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PERIODIC SOLUTIONS FOR A FOOD CHAIN SYSTEM WITH
MONOD-HALDANE FUNCTIONAL RESPONSE ON

TIME SCALES

KEJUN ZHUANG

Abstract. In this article, we study a three species food chain model on time

scales, with Monod-Haldane functional response and time delay. With the help

of coincidence degree theory, we establish the existence of periodic solutions.

1. Introduction

Research on food chain system has been a hot spot in population dynamics.
Dynamical behavior of these models governed by differential equations and differ-
ence equations has been extensively studied in [5, 10, 12, 13, 15]. Hsu, Hwang and
Kuang [9] considered the ratio-dependent food chain model

ẋ(t) = rx(1− x

K
)− 1

η1

m1xy

a1y + x
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m1xy

a1y + x
− d1y −

1
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a2z + y
,

ż(t) =
m2yz

a2z + y
− d2z,

where x, y and z sand for the population densities of prey, predator and top preda-
tor, respectively. The boundness, extinction and periodicity were studied.

Xu, Chaplain and Davidson [14] studied the delayed three-species Lotka-Volterra
food chain system

ẋ1(t) = x1(t)[r1(t)− a11(t)x1(t− τ11)− a12(t)x2(t)],

ẋ2(t) = x2(t)[−r2(t) + a21(t)x1(t− τ21)− a22(t)x2(t− τ22)− a23(t)x3(t)],

ẋ3(t) = x3(t)[−r3(t) + a32(t)x2(t− τ32)− a33x3(t− τ33)].

The existence, uniqueness and global stability of positive periodic solutions of the
system were studied. In population dynamics, the relationship between predator
and prey can be represented as the functional response which refers to the change
in the density of prey attached per unit time per predator as the prey density
changes. Holling [8] gave three different kinds of functional responses, which are
monotonic in the first quadrant. But some experiments and observations indicate
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that nonmonotonic response is more realistic [1]. To model such an inhibitory effect,
Andrews suggested the so-called Monod-Haldane function proposed in [1]. From
above all, we can get the following non-autonomous food chain model with time
delays,

u̇1(t) = u1(t)[r1(t)− d1(t)u1(t)− m12(t)u2(t)
a1(t) + b1(t)u1(t) + u2

1(t)
],

u̇2(t) = u2(t)[−r2(t) +
m21u1(t− τ)

a1(t) + b1(t)u1(t− τ) + u2
1(t− τ)

− d2(t)u2(t)

− m23(t)u3(t)
a2(t) + b2(t)u2(t) + u2

2(t)
],

u̇3(t) = u3(t)[−r3(t) +
m32(t)u2(t− σ)

a2(t) + b2(t)u2(t− σ) + u2
2(t− σ)

− d3(t)u3(t)],

(1.1)

where u1(t), u2(t) and u3(t) stand for the population density of prey, predator
and top–predator at time t, respectively. All coefficients are positive continuous
functions. mi,i+1(t) is the capture rate of the predator, mi+1,i(t) is a measure of
the food quality that the prey provided for conversion into predator birth, where
i = 1, 2.

On the other hand, if the populations have non-overlapping generations, the
discrete model governed difference equations is more appropriate

u1(n+ 1) = u1(n) exp[r1(n)− d1(n)u1(n)− m12(n)u2(n)
a1(n) + b1(n)u1(n) + u2

1(n)
],

u2(n+ 1) = u2(n) exp[
m21u1(n− τ)

a1(n) + b1(n)u1(n− τ) + u2
1(n− τ)

− r2(n)− d2(n)u2(n)

− m23(n)u3(n)
a2(n) + b2(n)u2(n) + u2

2(n)
],

u3(n+ 1) = u3(n) exp[
m32(n)u2(n− σ)

a2(n) + b2(n)u2(n− σ) + u2
2(n− σ)

− r3(n)− d3(n)u3(n)],

(1.2)
where all the coefficients are positive periodic sequences.

