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DISCONTINUOUS ALMOST AUTOMORPHIC FUNCTIONS AND
ALMOST AUTOMORPHIC SOLUTIONS OF DIFFERENTIAL
EQUATIONS WITH PIECEWISE CONSTANT ARGUMENTS

ALAN CHÁVEZ, SAMUEL CASTILLO, MANUEL PINTO

Abstract. In this article we introduce a class of discontinuous almost auto-
morphic functions which appears naturally in the study of almost automorphic

solutions of differential equations with piecewise constant argument. Their fun-

damental properties are used to prove the almost automorphicity of bounded
solutions of a system of differential equations with piecewise constant argu-

ment. Due to the strong discrete character of these equations, the existence

of a unique discrete almost automorphic solution of a non-autonomous almost
automorphic difference system is obtained, for which conditions of exponential

dichotomy and discrete Bi-almost automorphicity are fundamental.

1. Introduction

A first order differential equation with piecewise constant argument (DEPCA)
is an equation of the type

x′(t) = g(t, x(t), x([t])),

where [·] is the greatest integer function. The study of DEPCA began in 1983 with
the works of Shah and Wiener [25], then in 1984 Cooke and Wiener studied DEPCA
with delay [11]. DEPCA are of considerable importance in applications to some
biomedical dynamics, physical phenomena (see [2, 7] and some references therein),
discretization problems [28, 15], etc; consequently they have had a huge develop-
ment, [9, 10, 14, 20, 21, 23, 24] (and some references therein) are evidence of these
fact. In this way many results about existence, uniqueness, boundedness, periodic-
ity, almost periodicity, pseudo almost periodicity, stability and other properties of
the solutions for these equations have been developed (see [2, 13, 16, 20, 21, 32, 33]
and some references therein). In 2006 the study of the almost automorphicity of
the solution for a DEPCA was considered in [14, 26].

Let X,Y be Banach spaces and BC(Y; X) denote the space of continuous and
bounded functions from Y to X. A function f ∈ BC(R; X) is said to be almost
automorphic (in the sense of Bochner) if given any sequence {s′n}n∈N of real num-
bers, there exist a subsequence {sn}n∈N ⊆ {s′n}n∈N and a function f̃ , such that the
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pointwise limits

lim
n→∞

f(t+ sn) = f̃(t), lim
n→∞

f̃(t− sn) = f(t), t ∈ R (1.1)

hold.
When the previous limits are uniform in all the real line, we say that the function

f is almost periodic in the Bochner sense. Following the classical notation we
denote by AP (R; X) and AA(R; X) the Banach spaces of almost periodic and almost
automorphic functions respectively. For detailed information about these functions
we remit to the references [4, 5, 6, 12, 16, 17, 27].

Our interest in this work is to prove the almost automorphicity of the bounded
solutions of the DEPCA

x′(t) = Ax(t) +Bx([t]) + f(t), (1.2)

where A,B ∈Mp×p(R) are matrices and f is an almost automorphic function.
The following definition expresses what we understand by solution for the DE-

PCA (1.2).

Definition 1.1. A function x(t) is a solution of a DEPCA (1.2) in the interval I,
if the following conditions are satisfied:

i) x(t) is continuous in all I.
ii) x(t) is differentiable in all I, except possibly in the points n ∈ I ∩ Z where

there should be a lateral derivative.
iii) x(t) satisfies the equation in all the open interval ]n, n + 1[, n ∈ Z as well

as is satisfied by its right side derivative in each n ∈ Z.

DEPCA are differential equations of hybrid type; that is, they have the structure
of continuous and discrete dynamical systems, more precisely in (1.2) the continuity
occurs on intervals of the form ]n, n+ 1[, n ∈ Z and the discrete aspect on Z. Due
to the continuity of the solution on the whole line for a DEPCA, we get a recursion
formula in Z and thus, we can pass from an interval to its consecutive. The recursion
formula appears naturally as solution of a difference equation.

