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ASYMPTOTIC BEHAVIOR OF SINGULAR SOLUTIONS TO
SEMILINEAR FRACTIONAL ELLIPTIC EQUATIONS

GUOWEI LIN, XIONGJUN ZHENG

Abstract. In this article we study the asymptotic behavior of positive sin-

gular solutions to the equation

(−∆)αu+ up = 0 in Ω \ {0},
subject to the conditions u = 0 in Ωc and limx→0 u(x) = ∞, where p ≥ 1, Ω

is an open bounded regular domain in RN (N ≥ 2) containing the origin, and
(−∆)α with α ∈ (0, 1) denotes the fractional Laplacian. We show that the

asymptotic behavior of positive singular solutions is controlled by a radially

symmetric solution with Ω being a ball.

1. Introduction

In this article, we study the positive singular solutions to semilinear elliptic
equations involving the fractional Laplacian

(−∆)αu+ up = 0 in Ω \ {0},
u = 0 in Ωc,

lim
x→0

u(x) =∞,
(1.1)

where Ω is an open bounded C2 domain in RN (N ≥ 2) with 0 ∈ Ω and p ≥ 1. The
operator (−∆)α with α ∈ (0, 1) is the fractional Laplacian defined as

(−∆)αu(x) = P.V.

∫
RN

u(x)− u(y)
|x− y|N+2α

dy. (1.2)

Here P.V . denotes the principal value of the integral, and for notational simplicity
we omit it in what follows.

In recent years, nonlinear elliptic equations involving general integro-differential
operators, especially, fractional Laplacian, have been studied by many authors.
Various regularity issues for fractional elliptic equations have been studied, see for
instance [3, 5, 23, 26]. The existence of solutions to semilinear equations involving
fractional Laplacian has been investigated by [13, 25] and others by using variational
methods.
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When α = 1 and p ∈ (1, N
N−2 ), it was made in [28] the description of the all

possible singular behavior of positive solutions to equation (1.1) with u = 0 on ∂Ω.
In particular, there are only two types of singular behavior occur:
(i) either u(x) ∼ cNk|x|2−N when x → 0 and k can take any positive value (u is
said to have a weak singularity at 0);
(ii) or u(x) ∼ cN,p|x|−

2
p−1 when x→ 0 (u is said to have a strong singularity at 0).

For α ∈ (0, 1), it was shown in [10] the existence of singular solutions for (1.1)
by using Perron’s method. It was studied in [11] the existence of weak singular
solutions and asymptotic behavior of solutions, and the that regularity of weak
singular solutions was improved into classical solutions in [12]. In particular, for
p ∈ (1 + 2α

N ,
N

N−2α ), there exist a solution up of problem (1.1) and some positive
constant c1 such that

lim
x→0

up(x)|x|
2α
p−1 = c1.

For p ∈ (0, N
N−2α ), there exists a solution ut of problem (1.1) for each t > 0 such

that
lim
x→0

ut(x)|x|N−2α = t.

Moreover, if p ∈ (0, 1 + 2α
N ), the solutions {ut} blow up everywhere in Ω as t→∞.

If p ∈ (1 + 2α
N ,

N
N−2α ), the limit of {ut} as t → ∞ is a strongly singular solution

of (1.1), which coincides with up for p ∈ (max{ 2α
N−2α , 1 + 2α

N },
N

N−2α ). However,
it does not make all the classification of the singularities of (1.1) in [10, 12]. Our
purpose in this paper is to describe the asymptotic behavior of positive singular
solutions of (1.1), more precisely, any positive solution of (1.1) with the general
domain Ω is controlled by a radially symmetric solution of (1.1) with Ω being a
ball. Moreover, we show that any positive solution of (1.1) is radially symmetric
when Ω is a ball.

