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SOLUTIONS TO SYSTEMS OF ARBITRARY-ORDER
DIFFERENTIAL EQUATIONS IN COMPLEX DOMAINS

RABHA W. IBRAHIM

Abstract. In this article, we study the existence of solutions for a three
dimensional fractional system involving seven coefficients. We prove that the

system has a strong global solution which is unique in an appropriate function

space. We use a method based on analytic technique from the fixed point
theory, along with the fractional Duhamel principle.

1. Introduction

Fractional calculus (integrals and derivatives) of any positive order can be con-
sidered as a branch of mathematical physics, associated with differential equations,
integral equations and integro-differential equations, where integrals are of convo-
lution form with weak singular kernels of power law type. It has gained more and
more interest in applications in several fields of applied sciences. Fractional differ-
ential equations (real and complex) are viewed as models for nonlinear differential
equations; varieties of them play important roles, not only in mathematics, but also
in physics, dynamical systems, control systems and engineering, to create the math-
ematical modeling of many physical phenomena. Furthermore, they are employed
in social science, such as, food supplement, climate and economics. Fractional mod-
els have been studied by many researchers, to sufficiently describe the operation of
variety of computational, physical and biological processes and systems. Accord-
ingly, considerable attention has been paid to the outcomes of fractional differential
equations, integral equations and fractional partial differential equations of physical
phenomena. Most of these fractional differential equations have analytic solutions,
approximation and numerical techniques [8, 9, 11, 13, 14].

In current years, researchers have introduced and studied several types of non-
linear systems with complex variables. These systems, which involve complex vari-
ables, are employed to describe the physics of a detuned laser, rotating fluids, disk
dynamos, electronic circuits, and particle beam dynamics in high energy accelera-
tors. As special model, the chaotic complex system is used to describe and simulate
the physics of detuned lasers and thermal convection of liquid flows. This model cor-
responds to the equilibrium state of the atmosphere, in which surfaces of constant
density are not parallel to the surface of constant gravitational potential [3, 5, 6].
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Existence and uniqueness of solutions are studied widely in the field of fractional
differential equations [1, 2, 4, 7, 10, 12, 15, 16]. In this work, we study fractional
system involving seven coefficients in complex spaces. We show that the proposed
system has a global solution in appropriate functional spaces. This is strong and
unique solution. We employ a method, based on analytic methods from the fixed
point theory together with the fractional Duhamel principle.

2. Fractional calculus

The idea of the fractional calculus (that is, calculus of integrals and derivatives of
any arbitrary real or complex order) was planted over 300 years ago. In 1823, Abel
investigated the generalized tautochrone problem, and he was the pioneer to apply
fractional calculus techniques in a physical problem. Later, Liouville has applied
fractional calculus to solve problems in potential theory. Since then, the fractional
calculus has triggered the attention of many researchers in all area of sciences.
The following section concerns with some preliminaries and notation regarding the
fractional calculus.

Definition 2.1. The fractional (arbitrary) order integral of the function f of order
α > 0 is defined by

Iαa f(t) =
∫ t

a

(t− τ)α−1

Γ(α)
f(τ)dτ.

When a = 0, we write Iαa f(t) = f(t) ∗ φα(t), where (∗) denotes the convolution
product (see [11]), φα(t) = tα−1

Γ(α) , t > 0 and φα(t) = 0, t ≤ 0 and φα → δ(t) as
α→ 0 where δ(t) is the delta function.

Definition 2.2. The fractional (arbitrary) order derivative of the function f of
order 0 ≤ α < 1 is defined by

Dα
a f(t) =

d

dt

∫ t

a

(t− τ)−α

Γ(1− α)
f(τ)dτ =

d

dt
I1−α
a f(t).

In the sequel, we shall use the notation ∂αt .

Remark 2.3. From Definitions 2.1 and 2.2, for a = 0, we have

Dαtµ =
Γ(µ+ 1)

Γ(µ− α+ 1)
tµ−α, µ > −1; 0 < α < 1,

Iαtµ =
Γ(µ+ 1)

Γ(µ+ α+ 1)
tµ+α, µ > −1; α > 0.

