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INITIAL-BOUNDARY VALUE PROBLEMS FOR THE
WAVE EQUATION

TYNYSBEK SH. KALMENOV, DURVUDKHAN SURAGAN

Abstract. In this work we consider an initial-boundary value problem for the

one-dimensional wave equation. We prove the uniqueness of the solution and

show that the solution coincides with the wave potential.

1. Introduction

In Ω = (0, 1) consider the one-dimensional potential

u(x) =
∫ 1

0

−1
2
|x− y|f(y)dy, (1.1)

where f is an integrable function in (0, 1). The kernel of the potential is a funda-
mental solution of the second order differential equation

− ε′′(x− y) = δ(x− y), (1.2)

where ε(x− y) = − 1
2 |x− y| and δ is the Dirac delta function. Hence the potential

(1.1) satisfies the equation

− u′′(x) = f(x), x ∈ Ω. (1.3)

On the other hand, integrating by part, we obtain

u(x) =
∫ 1

0

−1
2
|x− y|f(y)dy =

∫ 1

0

1
2
|x− y|u′′(y)dy

=
∫ x

0

1
2

(x− y)u′′(y)dy +
∫ 1

x

1
2

(y − x)u′′(y)dy

= u(x)− xu
′(0) + u′(1)

2
− −u

′(1) + u(0) + u(1)
2

, ∀x ∈ (0, 1);

i.e.,
x(u′(0) + u′(1)) + (−u′(1) + u(0) + u(1)) = 0, ∀x ∈ (0, 1).

Therefore, the self-adjoint boundary conditions for the potential (1.1) are

u′(0) + u′(1) = 0, −u′(1) + u(0) + u(1) = 0. (1.4)
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Hence if we solve the equation (1.3) with the boundary conditions (1.4), then we
find an unique solution of this boundary value problem in the form (1.1).

The simple method finds equivalent boundary value problems of ODE for one
dimensional potential integrals. However this task becomes tedious for PDE, and
we obtained boundary conditions of the volume potentials for elliptic equations and
showed some their applications in works [2, 3, 4]. In particular in [2], by using a new
non-local boundary value problem, which is equivalent to the Newton potential, we
found explicitly all eigenvalues and eigenfunctions of the Newton potential in the
2-disk and the 3-ball. The aim of this paper is to give an analogy of the boundary
value problem (1.3)-(1.4) for the wave potential. Unlike elliptic and parabolic cases,
where we obtained non-local boundary conditions for the corresponding volume
potentials, and some other nonclassic non-local boundary initial boundary value
problems of hyperbolic equations (see, for example, [6, 7]) we get a local initial
boundary value problem for the wave potential.

2. Main result and their proof

In the bounded domain Ω ≡ {(x, t) : (0, l)×(0, T )} we consider the wave potential

u(x, t) =
∫

Ω

ε(x− ξ, t− τ)f(ξ, τ)dξdτ, (2.1)

where ε(x − ξ, t − τ) = 1
2θ(t − τ − |x − ξ|) is a fundamental solution of Cauchy

problem for the wave equation; i.e.,

∂2ε(x− ξ, t− τ)
∂t2

− ∂2ε(x− ξ, t− τ)
∂x2

= δ(x− ξ, t− τ),

∂2ε(x− ξ, t− τ)
∂τ2

− ∂2ε(x− ξ, t− τ)
∂ξ2

= δ(x− ξ, t− τ),

ε(x− ξ, t− τ)|τ=t =
∂ε(x− ξ, t− τ)

∂t
|τ=t =

∂ε(x− ξ, t− τ)
∂τ

|τ=t = 0

if f(x, t) ∈ L2(Ω) then u(x, t) ∈ W 1
2 (Ω) ∩W 1

2 (∂Ω) and the wave potential (2.1)
satisfies to the equation [1]

∂2u(x, t)
∂t2

− ∂2u(x, t)
∂x2

= f(x, t), (x, t) ∈ Ω, (2.2)

with the initial conditions

u(x, 0) = ut(x, 0) = 0, 0 < x < l. (2.3)

The wave potential (2.1) is widely used to solve various initial-boundary problems
for the wave equation. Here we find the lateral boundary conditions of the wave
potential (2.1). Main result of this article reads as follows.

Theorem 2.1. If f(x, t) ∈ L2(Ω) then the wave potential (2.1) satisfies the lateral
boundary conditions

(ux − ut)(0, t) = 0, x = 0, 0 < t < T ; (2.4)

(ux + ut)(l, t) = 0, x = l, 0 < t < T . (2.5)

Conversely, if a function u(x, t) ∈ W 1
2 (Ω) ∩W 1

2 (∂Ω) satisfies the equation (2.2),
the initial conditions (2.3), and the lateral boundary conditions (2.4)-(2.5), then the
function u(x, t) uniquely defines the wave potential (2.1).
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Proof. We use techniques from [4]. Consider the one-dimensional wave potential in
the bounded domain Ω ≡ {(x, t) : (0, l)× (0, T )} with the boundary S,

u(x, t) =
∫

Ω

ε(x− ξ, t− τ)f(ξ, τ)dξdτ.

