again these operators depend on the functions fα1 , . . . , f
β

sβ0
. Using

the same methods as in the proof of Theorem 2.1, the following existence theorem
can be proved.

Theorem 3.2 (Existence of a UHF minimizer). Let sα0 , s
β
0 ∈ N0, `α1 , . . . , `

α
sα0
, `β1 ,

. . . , `β
sβ0
∈ N0, and Z > 0. Then, there exist functions fα1 , . . . , f

α
sα0
, fβ1 , . . . , f

β

sβ0
∈

H1
0 (R+), which minimize the UHF functional (3.4) under the constraints: for all

ν ∈ {α, β} and i, j ∈ {1, . . . , sν0}

〈fνi , fνj 〉 = 0 if `νi = `νj , i 6= j,

‖fνi ‖ ≤ 1.

Moreover, fνi ∈ D(Hν
`νi

), Hν
`νi
fνi = ενi f

ν
i .

(i) Either ενi ≤ 0 or fνi = 0. ενi < 0 implies ‖fνi ‖ = 1.
(ii) If Z > N − (2`νi + 1), then fνi 6= 0.

If Z ≥ N − 1 and `νi 6= 0, then ‖fνi ‖ = 1.
(iii) If Z > N − 1, then ενi < 0 and ‖fνi ‖ = 1 for all ν ∈ {α, β}, i = 1, . . . , sν0 .

Remarks. (a) We do not know, except for the case where ` = 0, whether the
occupied eigenvalues of the corresponding Fock operator are the lowest eigenvalues
or whether there is a gap between occupied and unoccupied eigenvalues.

(b) In general, Theorem 3.2 does not imply the existence of UHF minimizers in
the case of Z = N − 1. Nevertheless, in the special case where all spins point in
the same direction (i.e. the spinless case) the following existence result holds true.

Corollary 3.3 (UHF minimizers in the case Z = N − 1). Let sα0 ∈ N, sβ0 = 0, and
let `α1 = 0, `α2 , . . . , `

α
sα0
> 0 with

sα0 < 2 +
sα0∑
i=2

( `αi
`αi + 1

)2

.

If Z =
∑sα0
i=2(2`αi + 1) and N = Z + 1, then the UHF functional (3.4) has a

minimizer under the constraints 〈fαi , fαj 〉 = δij for all i, j = 1, . . . , sα0 with `i = `j.

Remark. The condition of Corollary 3.3 always holds in the case of two shells
sα0 = 2, `α1 = 0, `α2 > 0.

Proof of Corollary 3.3. Theorem 3.2 yields the existence of fα1 , . . . , f
α
sα0
∈ H1

0 (R+),
which minimize (3.4) under the constraints 〈fαi , fαj 〉 = 0 if `αi = `αj and i 6= j,
‖fαi ‖ ≤ 1 for all i. Clearly, ‖fα2 ‖ = · · · = ‖fαsα0 ‖ = 1 by (ii). Observe that

EUHF (fα1 , . . . , f
α
sα0

) ≤ inf
g∈H1

0 (R+), ‖g‖≤1
EUHF (g, 0, . . . , 0) = −Z

2

4
, (3.5)

and on the other hand

EUHF (0, fα2 , . . . , f
α
sα0

) ≥ −Z
2

4

sα0∑
i=2

2`αi + 1
(`αi + 1)2

= −Z
2

4

(
sα0 − 1−

sα0∑
i=2

( `αi
`αi + 1

)2)
> −Z

2

4
,

(3.6)
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where we dropped the electron–electron energy and estimated the remaining terms
by the hydrogen ground state energies in the first inequality, and used the condition
on sα0 in the second inequality. Assume that 〈fα1 |Hα

0 |fα1 〉 = 0, then

EUHF (fα1 , . . . , f
α
sα0

) = EUHF (0, fα2 , . . . , f
α
sα0

),

because EUHF (fα1 , . . . , f
α
sα0

) = EUHF (0, fα2 , . . . , f
α
sα0

) + 〈fα1 |Hα
0 |fα1 〉, which contra-

dicts (3.5) and (3.6). Therefore, 〈fα1 |Hα
0 |fα1 〉 = εα1 ‖fα1 ‖2 < 0, which implies εα1 < 0

and thus ‖fα1 ‖ = 1. �

4. Derivation of the closed shell energy functional

For the reader’s convenience we give here a self-contained derivation of the re-
stricted Hartree-Fock functional (2.5). For this purpose, we begin with a lemma
that will be useful for the calculation of the electron–electron interaction energy.