The Leibniz rule is

Dα
a [f(t)g(t)] =

∞∑
k=0

(
α
k

)
Dα−k
a f(t)Dk

ag(t) =
∞∑
k=0

(
α
k

)
Dα−k
a g(t)Dk

af(t),

where (
α
k

)
=

Γ(α+ 1)
Γ(k + 1)Γ(α+ 1− k)

.
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3. Fractional system

In this section, we propose a one-dimensional setting, which physically corre-
sponds to the consideration of a Laminar-Couette flow. This type of flow appro-
priately models flows in shear rheometers. Our three unknown fields, the velocity
u, the shear stress φ and the fluidity f are defined as functions of a space variable
z ∈ U := {z ∈ C, |z| ≤ 1}. They are also, functions of the time t ≥ 0. The system
can be read as

ρ∂αt u(t, z) = ηuzz + φz, (3.1)

λ∂αt φ(t, z) = Guz − fφ+G`, (3.2)

∂αt f(t, z) = (−1 + ξ|φ|)f2 − νf3, (3.3)

where α ∈ (0, 1), ρ is the density, η is the viscosity, λ is the characteristic relaxation
time, G is the elastic modulus, ` is a constant scalar in [0,∞) and ξ and ν are the
evolution of the fluidity f . In the sequel, we assume that u, φ and f are analytic with
|f | ≤ 1. System (3.1)–(3.3) is classified as a fully coupled system of three equations
and seven-dimensionless coefficients. All the above coefficients are positive and
constant in time. The first one is the equation of conservation of momentum for u.
The second equation rules the evolution of the shear stress φ. The third equation is
of the form evolution equations suggested by many authors. The first two equations
are classical in nature, while the last equation, may differ from one model to another.
Assume that system (3.1)–(3.3) supplied with initial conditions (u0, φ0, f0) and the
homogeneous boundary conditions u(t, 0) = 0 and u(t, 1) = 0.

The dimension of a basic physical quantity can be formulated as a product of the
basic physical dimensions: length, mass, electric charge, absolute temperature and
time symbolled by sans-serif symbols L,M,Q,Θ, and T , respectively, each raised
to a rational power. Other physical quantities can be described in phrases of these
fundamental physical dimensions. For example, speed has the dimension length
(or distance) per unit of time, similarly for velocity, stress and fluidity. Usually
these depending physical quantities need constant coefficients. In general, these
coefficients are constant with respect to time, therefore they have positive values.

4. Existence and uniqueness

In this section, we establish the existence and uniqueness of a solution for (3.1)–
(3.3).

Theorem 4.1. Consider (3.1)–(3.3) with initial condition (u0, φ0, f0) ∈ H1(U)3

with <(f0) ≥ 0. If Tα(1+ν)
Γ(α+1) < 1 then there exists a unique global solution (u, φ, f)

for (3.1)–(3.3) subjected with the boundary condition u(t, 0) = 0 and u(t, 1) = 0,
such that

(u, φ, f) ∈
(
C([0, T ];H1) ∩ L2([0, T ];H2)× C([0, T ];H1)× C([0, T ];H1)

)
(4.1)

and <(f) ≥ 0 for all z ∈ U and t ∈ [0, T ]. Moreover,

(∂αt u, ∂
α
t φ, ∂

α
t f) ∈

(
L2([0, T ];L2)× C([0, T ];L2)× C([0, T ];L2)

)
. (4.2)

The proof consists of eight steps. The first five steps derive the form of the
solution while Step 6 describes the sequence of the approximate solution. The
convergence of this sequence is proven in Step 7, thereby the existence of a solution
is established to (3.1)–(3.3). Step 8 addresses uniqueness.
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Step 1: Positivity. We prove that <(f) ≥ 0. Define the set

U0 = {z ∈ U : <(f0) > 0}.

For z ∈ U\U0, we receive <(f0(z)) = 0 and thus, from (3.3), <(f(t, z)) = 0 for all
time t ∈ [0, T ]. Now let z ∈ U0 we proceed to prove that <(f) > 0. We dispute by
contradiction and assume, by continuity of f(., z), that

tm = inf{t ∈ [0, T ], f(t, z) = 0} < T.