Figure 1. Domain of integration

Since τ = t − x + ξ and τ = t + x − ξ are characteristics, the integral vanishes
outside of characteristic domain. Therefore, we integrate by ABCDF (Figure 1).
Assuming that u(x, t) ∈W 1

2 (Ω), taking into account properties of the fundamental
solution, and integrating by part, we calculate

u(x, t) =
∫

Ω

ε(x− ξ, t− τ)f(ξ, τ)dξdτ

=
∫
ABCDF

1
2

[uττ (ξ, τ)− uξξ(ξ, τ)]dξdτ

=
1
2

∫ x

0

dξ

∫ t+ξ−x

0

∂2u(ξ, τ)
∂τ2

dτ +
1
2

∫ l

x

dξ

∫ t−ξ+x

0

∂2u(ξ, τ)
∂τ2

dτ

− 1
2

∫ t−x

0

dτ

∫ l

0

∂2u(ξ, τ)
∂ξ2

dξ − 1
2

∫ t−l+x

t−ξ
dτ

∫ l

τ−t+x

∂2u(ξ, τ)
∂ξ2

dξ

− 1
2

∫ t

t−l+x
dτ

∫ t−τ+x

τ−t+x

∂2u(ξ, τ)
∂ξ2

dξ

=
1
2

∫ x

0

[
∂u(ξ, t+ ξ − x)

∂τ
− ∂u(ξ, 0)

∂τ
]dξ

+
1
2

∫ l

x

[
∂u(ξ, t− ξ + x)

∂τ
− ∂u(ξ, 0)

∂τ
]dξ − 1

2

∫ t−x

0

[
∂u(l, τ)
∂ξ

− ∂u(0, τ)
∂ξ

]dτ

− 1
2

∫ t−l+x

t−x
[
∂u(l, τ)
∂ξ

− ∂u(τ − t+ x, τ)
∂ξ

]dτ − 1
2

∫ t

t−l+x
[
∂u(t− τ + x, τ)

∂ξ
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− ∂u(τ − t+ x, τ)
∂ξ

]dτ

=
1
2

∫ x

0

∂u(ξ, t+ ξ − x)
∂τ

dξ +
1
2

∫ l

x

∂u(ξ, t− ξ + x)
∂τ

dξ +
1
2

∫ t−x

0

∂u(0, τ)
∂ξ

dτ

− 1
2

∫ t−l+x

0

∂u(l, τ)
∂ξ

dτ +
1
2

∫ t

t−x

∂u(τ − t+ x, τ)
∂ξ

dτ

− 1
2

∫ t

t−l+x

∂u(t− τ + x, τ)
∂ξ

dτ, ∀(x, t) ∈ Ω.

Using the total differential formula, we have

u(x, t) =
1
2

∫ t−x

0

∂u(0, τ)
∂ξ

dτ − 1
2

∫ t−l+x

0

∂u(l, τ)
∂ξ

dτ +
1
2

∫ x

0

[
∂u(ξ, t+ ξ − x)

∂τ

+
∂u(ξ, t+ ξ − x)

∂ξ
]dξ +

1
2

∫ l

x

[
∂u(ξ, t− ξ + x)

∂τ
− ∂u(ξ, t− ξ + x)

∂ξ
]dξ

=
1
2

∫ t−x

0

∂u(0, τ)
∂ξ

dτ − 1
2

∫ t−l+x

0

∂u(l, τ)
∂ξ

dτ

+
1
2

∫ x

0

du(ξ, t+ ξ − x)
dξ

dξ − 1
2

∫ l

x

du(ξ, t− ξ + x)
dξ

dξ.

Thus, we obtain the identity

u(x, t) = u(x, t) +
1
2

∫ t−x

0

∂u(0, τ)
∂ξ

dτ − 1
2

∫ t−l+x

0

∂u(l, τ)
∂ξ

dτ

− [u(0, t− x) + u(l, t− l + x)]
2

,∀(x, t) ∈ Ω ;

i.e.,
1
2

∫ t−x

0

∂u(0, τ)
∂ξ

dτ − 1
2

∫ t−l+x

0

∂u(l, τ)
∂ξ

dτ

− [u(0, t− x) + u(l, t− l + x)]
2

= 0, ∀(x, t) ∈ Ω.

(2.6)

Now we consider the identity (2.6) when (x, t)→ S. Taking the limit as x→ 0,
we have

(ux − ut)(0, t) = 0, x = 0, 0 < t < T,

and similarly
(ux + ut)(l, t) = 0, x = l, 0 < t < T,

as x → l. Hence, the one-dimensional wave potential (2.1) satisfies to the lateral
boundary conditions (2.4)-(2.5).