With this objective, we study a general non-autonomous difference equation

x(n+ 1) = D(n)x(n) + h(n), n ∈ Z, (1.3)

where D(n) ∈ Mp×p is a discrete almost automorphic matrix and h is a discrete
almost automorphic function. To study the equation (1.3) we use conditions of
exponential dichotomy and a Bi-almost automorphic Green function [22, 29], ob-
taining a theorem about the existence of a unique discrete almost automorphic
solution for (1.3). In [22, 29], functions with a Bi-property have shown to be very
useful. When D(n) is a constant operator on an abstract Banach space, Araya et
al. [3] obtained the existence of discrete almost automorphic solutions under some
geometric assumptions on the Banach space and spectral conditions on the operator
D.

Note that although an almost automorphic solution x of (1.2) is continuous, the
function x([t]) does not and then it is not almost automorphic. Really, x([t]) has
friendly properties for our study when in (1.1), {sn}n∈N are in Z. This class of
discontinuous functions, which we call Z-almost automorphic (see definition 2.1),
appears inevitably in DEPCA and allow us to study almost automorphic DEPCAs
in a correct form (see the notes about Theorem 4.7). This type of problem is
present in the study of continuous solutions of DEPCA of diverse kind as periodic
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or almost periodic type, but it is not sufficiently mentioned in the literature (see
[1, 2, 18, 19, 30, 31, 34]). The treatment of almost periodic solutions for a DEPCA
was initiated by R. Yuan and H. Jialin [32]. Dads and Lachimi [13] introduced
discontinuous almost periodic functions to study the existence of a unique pseudo
almost periodic solution in a well posed form to a DEPCA with delay. Z-almost
automorphic functions generalize the ones proposed in [13].

Properties derived in Section 2 for Z-almost automorphic functions allow us to
simplify the proofs of some important results, some of them known for almost auto-
morphic functions in the literature (see Theorem 4.5 and [26, Lemma 3.3]). We will
see that to obtain almost automorphic solutions of DEPCAs is sufficient to consider
Z-almost automorphic perturbations. An application of these facts is given by the
use of the reduction method in DEPCA (1.2). This paper is organized as follows. In
Section 2, we introduce the Z-almost automorphic functions and their basic prop-
erties. In Section 3, we introduce the discrete Bi-almost automorphic condition for
the Green matrix to study discrete non-autonomous almost automorphic solutions.
Finally, in Section 4, we study the almost automorphic solutions of equation (1.2)
in several cases.

2. Z-almost automorphic functions

In this section we specify the definition of Z-almost automorphic functions with
values in Cp and develop some of their fundamental properties. Let us denote by
B(R; Cp) and BC(R; Cp) the Banach spaces of respectively bounded and continuous
bounded functions from R to Cp under the norm of uniform convergence. Now
define BPC(R,Cp) as the space of functions in B(R; Cp) which are continuous in
R\Z with finite lateral limits in Z. Note that BC(R; Cp) ⊆ BPC(R,Cp).

Definition 2.1. A function f ∈ BPC(R; Cp) is said to be Z-almost automorphic,
if for any sequence of integer numbers {s′n}n∈N ⊆ Z there exist a subsequence
{sn}n∈N ⊆ {s′n}n∈N such that the pointwise limits in (1.1) hold.

When the convergence in Definition 2.1 is uniform, f is called Z-almost periodic.
We denote the sets of Z-almost automorphic (periodic) functions by ZAA(R; Cp)
(ZAP (R; Cp)). ZAA(R; Cp) is an algebra over the field R or C and we have re-
spectively AA(R; Cp) ⊆ ZAA(R; Cp) and AP (R; Cp) ⊆ ZAP (R; Cp). Notice that a
Z-almost automorphic function is locally integrable.

For functions in BC(R×Y; X) we adopt the following notion of almost automor-
phicity.