The Cauchy-Lipschitz theorem employed to (3.3) with zero as initial condition at
time tm implies that f(t, z) = 0 for t ∈ (tm−ε, tm+ε) and ε > 0, which contradicts
the definition of tm. Hence <(f) ≥ 0.
Step 2: Boundedness. From the evolution equation (3.1) on u, we obtain

1
α+ 1

ρ∂αt ‖u(t, .)‖2L2 + η‖uz(t, .)‖2L2 =
∫
U

(φzu)(t, .). (4.3)

Similarly, the evolution equation (3.2) implies

1
α+ 1

λ∂αt ‖φ(t, .)‖2L2 + ‖
√
fφ(t, .)‖2L2 = G

∫
U

(φuzφ)(t, .) +G`φ̂, (4.4)

where

ĝ(t) =
∫
U

g(t, z)dz.

Combining estimates (4.3) and (4.4) and using the fact that u vanishes on the
boundary, yields

1
α+ 1

∂αt [Gρ‖u(t, .)‖2L2 + λ‖φ(t, .)‖2L2 ] + ‖
√
fφ(t, .)‖2L2 +Gη‖uz(t, .)‖2L2 = G`φ̂(t).

(4.5)
Now integrating (3.3) over U implies

∂αt ‖f(t, .)‖L1 + ‖f(t, .)‖2L2 + ν‖f(t, .)‖3L3 = ξ

∫
U

(|φ|f2)(t, .). (4.6)

By the Young inequality, we have

ξ|φ|f2 =
√
ν|f |3/2 ξ√

ν
|φ||f |1/2 ≤ ν

2
|f |3 +

ξ2

2ν
|f |φ2

and hence we have

∂αt ‖f(t, .)‖L1 + ‖f(t, .)‖2L2 +
ν

2
‖f(t, .)‖3L3 ≤

ξ2

2ν
‖
√
fφ(t, .)‖2L2 . (4.7)

Summing (4.5) and (4.7), we obtain

1
α+ 1

∂αt [Gρ‖u(t, .)‖2L2 + λ‖φ(t, .)‖2L2 +
2ν
ξ2
‖f(t, .)‖L1 ]

+
1
2
‖
√
fφ(t, .)‖2L2 +Gη‖uz(t, .)‖2L2

≤ K`‖φ(t, .)‖L2 ,

(4.8)

where K is a positive constant depending on the coefficients G, η, λ, ν, ξ and ρ. By
applying the fact that

‖φ(t, .)‖L2 ≤
‖φ(t, .)‖2L2 + 1

2
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and using the generalized Gronwall lemma to (4.8), we attain

sup
t∈[0,T ]

[‖u(t, .)‖2L2 + ‖φ(t, .)‖2L2 + ‖f(t, .)‖L1 ]

+
Tα−1

Γ(α)

∫ T

0

(
‖
√
fφ(t, .)‖2L2 + ‖uz(t, .)‖2L2

)
dt ≤ K̃,

(4.9)

where K̃ is a positive constant depending on the seven coefficients G, T , u0, φ0, f0,
α, η, λ, ν, ξ, ρ and `. Note that when ` = 0, in (4.8), then K̃ does not depend on
T and hence, we have uniform bounds in time.
Step 3: Auxiliary functions. Define a function q as follows

q(t, z) =
∫ z

0

(
φ(t, ζ)− φ̂(t)

)
dζ

satisfying the Dirichlet boundary conditions which solves

∂2q

∂z2
=
∂φ

∂z
.

Applying (3.1) and (3.2), which respectively impose

ρ∂αt u = η
∂2

∂z2
(u+

1
η
q)

and

λ∂αt q = −
∫ z

0

(
fφ(t, ζ)− f̂φ(t)

)
dζ +Gu.

Define the function

Λ = u+
1
η

∫ z

0

(φ− φ̂) = u+
1
η
q. (4.10)

A fractional derivative yields

∂αt Λ = ∂αt u+
1
η
∂αt q

=
η

ρ

∂2

∂z2
(u+

1
η
q) +

1
λη

[−
∫ z

0

(
fφ(t, ζ)− f̂φ(t)

)
dζ +Gu]

=
η

ρ

∂2

∂z2
Λ− 1

λη

∫ z

0

(
fφ(t, ζ)− f̂φ(t)

)
dζ +

G

ηλ
u.