To explore the periodic solutions of differential equation and difference equation
models, coincidence degree theory is a common method. However, for these two
types of systems, the methods and results are significantly similar. Enlightened by
the idea of Stefan Hilger [7], to unify the continuous and discrete dynamic systems,
we consider the following dynamic system on time scales,

x∆(t) = r1(t)− d1(t)ex(t) − m12(t)ey(t)

a1(t) + b1(t)ex(t) + e2x(t)
,

y∆(t) = −r2(t) +
m21(t)ex(t−τ)

a1(t) + b1ex(t−τ) + e2x(t−τ)
− d2(t)ey(t)

− m23(t)ez(t)

a2(t) + b2(t)ey(t) + e2y(t)
,

z∆(t) = −r3(t) +
m32(t)ey(t−σ)

a2(t) + b2(t)ey(t−σ) + e2y(t−σ)
− d3(t)ez(t),

(1.3)
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where t ∈ T and T is a time scale that is unbounded above. x∆(t) is the delta de-
rivative of x at t, which is defined in [4]. All the coefficients are positive ω−periodic
functions. Set u1(t) = ex(t), u2(t) = ey(t), u3(t) = ez(t), then (1.3) can be reduced
to (1.1) and (1.2) when T = R and T = Z, respectively.

The purpose of this paper is to study the periodicity of three-species food chain
system on time scales and this model has not been investigated before. We would
like to mention that there are several papers on periodicity in dynamic systems on
time scales by using the coincidence degree theory, see [2, 3, 11, 17]. The remainder
of the paper is organized as follows. In the following section, some preliminary
results about calculus on time scales and the continuation theorem are stated.
Next, the sufficient conditions for the existence of periodic solutions are explored.

2. Preliminaries

For convenience, we first present the useful lemma about time scales and the
continuation theorem of the coincidence degree theory; more details can be found
in [16, 6].

A time scale T is an arbitrary nonempty closed subset of real numbers R.
Throughout this paper, we assume that the time scale T is unbounded above and
below, such as R, Z and ∪k∈Z[2k, 2k + 1]. The following definitions and lemmas
about time scales are from [16, 6].

Lemma 2.1 ([16]). Let t1, t2 ∈ Iω and t ∈ T. If g : T→ R ∈ Crd(T) is ω-periodic,
then

g(t) ≤ g(t1) +
1
2

∫ k+ω

k

|g∆(s)|∆s,

g(t) ≥ g(t2)− 1
2

∫ k+ω

k

|g∆(s)|∆s,

where the constant factor 1/2 is the best possible.

For simplicity, we use the following notation throughout this paper. Let T be
ω-periodic; that is, t ∈ T implies t+ ω ∈ T,

k = min{R+ ∩ T}, Iω = [k, k + ω] ∩ T, gL = inf
t∈T

g(t),

gM = sup
t∈T

g(t), ḡ =
1
ω

∫
Iω

g(s)∆s =
1
ω

∫ k+ω

k

g(s)∆s,

where g ∈ Crd(T) is an ω-periodic real function; i.e., g(t+ ω) = g(t) for all t ∈ T.
Next, we state the Mawhin’s continuation theorem, which is a main tool in the

proof of our theorem.

Lemma 2.2 ([6]). Let L be a Fredholm mapping of index zero and N be L-compact
on Ω̄. Suppose

(a) for each λ ∈ (0, 1), every solution u of Lu = λNu is such that u /∈ ∂Ω;
(b) QNu 6= 0 for each u ∈ ∂Ω ∩ kerL and the Brouwer degree deg{JQN,Ω ∩

kerL, 0} 6= 0.

Then the operator equation Lu = Nu has at least one solution lying in DomL∩ Ω̄.
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3. Main Results

Theorem 3.1. If mL
32e

L2 > rM3 (aM2 + bM2 eM2 + e2M2) holds, where

L2 = ln
aL2 r

L
3

mM
32

− mM
21ω

bL1

and

M2 = ln
rM1 (aM1 + bM1 rM1

dL1
+ 2rM1

dL1
)

mL
12

+
mM

21ω

bL1
,

then (1.3) has at least one ω-periodic solution.