Definition 2.2. A function f ∈ BC(R × Y; X) is said to be almost automorphic
uniformly in compact subsets of Y, if given any compact set K ⊆ Y and a sequence
{s′n}n∈N of real numbers, there exists a subsequence {sn}n∈N ⊆ {s′n}n∈N and a
function f̃ , such that for all x ∈ K and each t ∈ R the limits

lim
n→∞

f(t+ sn, x) = f̃(t, x), lim
n→∞

f̃(t− sn, x) = f(t, x), (2.1)

hold.

The vectorial space of almost automorphic functions uniformly in compact sub-
sets is denoted by AA(R× Y; X), see [16, 17].

Lemma 2.3. If f ∈ AA(R; Cp) (resp. AP (R; Cp)), then f([·]) ∈ ZAA(R; Cp)
(resp. ZAP (R; Cp)).
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All the next results for ZAA(R; Cp) are also valid for ZAP (R; Cp).

Lemma 2.4. The space ZAA(R; Cp) is a Banach space under the norm of uniform
convergence.

Proof. We only need to prove that the space ZAA(R; Cp) is closed in the space of
bounded functions under the topology of uniform convergence. Let {fn}n∈N be a
uniformly convergent sequence of Z-almost automorphic functions with limit f . By
definition each function of the sequence is bounded and piecewise continuous with
the same points of discontinuities, it is not difficult to see that the limit function
f is bounded and piecewise continuous. Given a sequence {s′n}n∈N ⊆ Z, it only
rest to prove the existence of a subsequence {sn}n∈N ⊆ {s′n}n∈N and a function f̃ ,
where the pointwise convergence given in (1.1) holds. As in the standard case of the
almost automorphic functions the approach follows across the diagonal procedure,
see [16, 17]. �

Lemma 2.5. Let G : Cp → Cp be a continuous function and f ∈ ZAA(R; Cp),
then G(f(·)) ∈ ZAA(R; Cp).

Lemma 2.6. Let f ∈ AA(R×Cp; Cp) and uniformly continuous on compact subsets
of Cp, ψ ∈ ZAA(R; Cp). Then f(·, ψ(·)) ∈ ZAA(R; Cp).

Proof. We have that the range of ψ ∈ ZAA(R; Cp) is relatively compact; that is,
K = {ψ(t), t ∈ R} is compact. Let {s′n}n∈N ⊆ Z be an arbitrary sequence, then
there exist a subsequence {sn}n∈N ⊆ {s′n}n∈N and functions f̃ and ψ̃ such that the
pointwise limits in (2.1) and

lim
n→+∞

ψ(t+ sn) = ψ̃(t), lim
n→+∞

ψ̃(t− sn) = ψ(t), t ∈ R

hold. The equality limn→+∞ f(t+ sn, ψ(t+ sn)) = f̃(t, ψ̃(t)) follows from

|f(t+ sn, ψ(t+ sn))− f̃(t, ψ̃(t))|

≤ |f(t+ sn, ψ(t+ sn))− f(t+ sn, ψ̃(t))|+ |f(t+ sn, ψ̃(t))− f̃(t, ψ̃(t))|.

The proof of limn→+∞ f̃(t− sn, ψ̃(t− sn)) = f(t, ψ(t)) is analogous. �

With analogous arguments we can prove the following Lemma.

Lemma 2.7. Let f ∈ AA(R × Cp × Cp; Cp) be uniformly continuous on compact
subsets of Cp × Cp, ψ ∈ AA(R; Cp), then f(·, ψ(·), ψ([·])) ∈ ZAA(R; Cp).

Now we want to give a necessary condition to say when a Z-almost automorphic
function is almost automorphic.

Lemma 2.8. Let f be a continuous Z-almost automorphic (periodic) function. If
f is uniformly continuous in R, then f is almost automorphic (periodic).