(4.11)

Multiplying by ∂2

∂z2 Λ and integrating over U yields

1
α+ 1

∂αt ‖
∂Λ
∂z

(t, .)‖2L2 +
η

2ρ
‖∂

2Λ
∂z2

(t, .)‖2L2

≤ C
(
‖(fφ)(t, .)‖L1

∫
U

|∂
2Λ
∂z2
|(t, .) +

∫
U

|u∂
2Λ
∂z2
|(t, .)

)
.

The Young and the Cauchy-Schwartz inequalities imply that

∂αt ‖
∂Λ
∂z

(t, .)‖2L2 + ‖∂
2Λ
∂z2

(t, .)‖2L2 ≤ Cα,η,ρ
(
‖(f(t, .)‖L1‖

√
fφ‖2L2 + ‖u(t, .)‖2L2

)
.

(4.12)
Since

∂Λ
∂z
|t=0 =

∂u0

∂z
+

1
η

(φ0 − φ̂0) ∈ L2(U);
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hence, we deduce from (4.12) that

Λ ∈ L∞([0, T ], H1) ∩ L2([0, T ], H2),

and consequently
u ∈ L∞([0, T ], H1) ∩ L2([0, T ], H2).

Step 4: L∞−bounds. By using the definition of Λ and φ̂, we rewrite (3.2) as

λ∂αt φ = G
∂Λ
∂z
−
(
f +

G

η

)
φ+

G

η
φ̂+G`.

Multiplying the last assertion by φ, we conclude that

λ

2
∂αt |φ|2 +

(
|f |+ G

η

)
|φ|2 ≤ C

(
|φ||∂Λ

∂z
|+ |φ|‖φ‖L2 + `|φ|

)
,

consequently, the Young inequality yields

λ

2
∂αt |φ|2 +

(
|f |+ G

η

)
|φ|2 ≤ C

(
|∂Λ
∂z
|2 + ‖φ‖L2 + `

)
. (4.13)

Since φ0 ∈ H1(U) (Step 2) and ∂Λ
∂z ∈ L

2([0, T ], L∞) (Step 3), then the generalized
Gronwall lemma to (4.13) shows that

‖φ(t, .)‖L∞ ≤ K̃, (4.14)

where K̃ is defined in (4.9), that is φ ∈ L∞([0, T ], L∞).
We proceed to prove that f ∈ L∞([0, T ], L∞). For this purpose, we apply the

fractional Duhamel principle which can be found in [15]. Then (3.3) reduces to

∂αt f(t, z) = (−f − νf2)f + ξ|φ|f2.

Assume that F is a solution for the problem

∂αt F + (F + νF 2)F = 0 (4.15)

subjected to the initial condition

I1−αF |t=0 = h(0), where h := ξ|φ|f2, |F | ≤ 1.

Then

f(t) =
∫ t

0

F (s)ds

is a solution of the problem

∂αt f(t, z) + (f + νf2)f = ξ|φ|f2.

It suffices to prove that F ∈ L∞([0, T ], L∞); from (4.15), we obtain(
1− Tα

Γ(α+ 1)
(‖F‖+ ν‖F‖2)

)
‖F‖ ≤ ξf2

0 ‖φ0‖.

Since |F | ≤ 1, the above inequality becomes

‖F‖ ≤ ξf2
0 ‖φ0‖(

1− Tα(1+ν)
Γ(α+1)

) . (4.16)

Hence we obtain that F ∈ L∞([0, T ], L∞) (because φ ∈ L∞([0, T ], L∞)) and con-
sequently f ∈ L∞([0, T ], L∞).
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Step 5: Second estimate bounds of u. Differentiate with respect to z the
evolution equation (3.2), we have

λ∂αt (
∂φ

∂z
) = G

∂2u

∂z2
− ∂φ

∂z
f − ∂f

∂z
φ

= G
∂2Λ
∂z2
− G

η

∂φ

∂z
− ∂φ

∂z
f − ∂f

∂z
φ.