Proof. Let

X = Z =
{

(x, y, z)T ∈ C(T,R3) : x(t+ ω) = x(t), y(t+ ω) = y(t),

z(t+ ω) = z(t),∀t ∈ T
}
,

‖(x, y, z)T ‖ = max
t∈Iω
|x(t)|+ max

t∈Iω
|y(t)|+ max

t∈Iω
|z(t)|, (x, y, z)T ∈ X (or in Z).

Then X and Z are both Banach spaces when they are endowed with the above
norm ‖ · ‖. Let

N

xy
z

 =

N1

N2

N3

 ,
where

N1 = r1(t)− d1(t)ex(t) − m12(t)ey(t)

a1(t) + b1(t)ex(t) + e2x(t)
,

N2 = −r2(t) +
m21(t)ex(t−τ)

a1(t) + b1ex(t−τ) + e2x(t−τ)
− d2(t)ey(t)

− m23(t)ez(t)

a2(t) + b2(t)ey(t) + e2y(t)
,

N3 = −r3(t) +
m32(t)ey(t−σ)

a2(t) + b2(t)ey(t−σ) + e2y(t−σ)
− d3(t)ez(t).

L

xy
z
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x∆

y∆

z∆

 , P

xy
z
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xy
z

 =

 1
ω

∫ k+ω

k
x(t)∆t

1
ω

∫ k+ω

k
t(t)∆t

1
ω

∫ k+ω

k
z(t)∆t

 .
Obviously, kerL = R3, ImL =

{
(x, y, z)T ∈ Z : x̄ = ȳ = z̄ = 0, t ∈ T

}
, dim kerL =

3 = codim ImL. Since ImL is closed in Z, then L is a Fredholm mapping of
index zero. It is easy to show that P and Q are continuous projections such that
ImP = kerL and ImL = kerQ = Im(I −Q). Furthermore, the generalized inverse
(of L) KP : ImL→ kerP ∩DomL exists and is given by

KP

xy
z

 =


∫ t
k
x(s)∆s− 1

ω

∫ k+ω

k

∫ t
k
x(s)∆s∆t∫ t

k
y(s)∆s− 1

ω

∫ k+ω

k

∫ t
k
y(s)∆s∆t∫ t

k
z(s)∆s− 1

ω

∫ k+ω

k

∫ t
k
z(s)∆s∆t

 .
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Thus

QN

xy
z

 =



1
ω

∫ k+ω

k
(r1(t)− d1(t)ex(t) − m12(t)ey(t)

a1(t)+b1(t)ex(t)+e2x(t)
)∆t

1
ω

∫ k+ω

k
(−r2(t) + m21(t)ex(t−τ)

a1(t)+b1ex(t−τ)+e2x(t−τ)

−d2(t)ey(t) − m23(t)ez(t)

a2(t)+b2(t)ey(t)+e2y(t)
)∆t

1
ω

∫ k+ω

k
(−r3(t) + m32(t)ey(t−σ)

a2(t)+b2(t)ey(t−σ)+e2y(t−σ)

−d3(t)ez(t))∆t


,

and

KP (I −Q)N

xy
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k
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ω

∫ k+ω

k

∫ t
k
x(s)∆s∆t

−
(
t− k − 1

ω

∫ k+ω

k
(t− k)∆t

)
x̄∫ t

k
y(s)∆s− 1

ω

∫ k+ω

k

∫ t
k
y(s)∆s∆t

−
(
t− k − 1

ω

∫ k+ω

k
(t− k)∆t

)
ȳ∫ t

k
z(s)∆s− 1

ω

∫ k+ω

k

∫ t
k
z(s)∆s∆t−(

t− k − 1
ω
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k
(t− k)∆t

)
z̄


.

Clearly, QN and KP (I − Q)N are continuous. According to the Arzela-Ascoli
theorem, it is not difficulty to show that KP (I −Q)N(Ω̄) is compact for any open
bounded set Ω ⊂ X and QN(Ω̄) is bounded. Thus, N is L-compact on Ω̄.