Before stating the main theorem we make precise the notion of solution that
we use in this article. We say that a continuous function u : RN \ {0} → R is a
classical solution of equation (1.1) if the fractional Laplacian of u is defined at any
point of Ω \ {0}, according to the definition given in (1.2), and if u satisfies the
equation and the external condition in a pointwise sense. In this article, we deal
with the singular solution only in the classical sense, since the viscosity solution of
(1.1) (see Definition 2.4) could be improved into classical sense by regularity results
[12, Lemma 3.1], [7, Theorem 2.1] and even the solution in the weak sense (see [12,
Definition 1.1]) has been improved into classical sense by [12, Theorem 3.1].

Now we are ready to state our main result. It will be convenient for our descrip-
tion to define

r0 = max{r > 0 : Br(0) ⊂ Ω}. (1.3)

Theorem 1.1. Assume that α ∈ (0, 1), p ≥ 1 and u is a positive classical solution of
(1.1). Then there exists a radially symmetric solution us of (1.1) with Ω = Br0(0)
such that

us ≤ u ≤ us + c2 in Ω \ {0},
where c2 = supx∈RN\Br0 (0) u(x).

We remark if the domain Ω is a ball centered at0, then any positive solution
u of (1.1) is radially symmetric. In fact, when Ω = BR(0) with R > 0, by the



EJDE-2014/45 ASYMPTOTIC BEHAVIOR OF SINGULAR SOLUTIONS 3

definition of r0, it is obvious that r0 = R. Using Theorem 1.1 and the fact of
c2 = 0, there exists a radially symmetric solution us of (1.1) such that u = us in
BR := BR(0) \ {0}; therefore, u is radially symmetric. In precise statement, we
have following corollary.

Corollary 1.2. Assume that α ∈ (0, 1), p ≥ 1 and u is a positive classical solution
of (1.1) with Ω = Br0(0). Then u is radially symmetric.

To prove Theorem 1.1, we first show that problem (1.1) with Ω = Br0(0) admits a
positive singular solution us by Perron’s method. This will be done by constructing
super and sub-solutions by using the solution u. Next, we prove that us is radially
symmetric by the classical moving planes method which is developed in [2, 9, 14,
21] to obtain the symmetry results for the fractional semilinear problem. In this
paper, we extend this method to obtain the symmetry property of isolated singular
solutions to

(−∆)αu = h(u) + η in B1, u = 0 in Bc1(0), (1.4)

where η : B1 → R is radially symmetric and decreasing function. We note that the
singularity at the origin gives rise to difficulties in the procedure of moving planes.

The paper is organized as follows. In section 2, we obtain the existence of
solutions by Perron’s Method. Section 3 is devoted to obtain symmetry property
for general nonlinearity.

2. Existence of solutions

In this section, we show that problem (1.1) with Ω = Br0(0) admits a positive
singular solution us under the hypotheses of Theorem 1.1. This result will be shown
by the barrier method. To this purpose, we need some auxiliary lemmas.

Lemma 2.1. [7, Theorem 2.5] Let p > 0 and O be an open bounded C2 domain
in RN . Suppose that g : Oc → R is in L1(Oc, dx

1+|x|N+2α ) and it is of class C2

in {z ∈ Oc : dist(z, ∂O) ≤ δ} for some δ > 0 and f : Ō → R is continuous,
f ∈ Cβloc(O) with β ∈ (0, 1). Then there exists a classical solution u of

(−∆)αu(x) + |u|p−1u(x) = f(x), x ∈ O,
u(x) = g(x), x ∈ Oc,

(2.1)

which is continuous in Ō.

Next, we introduce the comparison principle.

Lemma 2.2. [7, Theorem 2.3] Let u and v be classical super-solution and sub-
solution of

(−∆)αu+ h(u) = η in O,

respectively, where O is an open, bounded domain, the function η : O → R is con-
tinuous and h : R→ R is increasing. Suppose further that u and v are continuous
in Ō and v(x) ≤ u(x) for all x ∈ Oc. Then u(x) ≥ v(x), x ∈ O.