(4.17)

Moreover, we differentiate with respect to z the evolution equation (3.3) to obtain

∂αt (
∂f

∂z
) = ξ

∂|φ|
∂z

f2 + 2(ξ|φ| − 1)f
∂f

∂z
− 3νf2 ∂f

∂z
. (4.18)

Multiplying (4.17) and (4.18) by ∂φ
∂z and ∂f

∂z respectively, integrating over the do-
main U , summing up and using that both f and φ are in L∞([0, T ], L∞), we have

∂αt

(
λ‖∂φ
∂z

(t, .)‖2L2 + ‖∂f
∂z

(t, .)‖2L2

)
≤ Kα

∫
U

(∂2Λ
∂z2

∂φ

∂z
+
(∂φ
∂z

)2 +
∂f

∂z

∂φ

∂z
+
∂|φ|
∂z

∂f

∂z
+
(∂f
∂z

)2)(t, .).

Since φ ∈ L2([0, T ], H1) then in view of the Young inequality, we have

∂αt

(
λ‖∂φ
∂z

(t, .)‖2L2 + ‖∂f
∂z

(t, .)‖2L2

)
≤ Kα

(
‖∂φ
∂z

(t, .)‖2L2 + ‖∂f
∂z

(t, .)‖2L2 + ‖∂
2Λ
∂z2

(t, .)‖2L2

)
.

(4.19)

Since φ, f ∈ L∞([0, T ], H1) and φ0, f0 ∈ H1(U), the generalized Gronwall inequal-
ity together with (4.10) imply that u ∈ L∞([0, T ], H1) ∩ L2([0, T ], H2).
Step 6. Approximate solution. In this step, we construct a sequence of ap-
proximating solutions to system (3.1)–(3.3). Consider the system

ρ∂αt un(t, z) = η
∂2un
∂z2

+
∂φn
∂z

, (4.20)

λ∂αt φn(t, z) = G
∂un
∂z
− fn−1φn +G`, (4.21)

∂αt fn(t, z) = (−1 + ξ|φn|)fn−1fn − νfn−1f
2
n, (4.22)

subjected to the boundary conditions

un(t, 0) = 0, un(t, 1) = 0, ∀ t ∈ [0, T ]

and the initial condition (un0, φn0, fn0) = (u0, φ0, f0). Our aim is to show that
(4.20)–(4.22) has a unique solution (un, φn, fn) in the space(

C([0, T ];H1) ∩ L2([0, T ];H2)× C([0, T ];H1)× C([0, T ];H1)
)
.

For this purpose, we split the system (4.20)–(4.22) into two subsystems (4.20)-(4.21)
on the one hand and (4.22) on the other hand.

First we prove the existence of unique solution. Let (un1, φn1) and (un2, φn2)
be two solutions in the aforementioned class; the functions un = un1 − un2 and
φn = φn1 − φn2 satisfy the system

ρ∂αt un(t, z) = η
∂2un
∂z2

+
∂φn
∂z

, (4.23)

λ∂αt φn(t, z) = G
∂un
∂z
− fn−1φn. (4.24)
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Multiplying (4.23) by un and integrating over the domain U , we obtain

1
α+ 1

ρ∂αt ‖un(t, .)‖2L2 + η‖∂un
∂z

(t, .)‖2L2 =
∫
U

(
∂φn
∂z

un)(t, .). (4.25)

Similarly, Multiplying (4.24) by φn and and integrating over the domain U , implies

1
α+ 1

λ∂αt ‖φn(t, .)‖2L2 + ‖
√
fn−1φn(t, .)‖2L2 = G

∫
U

(φn
∂un
∂z

)(t, .), (4.26)

Adding estimates (4.25) and (4.26) and using and using integration by parts to-
gether with the fact that un vanishes on the boundary, yields

1
α+ 1

∂αt [Gρ‖un(t, .)‖2L2 +λ‖φn(t, .)‖2L2 ]+‖
√
fn−1φn(t, .)‖2L2 +Gη‖∂un

∂z
(t, .)‖2L2 = 0,

(4.27)
which gives un = 0 and φn = 0. Hence system (4.23)–(4.24) has a unique bound
uniform solution in the space (C([0, T ];H1) ∩ L2([0, T ];H2))× C([0, T ];H1).