Let P` denote the `-th Legendre polynomial. We remark that for x̂, ŷ ∈ S2 and
` ∈ N0 the addition theorem∑̀

m=−`

Y`m(x̂)Y`m(ŷ) =
2`+ 1

4π
P`(x̂ · ŷ) (4.1)

holds, where x̂ · ŷ is the usual scalar product of two vectors in R3. In addition, we
recall the following relationship between the Wigner 3j-symbols and the Legendre
polynomials: (

`1 `2 `3
0 0 0

)2

=
1
2

∫ 1

−1

P`1(x)P`2(x)P`3(x) dx. (4.2)

Proposition 4.1. Let `, L ∈ N0 and M ∈ Z, |M | ≤ L. Then for all r, s > 0 and
x̂ ∈ S2:

1
4π

∫
S2

P`(x̂ · ŷ)YLM (ŷ)
|rx̂− sŷ|

dσ(ŷ) = YLM (x̂)
L+∑̀

n=|L−`|

(
L ` n
0 0 0

)2 min{r, s}n

max{r, s}n+1
.

(4.3)

Remark. An easy consequence of this proposition is that for all `, `′ ∈ N0

1
(4π)2

∫
(S2)2

P`(x̂ · ŷ)P`′(x̂ · ŷ)
|rx̂− sŷ|

dσ(x̂, ŷ) =
`+`′∑

k=|`−`′|

(
` `′ k
0 0 0

)2 min{r, s}k

max{r, s}k+1
.

(4.4)
This is seen by multiplying (4.3) with YLM (x̂), integrating over S2 with respect to
x̂ and summing over M = −L, . . . , L.

Proof. Assume first that r 6= s. For fixed x̂ ∈ S2 the series expansion

1
|rx̂− sŷ|

=
1
r>

∞∑
n=0

(r<
r>

)n
Pn(x̂ · ŷ)

converges pointwise for all ŷ ∈ S2 and thus in L2(S2) because
∑N
n=0

(
r<
r>

)n
Pn(x̂ · ŷ)

is bounded uniformly in N and ŷ. We get

P`(x̂ · ŷ)
|rx̂− sŷ|

=
1
r>

∞∑
n=0

(r<
r>

)n
Pn(x̂ · ŷ)P`(x̂ · ŷ)
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=
1
r>

∞∑
n=0

(r<
r>

)n `+n∑
k=|`−n|

(2k + 1)
(
k ` n
0 0 0

)2

Pk(x̂ · ŷ)

where we used the addition theorem

Pn(z)P`(z) =
`+n∑

k=|`−n|

(2k + 1)
(
k ` n
0 0 0

)2

Pk(z).

The addition theorem (4.1) allows us to compute

1
4π

∫
S2

P`(x̂ · ŷ)YLM (ŷ)
|rx̂− sŷ|

dσ(ŷ)

=
1
r>

∞∑
n=0

(
r<
r>

)n `+n∑
k=|`−n|

(
k ` n
0 0 0

)2 k∑
m=−k

Ykm(x̂)
∫

S2
Ykm(ŷ)YLM (ŷ) dσ(ŷ)

= YLM (x̂)
∞∑
n=0

(
L ` n
0 0 0

)2 min{r, s}n

max{r, s}n+1
.

The desired equation for r 6= s now follows from the fact that the Wigner 3j-
symbols vanish unless |L − `| ≤ n ≤ L + `. The case r = s can be derived from
the above result by choosing a sequence rn ↓ s. Clearly, 1

|rnx̂−sŷ| ↑
1

|sx̂−sŷ| for all
ŷ ∈ S2 \ {x̂} and 1

|x̂−ŷ| is integrable with respect to ŷ ∈ S2. Hence Lebesgue’s
Dominated Convergence Theorem may be used to see that the formula is also true
for r = s. �

Let us turn to the derivation of ERHF . If f1, . . . , fs0 are inH1
0 (R+), then the func-

tions ϕjmσ defined by (2.3) are orthonormal in L2(R3; C2), and ϕjmσ ∈ H1(R3; C2)
by Hardy’s inequality ∫

R+

|f(r)|2

r2
dr ≤ 4

∫
R+

|f ′(r)|2 dr (4.5)

for f ∈ H1
0 (R+). Using the addition theorem (4.1), the corresponding density

matrix τ and electronic density ρ take the form

τ(x, y) = δµxµy

s0∑
j=1

2`j + 1
4π

fj(|x|)
|x|

fj(|y|)
|y|

P`j (x̂ · ŷ), (4.6)