Once we have a sub-solution and a super-solution of (1.1), we may find a solution
of (1.1) by the Perron’s method. More precisely, we have the following result.
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Lemma 2.3. Let p > 0 and 0 ∈ Ω be an open bounded C2 domain. Suppose that
there are super-solution U and sub-solution U of (1.1) such that U and U are locally
C2 in Ω \ {0}, and

U ≥ U in Ω \ {0}, lim
x→0

U(x) = +∞, U ≥ 0 ≥ U in Ωc.

Then there exists at least one positive solution u of (1.1) such that

U ≤ u ≤ U in Ω \ {0}.

Before proving the above lemma, we introduce the definition of viscosity solution
to (1.1).

Definition 2.4. We say that a function u ∈ L1(RN , dy
1+|y|N+2α ), continuous in

RN \ {0}, is a viscosity super solution (sub solution) of (1.1) if

u ≥ 0 (resp. u ≤ 0) in Ωc

and for every point x0 ∈ Ω \ {0} and some neighborhood V of x0 with V̄ ⊂ Ω \ {0}
and for any φ ∈ C2(V̄ ) such that u(x0) = φ(x0) and

u(x) ≥ φ(x) (resp. u(x) ≤ φ(x)) for all x ∈ V,

defining

ũ =

{
φ in V,

u in V c,

we have

(−∆)αũ(x0) + up(x0) ≥ 0 (resp. (−∆)αũ(x0) + up(x0) ≤ 0).

We say that u is a viscosity solution of (1.1) if it is a viscosity super solution
and also a viscosity sub solution of (1.1).

Proof of Lemma 2.3. Let Ωn = {x ∈ Ω : |x| > 1/n}. Then, Ωn is of class C2 for
n ≥ N0, where N0 is chosen large enough such that

B̄1/N0(0) ⊂ Ω and U > 0 in B̄1/N0(0).

Since U , U are locally C2 in Ω\{0}, applying Lemma 2.1 with O = Ωn and δ = 1
4n ,

we find a solution un of the problem

(−∆)αu(x) + |u|p−1u(x) = 0, x ∈ Ωn,

u(x) = U(x), x ∈ B̄ 1
n

(0) \ {0},
u(x) = 0, x ∈ Ωc

(2.2)

and a solution vn of the problem

(−∆)αu(x) + |u|p−1u(x) = 0, x ∈ Ωn,

u(x) = U(x), x ∈ B̄ 1
n

(0) \ {0},
u(x) = 0, x ∈ Ωc.

(2.3)

Now we show that for any n ≥ N0,

U ≤ un ≤ vn ≤ U in RN \ {0}. (2.4)

In fact, since un is the solution of (2.2) in Ωn, U is a sub-solution of (2.2) in Ωn
and un = U in B 1

n
(0) \ {0}, un = 0 ≥ U in Ωc, then we apply Lemma 2.2 to obtain
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that U ≤ un in RN \ {0}. Similarly, we have vn ≤ U in RN \ {0}. Since un and vn
are solutions of

(−∆)αu(x) + |u|p−1u(x) = 0, x ∈ Ωn (2.5)
and un = U ≤ U = vn in B 1

n
, un = vn = 0 in Ωc, by Lemma 2.2, we have un ≤ vn

in RN \ {0}.
Next, we prove that for all n ≥ N0,

un ≤ un+1 ≤ vn+1 ≤ vn in RN \ {0}. (2.6)

Since un+1 ≥ U in RN \ {0} and un = U in B̄ 1
n

(0) \ {0}, we obtain un+1 ≥ un

in B̄ 1
n

(0) \ {0}. For un+1 and un being solutions of (2.5), by Lemma 2.2, we
have un ≤ un+1 in RN \ {0}. Similarly, vn ≥ vn+1 in RN \ {0}. The inequality
un+1 ≤ vn+1 follows from (2.4).