Now, we shall search an appropriate open bounded subset Ω for the application
of the continuation theorem, Lemma 2.2. For the operator equation Lu = λNu,
where λ ∈ (0, 1), we have

u∆
1 (t) = λ(r1(t)− d1(t)ex(t) − m12(t)ey(t)

a1(t) + b1(t)ex(t) + e2x(t)
),

u∆
2 (t) = λ(−r2(t) +

m21(t)ex(t−τ)

a1(t) + b1ex(t−τ) + e2x(t−τ)
− d2(t)ey(t)

− m23(t)ez(t)

a2(t) + b2(t)ey(t) + e2y(t)
),

u∆
3 (t) = λ(−r3(t) +

m32(t)ey(t−σ)

a2(t) + b2(t)ey(t−σ) + e2y(t−σ)
− d3(t)ez(t)).

(3.1)

Assume that (u1, u2, u3)T ∈ X is a solution of system (3.1) for a certain λ ∈ (0, 1).
Integrating (3.1) on both sides from k to k + ω, we obtain∫ k+ω

k

[d1(t)ex(t) +
m12(t)ey(t)

a1(t) + b1(t)ex(t) + e2x(t)
]∆t = r̄1ω,∫ k+ω

k

[r2(t) + d2(t)ey(t) +
m23(t)ez(t)

a2(t) + b2(t)ey(t) + e2y(t)
]∆t

=
∫ k+ω

k

m21(t)ex(t−τ)

a1(t) + b1ex(t−τ) + e2x(t−τ)
∆t,∫ k+ω

k

[r3(t) + d3(t)ez(t)]∆t =
∫ k+ω

k

m32(t)ey(t−σ)

a2(t) + b2(t)ey(t−σ) + e2y(t−σ)
∆t.

(3.2)
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Since (x, y, z)T ∈ X, there exist ξi, ηi ∈ Iω, i = 1, 2, 3, such that

x(ξ1) = min
t∈Iω
{x(t)}, x(η1) = max

t∈Iω
{x(t)},

y(ξ2) = min
t∈Iω
{y(t)}, y(η2) = max

t∈Iω
{y(t)},

z(ξ3) = min
t∈Iω
{z(t)}, z(η3) = max

t∈Iω
{z(t)}.

(3.3)

From (3.1) and (3.2), we have∫ k+ω

k

|x∆(t)|∆t ≤ 2r̄1ω,∫ k+ω

k

|y∆(t)|∆t ≤ 2
mM

21ω

bL1
,∫ k+ω

k

|z∆(t)|∆t ≤ 2
mM

32ω

bL2
.

By the first equation of (3.2) and (3.3),

d1(ξ1)ex(ξ1) < r1(ξ1);

that is,

x(ξ1) < ln
rM1
dL1

.

From the second equation of (3.2), we have

r2(η2) <
m21(η2)ex(η2−τ)

a1(η2)
and

x(η1) ≥ x(η2 − τ) > ln
rL2 a

L
1

mM
21

.

According to Lemma 2.1, we have

x(t) ≤ x(ξ1) +
1
2

∫ k+ω

k

|x∆(t)|∆t ≤ ln
rM1
dL1

+ r̄1ω := M1,

x(t) ≥ x(η1)− 1
2

∫ k+ω

k

|x∆(t)|∆t ≥ ln
rL2 a

L
1

mM
21

− r̄1ω := L1.

From the first equation of (3.2) and (3.3), we obtain

m12(ξ1)ey(ξ1)

a(ξ1) + b1(ξ1)ex(ξ1) + e2x(ξ1)
< r1(ξ1),

y(ξ2) < y(ξ1) < ln
rM1 (aM1 + bM1 rM1

dL1
+ 2rM1

dL1
)

mL
12

.