Conversely, if a solution of the equation (2.2) satisfies to the initial conditions
(2.3) and the lateral boundary conditions (2.4)-(2.5), then it is determined only by
the formula (2.1), in the other words it coincides the one-dimensional wave potential
(2.1).

Indeed, if a function u1 satisfies to the equation (2.2), the initial conditions (2.3)
and the lateral boundary conditions (2.4)-(2.5), then u1 ≡ u, where u is the wave
potential (2.1). If it is not so, then the function ϑ(x, t) = u1(x, t)− u(x, t) satisfies

ϑtt(x, t)− ϑxx(x, t) = 0, (x, t) ∈ Ω,

ϑ(x, 0) = ϑt(x, 0) = 0, 0 < x < 1
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(ϑx − ϑt)(0, t) = 0, x = 0, 0 < t < T,

(ϑx + ϑt)(l, t) = 0, x = l, 0 < t < T .

Since

0 =
∫

Ω

ε(x− ξ, t− τ)0dξdτ =
∫

Ω

ε(x− ξ, t− τ)[ϑττ (ξ, τ)− ϑξξ(ξ, τ)]dξdτ,

a similar calculation as above shows that

0 =
∫

Ω

ε(x− ξ, t− τ)[ϑττ (ξ, τ)− ϑξξ(ξ, τ)]dξdτ = ϑ(x, t) +
1
2

∫ t−x

0

∂ϑ(0, τ)
∂ξ

dτ

− 1
2

∫ t−l+x

0

∂ϑ(l, τ)
∂ξ

dτ − [ϑ(0, t− x) + ϑ(l, t− l + x)]
2

, ∀(x, t) ∈ Ω.

Denoting,

Iϑ(x, t) :=
1
2

∫ t−x

0

∂ϑ(0, τ)
∂ξ

dτ− 1
2

∫ t−l+x

0

∂ϑ(l, τ)
∂ξ

dτ− [ϑ(0, t− x) + ϑ(l, t− l + x)]
2

And when (x, t)→ S, we obtain

ϑ(x, t)|x=0 = −Iϑ(x, t)|x=0 = 0, ϑ(x, t)|x=l = −Iϑ(x, t)|x=l = 0.

Thus, the function ϑ(x, t) satisfies

ϑtt(x, t)− ϑxx(x, t) = 0, (x, t) ∈ Ω,

ϑ(x, t) = ϑt(x, t) = 0, 0 < x < l,

ϑ(0, t) = 0, ϑ(l, t) = 0.
(2.7)

Let us define the function

E(t) =
∫ l

0

[(ϑt(x, t))2 + (ϑx(x, t))2]dx

which we call an energy integral. From the physical point of view, it is a total
energy up to a constant, for instance, energy of oscillating string.

It is obvious that the function E(t) is differentiable because of our conditions on
the function ϑ(x, t). Consequently, its derivative is calculated as

E′(t) =
∫ l

0

[2ϑt(x, t)ϑtt(x, t) + 2ϑx(x, t)ϑxt(x, t)]dx

Integrating by parts, one writes the second term in the form

E′(t) =
∫ l

0

[2ϑt(x, t){ϑtt(x, t)− ϑxx(x, t)}]dx+ 2ϑx(x, t)ϑt(x, t)|l0.

Note that the integrand function is equal to zero identically since ϑ(x, t) is a solu-
tion of the homogeneous wave equation. Then by differentiating with respect to t
boundary conditions, we have ϑt(0, t) ≡ 0 ≡ ϑt(l, t). It follows that the non-integral
term also vanishes. So, E′(t) ≡ 0, or

E(t) =
∫ l

0

[(ϑt(x, t))2 + (ϑx(x, t))2]dx ≡ const.
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Actually, we just obtain another law of energy conservation in a closed system which
is described by the initial-boundary value problem (2.7) where amount of energy is
permanent. Obviously,

E(t) = E(0) =
∫ l

0

[(ϑt(x, 0))2 + (ϑx(x, 0))2]dx

From the initial conditions we obtain ϑt(x, 0) = ϑx(x, 0) = 0, 0 ≤ x ≤ l. Hence

E(0) = 0 ⇒ E(t) ≡ 0 .

Because the integrand functions are nonnegative we have ϑt(x, t) = ϑx(x, t) = 0. It
follows that ϑ(x, t) =const, and from the initial conditions it follows that ϑ(x, t) ≡ 0;
i.e., u1 ≡ u, u1 coincides with the wave potential potential (2.1).

To summarize, the initial-boundary value problem (2.2)-(2.5) has an unique so-
lution and the solution coincides with the wave potential (2.1). This completes the
proof. �
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