Therefore, we can define a function u by

u(x) = lim
n→+∞

un(x), x ∈ RN \ {0},

which satisfies

U(x) ≤ uN0 ≤ u(x) ≤ vN0(x) ≤ U(x), x ∈ RN \ {0}. (2.7)

Since U and U belong to L1(Oc, dx
1+|x|N+2α ), then un → u in L1(Oc, dx

1+|x|N+2α ) as
n→∞. By interior estimates as given in [12, Lemma 3.1] or [23, Proposition 2.3],
for any compact set K of Ω\{0}, there exists NK ≥ N0 such that {un} is uniformly
bounded in Cθ(K) for n ≥ Nk and some θ ∈ (0, 2α). By Ascoli-Arzelà Theorem
we find that u is continuous in K and un → u uniformly in K. Together with that
uN0 = vN0 = 0 in Ωc and uN0 , vN0 are continuous up to the boundary of Ω, we
have u = 0 in Ωc, u is continuous in Ω \ {0} and up to ∂Ω. By stability theorem [7,
Theorem 2.4], u is a solution of (1.1) in the viscosity sense. Applying [6, Theorem
2.6], we find that u is Cθloc(O), and using [7, Theorem 2.1] we conclude that u is a
classical solution. �

Our main result in this section is as follows.

Proposition 2.5. Let 0 ∈ Ω be an open bounded C2 domain in RN and α ∈ (0, 1).
Assume that p > 0 and u is a positive classical solution of (1.1). Then there exists
a positive singular solution us of (1.1) with Ω = Br0(0) such that

us ≤ u ≤ us + c2 in Ω \ {0},
where c2 = supx∈RN\Br0 (0) u(x).

Proof. We will construct a sub-solution and a super-solution of (1.1). Let u be a
solution of (1.1) and u0(x) = u(x)− c2 for x ∈ RN \ {0}. We observe that

(−∆)αu0 = (−∆)αu inBr0(0) \ {0}
and

|u0|p−1u0 ≤ up in Br0(0) \ {0}.
Hence, u0 is a sub-solution of (1.1) with Ω = Br0(0). Since u is a super-solution of
(1.1) with Ω = Br0(0) and u ≥ u0 in RN , by Lemma 2.3 there exists a solution us
of (1.1) with Ω = Br0(0) such that

u− c2 ≤ us ≤ u in Ω \ {0}. (2.8)

The proof is complete. �
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3. Symmetry of solutions

In this section, we will prove that the singular solution us of (1.1) with Ω =
Br0(0) is radially symmetric. To this end, we investigate the radially symmetric
property of positive singular solutions to more general semilinear elliptic equations

(−∆)αu = h(u) + η in B1(0) \ {0},
u = 0 in Bc1(0),

lim
x→0

u(x) =∞.
(3.1)

We assume that h and η satisfy
(H0) The function h : [0,∞)→ R is Lipschitz continuous in [0, R] for any R > 0.
(H1) The function η : B1(0) \ {0} → R is radially symmetric and decreasing in

|x|.
The main results of this section reads as follows.

Proposition 3.1. Suppose that (H0) and (H1) hold. If u is a positive classical
solution of (3.1), then u must be radially symmetric and strictly decreasing in
r = |x| for r ∈ (0, 1).

Proposition 3.1 will be proved by the moving plane method. However, since the
solution u is singular at the origin, we need the following variant of the maximum
principle for small domain.

Lemma 3.2. Let Ω be an open and bounded subset of RN . Suppose that ϕ : Ω→ R
is in L∞(Ω) and w ∈ L∞(RN ) is a classical solution of

−(−∆)αw(x) ≤ ϕ(x)w(x), x ∈ Ω,

w(x) ≥ 0, x ∈ RN \ Ω.
(3.2)

Then there is δ > 0 such that whenever |Ω−| ≤ δ, w has to be non-negative in Ω,
where Ω− = {x ∈ Ω : w(x) < 0}.