Then

y(t) ≤ y(ξ2) +
1
2

∫ k+ω

k

|y∆(t)|∆t < ln
rM1 (aM1 + bM1 rM1

dL1
+ 2rM1

dL1
)

mL
12

+
mM

21ω

bL1
:= M2.

From the third equation of (3.2), we have

m32(ξ3)
a2(ξ3)

ey(ξ3−σ) > r3(t),
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this reduces to

y(η2) ≥ y(ξ3 − σ) > ln
aL2 r

L
3

mM
32

.

Then

y(t) ≥ y(η2)− 1
2

∫ k+ω

k

∣∣y∆(t)
∣∣∆t ≥ ln

aL2 r
L
3

mM
32

− mM
21ω

bL1
:= L2.

According to the first equation of (3.2), we have

m32(ξ3)
b2(ξ3)

> d3(ξ3)ez(ξ3).

Then

z(t) ≤ z(ξ3) +
1
2

∫ k+ω

k

|z∆(t)|∆t ≤ ln
mM

32

bL2 d
L
3

+
mM

32ω

bL2
:= M3.

Also we have

dM3 ez(η3) >
mL

32e
L2

aM2 + bM2 eM2 + e2M2
− rM3 .

Then

z(t) ≥ z(η3)− 1
2

∫ k+ω

k

|z∆(t)|∆t ≥ ln
mL32e

L2

aM2 +bM2 eM2+e2M2
− rM3

dM3
− mM

32ω

bL2
:= L3.

Therefore, we have

max
t∈[k,k+ω]

|x(t)| ≤ max{|M1|, |L1|} := R1,

max
t∈[k,k+ω]

|y(t)| ≤ max{|M2|, |L2|} := R2,

max
t∈[k,k+ω]

|z(t)| ≤ max{|M3|, |L3|} := R3.

Clearly, R1, R2 and R3 are independent of λ. Let R = R1 + R2 + R3 + R0, where
R0 is taken sufficiently large such that for the algebraic equations

r̄1 − d̄1e
x − 1

ω

∫ κ+ω

κ

m12(t)ey

a1(t) + b1(t)ex + e2x
∆t = 0,

− r̄2 +
1
ω

∫ κ+ω

κ

m21(t)ex

a1(t) + b1(t)ex + e2x
∆t− d̄2e

y

− 1
ω

∫ κ+ω

κ

m̄23e
z

a2(t) + b2(t)ey + e2y
∆t = 0,

−r̄3 +
1
ω

∫ κ+ω

κ

m32(t)ey

a2(t) + b2(t)ey + e2y
∆t− d̄3e

z = 0,

(3.4)

every solution (x∗, y∗, z∗)T of (3.4) satisfies ‖(x∗, y∗, z∗)T ‖ < R. Now, we define
Ω = {(x, y, z)T ∈ X : ‖(x, y, z)T ‖ < R}. Then it is clear that Ω satisfies the
requirement (a) of Lemma 2.2. If (u1, u2, u3)T ∈ ∂Ω ∩ kerL = ∂Ω ∩ R3, then
(x, y, z)T is a constant vector in R3 with ‖(x, y, z)T ‖ = |x| + |y| + |z| = R, so we
have

QN

xy
z

 6=
0

0
0

 .
By the assumption in Theorem 3.1 and the definition of topological degree, a

direct calculation yields deg(JQN,Ω ∩ kerL, 0) 6= 0. We have verified that Ω
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satisfies all requirements of Lemma 2.2; therefore, system (1.3) has at least one
ω-periodic solution in DomL ∩ Ω̄. This completes the proof. �

Conclusion. In this article, a three species food chain model on time scales is
proposed. This model not only unifies the food chain system with Monod-Haldane
functional response and time delay governed by differential equations and their dis-
crete analogues in form of difference equations, but also extends the results to more
general time scales. By using the Mawhin’s continuation theorem of coincidence de-
gree theory, the existence of periodic solutions is established, which means that we
do not have to investigate the same problem in systems (1.1) and (1.2) repeatedly.
Moreover, based on the sharp inequalities in [16], the priori estimates of periodic
solutions are better than previous work.
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