Proof. Let {s′n}n∈N be an arbitrary sequence of real numbers, then there exists a
subsequence {sn}n∈N ⊆ {s′n}n∈N of the form sn = tn+ξn with ξn ∈ Z and tn ∈ [0, 1[
such that limn→∞ tn = t0 ∈ [0, 1]. Moreover, {ξn}n∈N can be chosen such that the
pointwise limits

lim
n→∞

f(t+ ξn) =: g(t), lim
n→∞

g(t− ξn) = f(t), t ∈ R (2.2)

hold. As f is uniformly continuous, the function g is too. Let us consider

|f(t+ tn + ξn)− g(t+ t0)|
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≤ |f(t+ tn + ξn)− f(t+ t0 + ξn)|+ |f(t+ t0 + ξn)− g(t+ t0)|.
Let ε > 0, δ = δ(ε) be the parameter in the uniform continuity of f . Let N0 =
N0(ε) ∈ N be such that for every n ≥ N0, |tn−t0| < δ. Then the uniform continuity
of f ensures that |f(t + tn + ξn) − f(t + t0 + ξn)| < ε

2 . Moreover, by (2.2) there
exists N ′0 = N ′0(t, ε) such that if n ≥ N ′0, then |f(t + t0 + ξn) − g(t + t0)| < ε

2 .
Therefore, given n ≥M0 = max{N0, N

′
0}, we have

|f(t+ sn)− g(t+ t0)| < ε.

Similarly, from the uniform continuity of g and (2.2) we conclude that |g(t + t0 −
sn)− f(t)| < ε, for all n ≥M0. Then f ∈ AA(R,Cp). �

Lemma 2.9. Let f ∈ ZAA(R; Cp) (resp. ZAP (R; Cp). The function F (t) =∫ t
0
f(s)ds is bounded if and only if F (·) is almost automorphic (resp. almost peri-

odic).

Proof. The proof of the sufficient condition is immediate. For the necessary condi-
tion, since F is uniformly continuous, we need to prove that F is Z-almost auto-
morphic, which follows by the same arguments of [16, Theorem 2.4.4]. �

Lemma 2.10. Let Φ : R → Mp×p(R) be an absolutely integrable matrix and A ∈
Mp×p(R) be a constant matrix. The operators

(Lf)(t) =
∫ ∞
−∞

Φ(t− s)f(s)ds and (Υf)(t) =
∫ t

[t]

eA(t−s)f(s)ds,

map ZAA(R; Cp) into itself.

Proof. We only prove the Lemma for L, the proof for Υ is analogous. It is easy to
see that the operator L is bounded. Let {s′n}n∈N be a sequence of integers. Since
f ∈ ZAA(R; Cp), there exists a subsequence {sn}n∈N ⊆ {s′n}n∈N and a function f̃
such that we have the pointwise limits in (1.1).

Define the function g(t) = (Lf̃)(t). Then, by the Lebesgue Convergence Theorem

lim
n→+∞

(Lf)(t+ sn) = lim
n→+∞

∫ ∞
−∞

Φ(t− s)f(s+ sn)ds = g(t).

Analogously, the limit limn→∞ g(t− sn) = (Lf)(t) holds. �

3. Almost uutomorphic solutions of difference equations

As it is noted in the literature [13, 26, 32, 33], difference equations are very
important in DEPCA studies. In this section, we are interested in obtaining discrete
almost automorphic solutions of the system

x(n+ 1) = C(n)x(n) + f(n), n ∈ Z, (3.1)

where C(·) ∈Mp×p(R) is a discrete almost automorphic matrix and f(·) is a discrete
almost automorphic function.