Second we show that fn exists in C([0, T ];H1) and <(fn) ≥ 0. Equation (4.22)
can be reduced to

∂αt fn(t, z) = Θ(t, fn, z), fn|t=0 = f0, (4.28)

where Θ : [0, T ]×C×U → C. The function Θ is continuous in its first two variables
and locally Lipschitz in its second variable. The Cauchy-Lipschitz theorem imposes
there exists a unique local solution with f0(z) as initial condition. Let [0, T ∗) be the
interval of existence of the maximal solution for positive time. For all t ∈ [0, T ∗),
we have <(fn) ≥ 0, using Step 1. Furthermore,

|∂αt fn(t, z)| ≤ ξ|φn||fn−1||fn| ≤ ξ‖φn‖L∞‖fn−1‖L∞ |fn|; (4.29)

using that both φn and fn−1 belong to C([0, T ];H1). The Gronwall lemma then
shows that fn remains bounded on [0, T ∗] and thus we have established existence
and uniqueness on [0, T ∗].

Now we prove the boundedness of the solution. From (4.20) and (4.21), we may
have

1
α+ 1

∂αt [Gρ‖un(t, .)‖2L2 + λ‖φn(t, .)‖2L2 ]

+ ‖
√
fn−1φn(t, .)‖2L2 +Gη‖∂un

∂z
(t, .)‖2L2 = G`φ̂n(t).

(4.30)

and from (4.22), we obtain

∂αt ‖fn(t, .)‖L1 +
∫
U

(|fn−1||fn)|(t, .)+
ν

2

∫
U

(|fn−1||f |2n)(t, .) ≤ ξ2

2ν
‖
√
fn−1φn(t, .)‖2L2 .

(4.31)
Collecting (4.30) and (4.31), we obtain

1
α+ 1

∂αt [Gρ‖un(t, .)‖2L2 + λ‖φn(t, .)‖2L2 ] +
ν

ξ2
‖fn(t, .)‖L1

+
1
2
‖
√
fn−1φn(t, .)‖2L2 +Gη‖∂un

∂z
(t, .)‖2L2

≤ K`‖φn(t, .)‖L2 .

(4.32)

Hence the solution (un, φn, fn) is bounded.
The arguments given in Step 3 to derive (4.12) and in Step 4 for the L∞ estimates

can simulate for the approximate system in (un, φn, fn) instead of (u, φ, f), and the
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corresponding auxiliary functions qn and Λn. In this place, we have the estimate
for the solution (un, φn, fn)

sup
n

sup
t∈[0,T ]

(
‖un(t, .)‖L2 + ‖φn(t, .)‖L2 + ‖fn(t, .)‖L1

)
≤ K̃ (4.33)

and

sup
n

sup
t∈[0,T ]

(
‖Λn(t, .)‖H1 + ‖φn(t, .)‖L∞ + ‖fn(t, .)‖L∞

)
+ ‖Λn‖L2 ≤ K̃, (4.34)

where we recall that K̃ denotes various constants which depends on the coefficients
in system (3.1)–(3.3), the initial data u0, φ0, f0 and the time T .

Similar arguments as the ones in Step 5, show that

∂αt

(
λ‖∂φn

∂z
(t, .)‖2L2 + ‖∂fn

∂z
(t, .)‖2L2

)
≤ C̃

(
‖∂φn
∂z

(t, .)‖2L2 + ‖∂fn
∂z

(t, .)‖2L2 + ‖∂fn−1

∂z
(t, .)‖2L2 + ‖∂

2Λn
∂z2

‖2L2

)
.

(4.35)

Let

Zn(t) := ‖∂φn
∂z

(t, .)‖2L2 + ‖∂fn
∂z

(t, .)‖2L2 .

Applying the operator Iα, yields

Zn(t) ≤ Z0 + C̃

∫ t

0

(t− τ)α−1

Γ(α)
Zn(τ)dτ + C̃

∫ t

0

(t− τ)α−1

Γ(α)
Zn−1(τ)dτ + C̃‖Λn‖2L2

≤ C̃α,0 + C̃α,1

∫ t

0

(t− τ)α−1

Γ(α)
Zn−1(τ)dτ

≤ M̃ + M̃

∫ t

0

(t− τ)α−1

Γ(α)
Zn−1(τ)dτ,

(4.36)

where M̃ := max(C̃α,1, C̃α,0). By induction, we may find that for all t ∈ [0, T ] and
all n,