For a proof of the above lemma, see [14, Corollary 2.1] and [18, 24].
Now we use the moving plane method to show the radial symmetry and mono-

tonicity of positive solutions to equation (3.1). For simplicity, we denote B1 =
B1(0) \ {0},

Σλ = {x = (x1, x
′) ∈ B1 : x1 > λ}, (3.3)

uλ(x) = u(xλ) and wλ(x) = uλ(x)− u(x), (3.4)

where λ ∈ (0, 1) and xλ = (2λ− x1, x
′) for x = (x1, x

′) ∈ RN .
By the moving plane method, we will prove that wλ > 0 in Σλ for all λ ∈ (0, 1).

This is proved in a indirect way. Suppose, on the contrary, that Σ−λ = {x ∈ Σλ :
wλ(x) < 0} 6= ∅ for λ ∈ (0, 1). Let us define

w+
λ (x) =

{
wλ(x), x ∈ Σ−λ ,
0, x ∈ RN \ Σ−λ ,

(3.5)

w−λ (x) =

{
0, x ∈ Σ−λ ,
wλ(x), x ∈ RN \ Σ−λ .

(3.6)

Hence, w+
λ (x) = wλ(x)−w−λ (x) for all x ∈ RN . It is obvious that (2λ, 0, . . . , 0) 6∈ Σ−λ

for λ small, since limx→0 u(x) = +∞.
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Lemma 3.3. For any λ ∈ (0, 1) and any x ∈ Σ−λ , we have that

(−∆)αw−λ (x) ≤ 0. (3.7)

Proof. By direct computation, for x ∈ Σ−λ , we have that

(−∆)αw−λ (x) =
∫

RN

w−λ (x)− w−λ (z)
|x− z|N+2α

dz

= −
∫

RN\Σ−λ

wλ(z)
|x− z|N+2α

dz

= −
∫

(B1\(B1)λ)∪((B1)λ\B1)

wλ(z)
|x− z|N+2α

dz

−
∫

(Σλ\Σ−λ )∪(Σλ\Σ−λ )λ

wλ(z)
|x− z|N+2α

dz −
∫

(Σ−λ )λ

wλ(z)
|x− z|N+2α

dz

= −I1 − I2 − I3,

where Aλ = {xλ : x ∈ A} for any set A in RN . We estimate these integrals
separately. Since u = 0 in (B1)λ \ B1 and uλ = 0 in B1 \ (B1)λ, we have

I1 =
∫

(B1\(B1)λ)∪((B1)λ\B1)

wλ(z)
|x− z|N+2α

dz

=
∫

(B1)λ\B1

uλ(z)
|x− z|N+2α

dz −
∫
B1\(B1)λ

u(z)
|x− z|N+2α

dz

=
∫

(B1)λ\B1

uλ(z)(
1

|x− z|N+2α
− 1
|x− zλ|N+2α

))dz ≥ 0,

since uλ ≥ 0 and |x− zλ| > |x− z| for all x ∈ Σ−λ and z ∈ (B1)λ \ B1.
To decide the sign of I2 we observe that wλ(zλ) = −wλ(z) for any z ∈ RN . Then

I2 =
∫

(Σλ\Σ−λ )∪(Σλ\Σ−λ )λ

wλ(z)
|x− z|N+2α

dz

=
∫

Σλ\Σ−λ

wλ(z)
|x− z|N+2α

dz +
∫

Σλ\Σ−λ

wλ(zλ)
|x− zλ|N+2α

dz

=
∫

Σλ\Σ−λ
wλ(z)(

1
|x− z|N+2α

− 1
|x− zλ|N+2α

)dz ≥ 0,

since wλ ≥ 0 in Σλ \ Σ−λ and |x− zλ| > |x− z| for all x ∈ Σ−λ and z ∈ Σλ \ Σ−λ .
Finally, since wλ(z) < 0 for z ∈ Σ−λ , we deduce that

I3 =
∫

(Σ−λ )λ

wλ(z)
|x− z|N+2α

dz

=
∫

Σ−λ

wλ(zλ)
|x− zλ|N+2α

dz

= −
∫

Σ−λ

wλ(z)
|x− zλ|N+2α

dz ≥ 0.