Definition 3.1. Let X be a Banach space. A function f : Z→ X is called discrete
almost automorphic, if for any sequence {s′n}n∈N ⊆ Z, there exists a subsequence
{sn}n∈N ⊆ {s′n}n∈N, such that the following pointwise limits

lim
n→+∞

f(k + sn) =: f̃(k), lim
n→+∞

f̃(k − sn) = f(k), k ∈ Z

hold.
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We denote the vector space of almost automorphic sequences by AA(Z,X) which
becomes a Banach algebra over R or C with the norm of uniform convergence (see
[3]). In [22, 29], we see the huge importance of the Bi-property of a function H :=
H(·, ·), such as Bi-periodicity, Bi-almost periodicity, Bi-almost automorphicity; i.e.,
H has simultaneously the property in both variables. This motives the following
definition.

Definition 3.2. For X being a Banach space, a function H : Z × Z → X is said
to be a discrete Bi-almost automorphic function, if for any sequence {s′n}n∈N ⊆ Z,
there exists a subsequence {sn}n∈N ⊆ {s′n}n∈N, such that the following pointwise
limits

lim
n→+∞

H(k+sn,m+sn) =: H̃(k,m), lim
n→+∞

H̃(k−sn,m−sn) = H(k,m), k,m ∈ Z

hold.

Some examples of discrete Bi-almost automorphic functions can be obtained by
restriction to the integer numbers of continuous Bi-almost automorphic (periodic)
functions in R.

The following definition deals with the discrete version of exponential dichotomy
[33]. Suppose that the matrix function C(n), n ∈ Z, of the equation (3.1) is invert-
ible and consider Y (n), n ∈ Z, a fundamental matrix solution of the system

x(n+ 1) = C(n)x(n), n ∈ Z. (3.2)

Definition 3.3. The equation (3.2) has an exponential dichotomy with parameters
(α,K, P ), if there are positive constants α,K and a projection P such that

|G(m, l)| ≤ Ke−α|m−l|,m, l ∈ Z,
where G(m, l) is the discrete Green function which takes the explicit form

G(m, l) :=

{
Y (m)PY −1(l),m ≥ l
−Y (m)(I − P )Y −1(l), m < l.

Now, we give conditions to obtain a unique discrete almost automorphic solution
of the system (3.1).

Theorem 3.4. Let f ∈ AA(Z,Cp). Suppose that the homogeneous part of equation
(3.1) has an (α,K, P )-exponential dichotomy with discrete Bi-almost automorphic
Green function G(·, ·). Then the unique almost automorphic solution of (3.1) takes
the form:

x(n) =
∑
k∈Z

G(n, k + 1)f(k), n ∈ Z (3.3)

and
|x(n)| ≤ K(1 + e−α)(1− e−α)−1||f ||∞, n ∈ Z.

Proof. It is well known that the function given by (3.3) is the unique bounded
solution of the discrete equation (3.1) (see [33, Theorem 5.7]). We prove that this
solution is discrete almost automorphic. In fact, consider an arbitrary sequence
{s′n}n∈N ⊆ Z. Since f ∈ AA(Z,Cp) and G(·, ·) is discrete Bi-almost automorphic,
there are a subsequence {sn}n∈N ⊆ {s′n}n∈N and functions f̃(·), G̃(·, ·) such that
the following pointwise limits

lim
n→+∞

f(m+ sn) =: f̃(m), lim
n→+∞

f̃(m− sn) = f(m), m ∈ Z
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and

lim
n→+∞

G(m+sn, l+sn) =: G̃(m, l), lim
n→+∞

G̃(m−sn, l−sn) = G(m, l), m, l ∈ Z

hold. Note that |G̃(m, l)| ≤ Ke−α|m−l|, m, l ∈ Z. Then,

x(n+ sn) =
∑
k∈Z

G(n+ sn, k + 1)f(k)

=
∑
k∈Z

G(n+ sn, k + 1 + sn)f(k + sn),

and from the Lebesgue Dominated Convergence Theorem we conclude that

lim
n→∞

x(n+ sn) = x̃(n),

where
x̃(n) =

∑
k∈Z

G̃(n, k + 1)f̃(k).