Zn(t) ≤ M̃
n−1∑
j=0

(M̃t)j

Γ(αj + 1)
+

(M̃t)n

Γ(αn+ 1)
, (4.37)

consequently,
Zn(t) ≤ M̃Eα,1(M̃t), (4.38)

where, Eα,1(.) is a Mittag-Leffler function. It follows that

sup
n

sup
t∈[0,T ]

Zn(t) ≤ M̃Eα,1(M̃T ). (4.39)

Thus inequalities (4.34) and (4.39) imply the inequalities

sup
n

sup
t∈[0,T ]

(
‖un(t, .)‖H1 + ‖φn(t, .)‖H1 + ‖fn(t, .)‖H1

)
+ ‖un‖L2 ≤M (4.40)

and

sup
n

(
‖∂αt un(t, .)‖L2 + ‖∂αt φn(t, .)‖L2 + ‖∂αt fn(t, .)‖L2

)
≤MT,α. (4.41)
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Step 7: Convergence of the approximate solutions. The bounds introduced
in the previous steps, namely (4.40) and (4.41) imply that, at least up to extraction
of a subsequence, we have the weak convergence

(un, φn, fn)→ (u, φ, f), weakly in L∞([0, T ], H1)3.

In this step, we establish a strong convergence in L∞([0, T ], L2(U))3. Denoted by
h∗n = hn − hn−1 and derive the evolution equations for (u∗n, φ

∗
n, f
∗
n),

ρ∂αt u
∗
n(t, z) = η

∂2u∗n
∂z2

+
∂φ∗n
∂z

, (4.42)

λ∂αt φ
∗
n(t, z) = G

∂u∗n
∂z
− fn−1φ

∗
n − f∗n−1φn−1, (4.43)

∂αt f
∗
n(t, z) = (−1 + ξ|φn−1|)(f∗n−1fn + fn−1f

∗
n)

− νfn−1f
∗
n(fn + fn−1)− νf2

n−1f
∗
n−1 + ξ|φ∗n|fnfn−1,

(4.44)

Since (un, φn, fn) satisfies the assertions (4.1) and (4.2), then the same holds for
(u∗n, φ

∗
n, f
∗
n). We multiply (4.42), (4.43), (4.44), respectively by u∗n, φ

∗
n, f
∗
n, integrate

over U , and then sum them,

∂αt

(
Gρ‖u∗n(t, .)‖2L2 + λ‖φ∗n(t, .)‖2L2 + ‖f∗n(t, .)‖2L2

)
≤
∫
U

Φ
(
|φn−1|, |φn|, |fn−1|, |fn|

)
,

where Φ is a positive valued function. Let

Ψn(t) := ‖u∗n(t, .)‖2L2 + ‖φ∗n(t, .)‖2L2 + ‖f∗n(t, .)‖2L2 .

Now by using the L∞− bound in (4.33) on |φn−1|, |φn|, |fn−1|, |fn|, Young inequality
yields

∂αt Ψn(t) ≤ K̃
(

Ψn(t) + Ψn−1(t)
)
. (4.45)

Applying the Gronwall lemma to (4.45), we may find

Ψn(t) ≤ L̃α
∫ t

0

Ψn−1(s)ds, (4.46)

where L̃α is a constant depending on all the coefficients of the System (3.1)–(3.3)
and its initial condition. Thus we have

Ψn(t) ≤ (L̃αt)n−1

(n− 1)!
sup

s∈[0,T ]

Ψ1(s);

therefore, the sequence (un, φn, fn) is a Cauchy sequence in L∞([0, T ], L2(U))3

which implies that fn−1 → f strongly. This completes the existence proof.
Step 8: Uniqueness. Consider (u1, φ1, f1) and (u2, φ2, f2) satisfying (4.1) and
solutions to system (3.1)–(3.3) supplied with the same initial condition (u0, φ0, f0) ∈
H1(U). Assume that u = u1 − u2, φ = φ1 − φ2 and f = f1 − f2 satisfying the
system

ρ∂αt u(t, z) = η
∂2u

∂z2
+
∂φ

∂z
,

λ∂αt φ(t, z) = G
∂u

∂z
− fφ,

∂αt f(t, z) = (−1 + ξ|φ|)f2 − νf3.
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Multiply these three equations by u, φ, f , respective, then integrate over U , and
then summing up, we have

∂αt

(
Gρ‖u(t, .)‖2L2 + λ‖φ(t, .)‖2L2 + ‖f(t, .)‖2L2

)
≤ ˜̀α(‖φ‖2L2 + ‖f‖2L2).