The proof is complete. �
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Lemma 3.4. Let the function h satisfy (H0) and for λ ∈ (0, 1) and x ∈ Σ−λ ,

ϕ(x) = −h(uλ(x))− h(u(x))
uλ(x)− u(x)

. (3.8)

Then there exists C > 0 dependent of λ such that ‖ϕ‖L∞(Σ−λ ) ≤ C.

Proof. For x ∈ Σ−λ ⊂ Σλ ⊂ RN \ Bλ(0), uλ(x) < u(x). Moreover, there exists
Mλ > 0 such that

‖u‖L∞(RN\Bλ(0)) ≤Mλ.

Since h satisfies (H0), there exists C > 0 depending on λ such that

‖ϕ‖L∞(Σ−λ ) ≤ C.

�

Remark 3.5. We note that Mλ →∞ as λ→ 0, since limx→0 u(x) =∞.

Proof of Proposition 3.1. We divide the proof into four steps.
Step 1. We prove that if λ is close to 1, then wλ > 0 in Σλ. First we show that
wλ ≥ 0 in Σλ, i.e. Σ−λ is empty. By contradiction, we assume that Σ−λ 6= ∅. Now
we apply (3.7) and linearity of the fractional Laplacian to obtain that, for x ∈ Σ−λ ,

(−∆)αw+
λ (x) ≥ (−∆)αwλ(x) = (−∆)αuλ(x)− (−∆)αu(x). (3.9)

Combining equation (3.1) with (3.9) and (3.5), for x ∈ Σ−λ , we have

(−∆)αw+
λ (x) ≥ (−∆)αuλ(x)− (−∆)αu(x)

= h(uλ(x)) + η(xλ)− h(u(x))− η(x)

= −ϕ(x)w+
λ (x) + η(xλ)− η(x).

By Lemma 3.4 and assumption (H1), we have that η(xλ) ≥ η(x) for x ∈ Σ−λ and
then

− (−∆)αw+
λ (x) ≤ ϕ(x)w+

λ (x), x ∈ Σ−λ . (3.10)

Moreover, w+
λ = 0 in (Σ−λ )c. Choosing λ ∈ (0, 1) close enough to 1 we have that

|Σ−λ | is small and we apply Lemma 3.2 to obtain that

wλ = w+
λ ≥ 0 in Σ−λ ,

which is impossible. Thus,
wλ ≥ 0 in Σλ.

To complete Step 1, we claim that for 0 < λ < 1, if wλ ≥ 0 and wλ 6≡ 0 in Σλ,
then wλ > 0 in Σλ. We assume that the claim is true for the moment. Since the
function u is positive in B1(0) and u = 0 on ∂B1(0), wλ is positive on ∂B1(0)∩∂Σλ
and then wλ 6≡ 0 in Σλ.

Now we prove the claim. Suppose on the contrary that there exists x0 ∈ Σλ such
that wλ(x0) = 0, i.e., uλ(x0) = u(x0). Then

(−∆)αwλ(x0) = (−∆)αuλ(x0)− (−∆)αu(x0) = η((x0)λ)− η(x0).

Since x0 ∈ Σλ, we have |x0| > |(x0)λ|. By assumption (H1), we have that
η((x0)λ) ≥ η(x0) and then

(−∆)αwλ(x0) ≥ 0. (3.11)
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On the other hand, let Kλ = {(x1, x
′) ∈ RN : x1 > λ}. Noting wλ(zλ) = −wλ(z)

for any z ∈ RN and wλ(x0) = 0, we deduce

(−∆)αwλ(x0) = −
∫
Kλ

wλ(z)
|x0 − z|N+2α

dz −
∫

RN\Kλ

wλ(z)
|x0 − z|N+2α

dz

= −
∫
Kλ

wλ(z)
|x0 − z|N+2α

dz −
∫
Kλ

wλ(zλ)
|x0 − zλ|N+2α

dz

= −
∫
Kλ

wλ(z)(
1

|x0 − z|N+2α
− 1
|x0 − zλ|N+2α

)dz.