To demonstrate the limit

lim
n→∞

x̃(n− sn) =
∑
k∈Z

G(n, k + 1)f(k) = x(n),

we proceed analogously. �

4. Almost automorphic solutions for linear DEPCA

Finally, in this section we investigate the almost automorphic solution of the
equation (1.2). Before that, we reproduce the following useful result.

Lemma 4.1. Let f(·) be a locally integrable and bounded function. If x(·) is a
bounded solution of (1.2), then x(·) is uniformly continuous.

Proof. Since x(·) and f(·) are bounded, there is a constant M0 > 0 such that
supu∈R |Ax(u) +Bx([u]) + f(u)| ≤M0. Now, as a consequence of the continuity of
x, we conclude that

|x(t)− x(s)| ≤
∣∣ ∫ t

s

(Ax(u) +Bx([u]) + f(u))du
∣∣ ≤M0|t− s|.

Then, the Lemma holds. �

For a better understanding, we study the equation (1.2) in several cases.

4.1. B=0. In this case the equation (1.2) becomes the system of differential equa-
tions

x′(t) = Ax(t) + f(t), (4.1)

which has been well studied when f ∈ AA(R; Cp), see [16, 27]. But when f ∈
ZAA(R; Cp) we have the following Massera type extension.

Theorem 4.2. Let f ∈ ZAA(R; Cp). If the eigenvalues of A have non trivial real
part, then the equation (4.1) has a unique almost automorphic solution.
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Proof. Since the eigenvalues of A have non trivial real part, it is well known that the
system x′(t) = Ax(t) has an exponential dichotomy; that is, there are projections
P,Q with P +Q = I such that the bounded solution of (4.1) has the form

x(t) =
∫ t

−∞
eA(t−s)Pf(s)ds−

∫ +∞

t

eA(t−s)Qf(s)ds.

By Lemma 2.10 we can see that this solution is bounded and Z-almost automorphic.
By the following Lemma 2.8, we only need to show that this solution is uniformly
continuous, but this is a consequence of Lemma 4.1. The conclusion holds. �

For the scalar equation
x′(t) = αx(t) + f(t), (4.2)

Theorem 4.2 implies the following result.

Corollary 4.3. Let f ∈ ZAA(R; C) and, the real part of α, <(α) 6= 0. Then the
scalar equation (4.2) has a unique almost automorphic solution, given by

x1(t) =
∫ t

−∞
eα(t−s)f(s)ds, for <(α) < 0,

x2(t) = −
∫ +∞

t

eα(t−s)f(s)ds, for <(α) > 0.

Theorem 4.4. Let α be a purely imaginary complex number and f ∈ ZAA(R; C).
If x(·) is a bounded solution of (4.2) then x(·) is almost automorphic.

Proof. Let α = θi, with θ ∈ R, then the solution of (4.2) is

x(t) = eθtix(0) +
∫ t

0

eθ(t−s)if(s)ds, t ∈ R.

Since x(·) is bounded, we have that
∫ t

0
eiθ(t−s)f(s)ds is bounded and, by Lemma

2.9, is almost automorphic. Therefore x(·) is almost automorphic. �

4.2. B 6=0. By the variation of parameters formula, the solution of DEPCA (1.2),
for t ∈ [n, n+ 1[ and n ∈ Z, satisfies

x(t) = Z(t, [t])x([t]) +H(t, [t]), (4.3)

where

Z(t, [t]) = eA(t−[t]) +
∫ t

[t]

eA(t−s)Bds and H(t, [t]) =
∫ t

[t]

eA(t−s)f(s)ds.

By continuity of the solution x, if t→ (n+ 1)− we obtain the difference equation

x(n+ 1) = C(n)x(n) + h(n), n ∈ Z, (4.4)

where C(n) = Z(n+ 1, n) and h(n) = H(n+ 1, n). By Lemma 2.10, Z and H are
Z-almost automorphic functions, hence C(n) and H(n) are almost automorphic
sequences.