The Gronwall lemma then implies uniqueness. This completes the proof of Theorem
4.1.

5. Convergence to the steady point

In this section, we discuss the convergence of solution (u, φ, f) to the steady
point (0, 0, 0) in the space H1(U)× L∞(U)× L∞(U).

Theorem 5.1. Consider Systen (3.1)–(3.3). If ` = 0 and <(f0) 6= 0 then

‖u(t, .)‖H1 + ‖φ(t, .)‖L∞ + ‖f(t, .)‖L∞ → 0. (5.1)

The proof will be done in three steps. The first step derive the lower bound of
the fluidity f , while Step 2 proves the convergence in L2(U) and consequently Step
3, provides the convergence in L∞(U).
Step 1: Lower bound of the fluidity f . Since <(f0) 6= 0, there exists, by
analytically of f0 (assumed in H1), a non-empty closed interval U0 in U where f0

does not vanish. We rewrite the evolution equation (3.3) on f as follows:

∂αt f
−1(t, z) = (1− ξ|φ|)f2 + νf3; (5.2)

but the L∞− bounds of f and φ are uniform in time (see Step 4), thus for all
z ∈ U0, we obtain that

∂αt |f−1(t, z)| ≤ κ
and therefore,

|f(t, z)| ≥ Γ(α+ 1)
Γ(α+1)
|f0| + κtα

, t ∈ [0, T ]

and this implies the lower bound.
Step 2: Convergence in L2(U). From (4.5) and (4.8), we have

1
α+ 1

∂αt [Gρ‖u(t, .)‖2L2 + λ‖φ(t, .)‖2L2 ] + ‖
√
fφ(t, .)‖2L2 +Gη‖uz(t, .)‖2L2 = 0 (5.3)

and
1

α+ 1
∂αt [Gρ‖u(t, .)‖2L2 + λ‖φ(t, .)‖2L2 ] +

ν

ξ2
‖f(t, .)‖L1

+
1
2
‖
√
fφ(t, .)‖2L2 +Gη‖uz(t, .)‖2L2 = 0.

(5.4)

Combining (5.3) and (5.4) and applying the Gronwall lemma, we obtain

lim
t→∞

(
‖u(t, .)‖2L2 + ‖φ(t, .)‖2L2 + ‖f(t, .)‖L1

)
→ 0. (5.5)

Step 3: Convergence in L∞(U). Combining (4.12) and (4.13) and using the
L∞−bound of f yield

∂αt

(
‖∂Λ
∂z

(t, .)‖2L2 + λ|φ(t, z)|2
)

+
(
‖∂

2Λ
∂z2

(t, .)‖2L2 + |φ(t, z)|2
)

≤ σ
(
‖u(t, .)‖2L2 + ‖φ(t, .)‖2L2 + ‖∂Λ

∂z
(t, .)‖2L2

)
,
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where σ is a positive constant depending on all the coefficients of (3.1)–(3.3). Em-
ploying the Gronwall lemma and using the last convergence (5.5), we obtain

lim
t→∞

‖φ(t, .)‖2L∞ = 0. (5.6)

Using this convergence in (3.3), we have

lim
t→∞

‖f(t, .)‖2L∞ = 0. (5.7)

Finally, definition (4.10) and convergence (5.5) supply the convergence of uz to zero
in L2(U); hence we have

(u, φ, f) ∈ H1(U)× L∞(U)× L∞(U).

This completes the proof.

Conclusion. In this article, we had illustrated an analytic method for establish-
ing the existence and uniqueness of solutions to fractional differential system in a
complex domain. The proposed method depends on fractional Duhamel principle,
which can be applied in various kinds of fractional systems. Throughout the article,
we had used the homogeneous boundary value problem. For future work, one may
try the non-homogeneous case.
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