ρ(x) =
s0∑
j=1

2`j + 1
4π

|fj(|x|)|2

|x|2
. (4.7)

Here we abbreviate x̂ := x/|x| for all 0 6= x ∈ R3. If the general Hartree-Fock
functional (2.2) is evaluated at the functions ϕjmσ, the only term which is not
trivially computed is the exchange term:∫∫

|τ(x, y)|2

|x− y|
dx dy = 2

s0∑
j,k=1

(2`j + 1)(2`k + 1)
(4π)2

∫
(R+)2

dr dsfj(r)fk(s)fk(r)fj(s)

×
∫

(S2)2
dσ(x̂, ŷ)

P`j (x̂ · ŷ)P`k(x̂ · ŷ)
|rx̂− sŷ|

.
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Using (4.4), the form of (2.5) follows from the choice

U``′(r, s) =
`+`′∑

k=|`−`′|

(
` `′ k
0 0 0

)2 min{r, s}k

max{r, s}k+1
. (4.8)

5. Appendix

The appendix contains two lemmas on some technical properties of the func-
tions U``′ as well as of the restricted Hartree-Fock functional and the radial Fock
operators.

Lemma 5.1 (Properties of U``′). Let `, `′ ∈ N0, and r, s > 0. Then the functions
U``′ defined by (4.8) obey:

(U1) U``′(r, s) = U`′`(r, s) = U``′(s, r),
(U2) 0 ≤ U``′(r, s) ≤ max{r, s}−1,
(U3) U``(r, s) ≥ 1

2`+1
1

max{r,s} ,

(U4) For all g ∈ H1
0 (R+) the integral kernels g(r)U``′(r, s)g(s) define non-neg-

ative Hilbert-Schmidt operators on L2(R+).

Proof. (U1) and (U3) are obvious from the explicit representation of U``′(r, s) and(
` ` 0
0 0 0

)2

=
1

2`+ 1
.

(U2) The positivity of U``′ is clear, the upper bound can be proved using (4.4),
(4.1) and Cauchy-Schwarz:

U``′(r, s)

=
1

(4π)2

∫
(S2)2

P`(x̂ · ŷ)P`′(x̂ · ŷ)
|rx̂− sŷ|

dσ(x̂, ŷ)

≤ 1
(2`+ 1)(2`′ + 1)

∑̀
m=−`

`′∑
m′=−`′

(∫
(S2)2

|Y`m(x̂)|2|Y`′m′(ŷ)|2

|rx̂− sŷ|
dσ(x̂, ŷ)

)1/2

×
(∫

(S2)2

|Y`′m′(x̂)|2|Y`m(ŷ)|2

|rx̂− sŷ|
dσ(x̂, ŷ)

)1/2

≤ 1
(4π)2

∫
(S2)2

1
|rx̂− sŷ|

dσ(x̂, ŷ) =
1

max{r, s}
,

where we used 2ab ≤ a2 + b2 and (4.1) in the last inequality.
(U4) The integral kernels K(r, s) := g(r)U``′(r, s)g(s) are in L2(R2

+) by (U2) and
by Hardy’s inequality (4.5), which shows that the corresponding integral operators
are Hilbert-Schmidt. Moreover, let

ϕm(x, µ) :=
g(|x|)
|x|

Y`m(x)δµ,+1, m = −`, . . . , `,

and

τ(x, y) :=
∑̀
m=−`

ϕm(x)ϕm(y) = δµx,+1δµy,+1
2`+ 1

4π
g(|x|)
|x|

g(|y|)
|y|

P`(x̂ · ŷ).
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Given f ∈ L2(R+), we define

ϕ(x, µ) :=
f(|x|)
|x|

Y`′0(x)δµ,+1,

then ∫∫
ϕ(x)τ(x, y)ϕ(y)
|x− y|

dx dy = (2`+ 1)
∫∫

f(r)K(r, s)f(s) dr ds.

The last equality can be computed using (4.3) and (4.8). Hence, the non-negativity
of the integral operator corresponding to K follows from the non-negativity of the
term on the left-hand side. �

Lemma 5.2. (i) For all f ∈ H1
0 (R+) and ε > 0: 〈f, 1

rf〉 ≤ ε‖f
′‖2 + 1

ε‖f‖
2.