For the existence of the solution x = x(t) of DEPCA (1.2) on all of R, we assume
that the matrix Z(t, [t]) is invertible for t ∈ R, see [2, 23, 28]. This hypothesis will
be needed in the rest of the section. For example, when A and B are diagonal
matrices, we have that

Z(t, [t]) = eA(t−[t]) +B

∫ t

[t]

eA(t−s)ds
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= eA(t−[t])
[
I +B

∫ t−[t]

0

e−Audu
]

is invertible if and only if the next assumption holds.
Assume that the eigenvalues λA of A and λB of B satisfy for u ∈ [0, 1]

λB
λA

[1− e−uλA ] 6= −1, if λA 6= 0,

λBu 6= −1, if λA = 0.
(4.5)

As Theorem 4.7 below will show the existence, on all of R, of the solutions of
(1.2) also follows from condition (4.5) when matrices A and B are simultaneously
triangularizable.

Theorem 4.5. Let x be a bounded solution of (4.1) with f ∈ ZAA(R; Cp). Then x
is almost automorphic if and only if x(n) in (4.4) is discrete almost automorphic.

Proof. If x is an almost automorphic solution then restricting it to Z, x(n) is discrete
almost automorphic. For f ∈ ZAA(R; Cp) and x(n) being an almost automorphic
sequence, the function x given by (4.3) is well defined. The proof of the almost
automorphicity of x will follow at once if we prove its Z-almost automorphicity, by
Lemma 4.1.

Let us take an arbitrary sequence {s′n}n∈N ⊆ Z. Then there are a subsequence
{sn}n∈N ⊆ {s′n}n∈N, functions f̃ and ν such that the limits in (1.1) and

lim
n→+∞

x(k + sn) = ν(k), lim
n→+∞

ν(k − sn) = x(n), k ∈ Z

hold. Now, consider the limit function

y(t) = Z(t, [t])ν([t]) +
∫ t

[t]

eA(t−s)f̃(s)ds.

Then,

|x(t+ sn)− y(t)| ≤ |Z(t, [t])||x([t] + sn)− ν([t])|+
∫ t

[t]

|eA(t−s)||f(t+ sn)− f̃(s)|ds,

and for each t ∈ R we have limn→+∞ x(t+ sn) = y(t). Analogously limn→+∞ y(t−
sn) = x(t). Then, the bounded solution x is Z-almost automorphic. �

Note that, without using ZAA(R; Cp), to prove directly x(n) ∈ AA(Z; Cp) im-
plies x ∈ AA(R; Cp) is much more difficult (see [14, Lemma 3] and [26, Lemma
3.3]).

4.3. A = 0, B 6=0. Theorem 4.5 includes this important case

x′(t) = Bx([t]) + f(t), (4.6)

for which the existence condition is reduced to invertibility for t ∈ [0, 1[ of I + tB.
Therefore the following result is obtained.

Corollary 4.6. Let f ∈ ZAA(R; Cp) and x a bounded solution of (4.6). Then, x
is almost automorphic if and only if x(n) is discrete almost automorphic.
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4.4. Reduction Method. By “simultaneous triangularizations” of matrices A
and B, we understand that there is an invertible matrix, say T , which simultane-
ously triangularizes both matrices A and B. There exist various results to obtain
conditions under which simultaneous triangularization holds, see for example the
monograph of Heydar Radjavi and Peter Rosenthal [24] and some references therein.

Theorem 4.7 (Reduction Method). Consider f ∈ ZAA(R; Cp) and suppose that
the matrices A,B of the system (1.2) have simultaneous triangularizations and
satisfy (4.5). Let x be a bounded solution of (1.2), then x is almost automorphic if
and only if x(n), in (4.4), is discrete almost automorphic.