The facts |x0 − zλ| > |x0 − z| for z ∈ Kλ, wλ(z) ≥ 0 and wλ(z) 6≡ 0 in Kλ yield

(−∆)αwλ(x0) < 0, (3.12)

which contradicts (3.11), completing the proof of the claim.
Step 2. We prove λ0 := inf{λ ∈ (0, 1) : wλ > 0 in Σλ} = 0. Were it not true, we
would have λ0 > 0. Hence, wλ0 ≥ 0 in Σλ0 and wλ0 6≡ 0 in Σλ0 . The claim in Step
1 implies wλ0 > 0 in Σλ0 .

Next we claim that if wλ > 0 in Σλ for λ ∈ (0, 1), then there exists ε ∈ (0, λ/4)
such that wλε > 0 in Σλε , where λε = λ − ε > 3λ/4. This claim directly implies
that λ0 = 0, which contradicts the fact λ0 > 0.

Now we prove the claim. Let Dµ = {x ∈ Σλ : dist(x, ∂Σλ) ≥ µ} for µ > 0 small.
Since wλ > 0 in Σλ and Dµ is compact, there exists µ0 > 0 such that wλ ≥ µ0 in
Dµ. By the continuity of wλ(x), for ε > 0 small enough and λε = λ − ε, we have
that wλε(x) ≥ 0 in Dµ. Therefore, Σ−λε ⊂ Σλε \Dµ and |Σ−λε | is small if ε and µ are
small. Using (3.7) and proceeding as in Step 1, we have for all x ∈ Σ−λε that

(−∆)αw+
λε

(x) = (−∆)αuλε(x)− (−∆)αu(x)− (−∆)αw−λε(x)

≥ (−∆)αuλε(x)− (−∆)αu(x)

= −ϕ(x)w+
λε

(x) + η(xλε)− η(x)

≥ −ϕ(x)w+
λε

(x).

By Lemma 3.4, if λε > 3λ/4, ϕ(x) is controlled by some constant depending on λ.
Since w+

λε
= 0 in (Σ−λε)

c and |Σ−λε | is small, for ε and µ small, Proposition 3.2
implies that wλε ≥ 0 in Σλε . Combining with λε > 0 and wλε 6≡ 0 in Σλε , we obtain
wλε > 0 in Σλε . The proof of the claim complete.
Step 3. By Step 2, we have λ0 = 0, which implies that u(−x1, x

′) ≥ u(x1, x
′)

for x1 ≥ 0. Using the same argument from the other side, we conclude that
u(−x1, x

′) ≤ u(x1, x
′) for x1 ≥ 0 and then u(−x1, x

′) = u(x1, x
′) for x1 ≥ 0.

Repeating this procedure in all directions we see that u is radially symmetric.
Finally, we prove u(r) is strictly decreasing in r ∈ (0, 1). Let us consider 0 <

x1 < x̃1 < 1 and let λ = x1+ex1
2 . As proved above we have

wλ(x) > 0 for x ∈ Σλ.

Then

0 < wλ(x̃1, 0, . . . , 0) = uλ(x̃1, 0, . . . , 0)− u(x̃1, 0, . . . , 0)

= u(x1, 0, . . . , 0)− u(x̃1, 0, . . . , 0);

i.e., u(x1, 0, . . . , 0) > u(x̃1, 0, . . . , 0). Using the radial symmetry of u, we conclude
the monotonicity of u. �



10 G. LIN, X. ZHENG EJDE-2014/45

Proof of Theorem 1.1. The existence of solutions was proved in Proposition 2.5,
and by Proposition 3.1 in the particular case of η = 0 and h(s) = −sp with p ≥ 1,
the solution is radially symmetric. The proof is complete. �
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