(ii) Let s0 ∈ N, `1, . . . , `s0 ∈ N0, Z > 0, f1, . . . , fs0 ∈ H1
0 (R+), and ε > 0. Then

ERHF (f1, . . . , fs0) ≥ 2
s0∑
j=1

(2`j + 1)
[
(1− Zε)‖f ′j‖2 −

Z

ε
‖fj‖2

]
.

(iii) Let s0 ∈ N, `1, . . . , `s0 ∈ N0, and f1, . . . , fs0 ∈ H1
0 (R+). Then for all ` ∈ N0:

0 ≤ K` ≤ U ≤
s0∑
k=1

(2`k + 1)(‖f ′k‖2 + ‖fk‖2).

(iv) Let `, `′ ∈ N0. Then the following maps are weakly sequentially continuous
on H1

0 (R+) resp. H1
0 (R+)×H1

0 (R+):

f 7→ 〈f, 1
r
f〉,

(f, g) 7→ 〈f ⊗ g|max{r, s}−1|f ⊗ g〉,
(f, g) 7→ 〈f ⊗ g|U``′ |g ⊗ f〉.

(v) The functional ERHF is weakly sequentially lower semicontinuous on the set
×Ni=1H

1
0 (R+).

Proof. (i) and (iii) follow easily from the Cauchy-Schwarz and the Hardy inequali-
ties (4.5), (U1), (U2), and (U4). To prove (ii) fix j, k ∈ {1, . . . , s0}. Using Cauchy-
Schwarz, (U1) and (U2) we obtain∣∣∣ ∫∫ fj(r)fk(s)U`j`k(r, s)fk(r)fj(s) dr ds

∣∣∣
≤
(∫∫

|fj(r)|2|fk(s)|2U`j`k(r, s) dr ds
)1/2

×
(∫∫

|fk(r)|2|fj(s)|2U`j`k(r, s) dr ds
)1/2

=
∫∫
|fj(r)|2|fk(s)|2U`j`k(r, s) dr ds

≤
∫∫
|fj(r)|2|fk(s)|2

max{r, s}
dr ds.

Therefore,

ERHF (f1, . . . , fs0) ≥ 2
s0∑
j=1

(2`j + 1)
(
‖f ′j‖2 − Z〈fj ,

1
r
fj〉
)
.
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The claim now follows immediately from (i).
(iv) Let fn ⇀ f weakly in H1

0 (R+). Due to the Rellich-Kondrashov theorem,
fn converges to f uniformly in R+. To prove the weak continuity of the Coulomb
potential we first use

|〈fn,
1
r
fn〉 − 〈f,

1
r
f〉| ≤ |〈fn − f,

1
r
fn〉|+ |〈

1
r
f, fn − f〉| = (∗) + (∗∗).

For R > 0 we obtain using Cauchy–Schwarz and Hardy’s inequality (4.5)

(∗) ≤
∫ R

0

|fn(r)− f(r)||fn(r)|
r

dr +
1
R

∫ ∞
R

|fn(r)− f(r)||fn(r)| dr

≤
(∫ R

0

|fn(r)− f(r)|2 dr
)1/2(∫ ∞

0

|fn(r)|2

r2
dr
)1/2

+
1
R
‖fn − f‖‖fn‖

≤ 2
√
R sup
r∈(0,R)

{|fn(r)− f(r)|}‖f ′n‖+
1
R

(
‖fn‖+ ‖f‖

)
‖fn‖.

Since ‖f ′n‖, ‖f‖, and ‖fn‖ are uniformly bounded in n, we can first choose R large
to make the second term small, then choose n large to make the first term small.
(∗∗) can be estimated analogously. The weak continuity of the other maps can
be seen with a similar decomposition argument as shown above for the Coulomb
potential.

(v) Let f (n)
j ⇀ fj weakly in H1

0 (R+) for j = 1, . . . , N . Clearly,

〈fj | − ∂2
r +

`j(`j + 1)
r2

|fj〉 ≤ lim inf
n→∞

〈f (n)
j | − ∂

2
r +

`j(`j + 1)
r2

|f (n)
j 〉,

since f (n)
j ⇀ fj in H1

0 (R+) implies ∂rf
(n)
j ⇀ ∂rfj in L2(R+) for the first term, and

using the lemma of Fatou for the second term. The remaining terms of ERHF are
weakly sequentially continuous as shown in (iv). �
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