Proof. If x is almost automorphic, then its restriction to Z is discrete almost au-
tomorphic. We will prove that if x(n) is discrete almost automorphic, then x(·)
is almost automorphic. In fact, since A,B have a simultaneous triangularization,
there is an invertible matrix T such that

T−1AT = Ā =


α1 a12 a13 · · · a1p

0 α2 a22 · · · a2p

...
0 0 · · · 0 αp

 ,

T−1BT = B̄ =


β1 b12 b13 · · · b1p
0 β2 b22 · · · b2p
...
0 0 · · · 0 βp

 ,
where, for i ∈ {1, 2, · · · , p}, αi and βi are the eigenvalues of A and B respectively.
Consider the following change of variables y(t) = T−1x(t), then the boundedness
of x(t) is equivalent to the boundedness of y(t), which is a solution of the following
new system

y′(t) = Āy(t) + B̄y([t]) + T−1f(t).
Observe that, by Lemma 2.5, the sequence y(n) = T−1x(n) ∈ AA(Z,Cp), since
x(n) is almost automorphic. Let T−1f(t) = H(t) = (h1(t), h2(t), · · · , hp(t)), then
we have the almost automorphic system

y′(t) = Āy(t) + B̄y([t]) +H(t), (4.7)

namely,

y′1(t) = α1y1(t) +
p∑
i=2

a1iyi(t) + β1y1([t]) +
p∑
i=2

b1iyi([t]) + h1(t)

y′2(t) = α2y2(t) +
p∑
i=3

a2iyi(t) + β2y2([t]) +
p∑
i=3

b2iyi([t]) + h2(t)

. . .

y′p−1(t) = αp−1yp−1(t) + ap−1pyp(t) + βp−1yp−1([t]) + bp−1pyp([t]) + hp−1(t)

y′p(t) = αpyp(t) + βpyp([t]) + hp(t).

Now take the p th-equation

y′p(t) = αpyp(t) + βpyp([t]) + hp(t), (4.8)

where the eigenvalues αp of A and βp of B satisfy (4.5).
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Since AA(R; Cp) ⊆ ZAA(R; Cp) and yp is a bounded solution of (4.8), from
Theorem 4.4, yp(t) is almost automorphic. Consider now the (p− 1) th-equation

y′p−1(t) = αp−1yp−1(t) + βp−1yp−1([t]) + [ap−1pyp(t) + bp−1pyp([t]) + hp−1(t)] .

By Lemma 2.3, yp([t]) is Z-almost automorphic, then the function

zp−1(t) = ap−1pyp(t) + bp−1pyp([t]) + hp−1(t)

is again Z-almost automorphic. Similarly, we can conclude that yp−1(t) is an almost
automorphic solution of the equation

y′p−1(t) = αp−1yp−1(t) + βp−1yp−1([t]) + zp−1(t), (4.9)

since it is a bounded solution. Following this procedure, we obtain the almost
automorphic solution y(t) of system (4.7) and thus x ∈ AA(R,Cp). �

Note that the discontinuous function zp−1 in (4.9) is Z-almost automorphic,
although functions hp−1, hp ∈ AA(R,C). Then, the presence of Z-almost automor-
phic terms is proper of DEPCA. The Z-almost automorphic space contains correctly
the Z-almost periodic and the interesting Z-periodic situation (which are periodic
functions not necessarily continuous), see [8]. Then we conclude.

Corollary 4.8. Let f ∈ ZAP (R,Cp). Then, every bounded solution x of the
DEPCA (1.2) is almost periodic if and only if x(n) ∈ AP (Z,Cp).

Corollary 4.9. Suppose that f is a Z-ω-periodic function, with ω ∈ Q, then
(a) If ω = p0 ∈ Z, every bounded solution x of the DEPCA (1.2) is ω-periodic if
and only if the sequence x(n), n ∈ Z, is discrete ω-periodic.
(b) If ω = p0

q0
∈ Q with p0, q0 ∈ Z relatively primes, then every bounded solution

x of the DEPCA (1.2) is q0ω-periodic if and only if the sequence x(n), n ∈ Z is
discrete q0ω-periodic.
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