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BOUNDARY PROBLEMS FOR MIXED
PARABOLIC-HYPERBOLIC EQUATIONS WITH TWO LINES OF

CHANGING TYPE AND FRACTIONAL DERIVATIVE

BAKHTIYOR J. KADIRKULOV

Abstract. In this article, we study a boundary value problem for a parabolic-
hyperbolic equation with Caputo fractional derivative. Under certain condi-

tions, we prove its unique solvability using methods of integral equations and
Green’s functions.

1. Introduction

Gelfand started the study of mixed parabolic-hyperbolic type equations in his
work [15]. Later on, Tricomi and Gellerstedt studied main boundary problems, and
many authors have continued these studies as seen in the detailed bibliographies
of [10, 11]. Son recent works [14, 14, 18, 25] have been devoted to the study of
boundary problems for parabolic-hyperbolic equations with two or more lines of
changing type. While other works have been devoted to the study of Riemann-
Liouville, Caputo, Hadamard, Hadamard-Marchaud and other general fractional
operators; see for example [2, 3, 15, 16, 18, 17, 21, 24, 26].

Non-local problems for parabolic-hyperbolic equations with one or two lines of
changing type containing the Riemann-Liouville fractional derivative were investi-
gated in [4, 7, 12, 19, 20].

The Caputo fractional derivative is suitable for numerical methods in the study
of fractional differential equations [1, 27], and it appears in many mathematical
models of real-life processes [9, 16, 22].

In this article we study a boundary value problem for a parabolic-hyperbolic
equation with the Caputo fractional derivative, and having two lines where it
changes type.

2. Formulation of the problem and main result

Let 0 < α be a real number. For a function ϕ(t), given on (0, `), ` < ∞ an
integral-differential operator in a sense of the Riemann-Liouville starting at 0, is
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defined as follows [21, 24, 26],

Dα
0tϕ(t) =


1

Γ(−α)

∫ t
0

ϕ(τ)dτ

(t−τ)α+1 , α < 0,

ϕ(t), α = 0,
dn

dtnD
α−n
0t ϕ(t), n− 1 < α ≤ n, n ∈ N.

The operator

CD
α
0tϕ(t) = Dα−n

0t ϕ(n)(t), n− 1 < α ≤ n, n ∈ N

is called the Caputo fractional differential operator.
The Riemann-Liouville and the Caputo differential operators are related by the

equality

cDα
0tϕ(t) = cD

α
0tϕ(t) +

n∑
k=0

ϕk(0+)
Γ(1 + k − µ)

tk−α, t > 0. (2.1)

Let us consider the equation

∂2u

∂x2
− 1− sign(xy)

2
∂2u

∂y2
− 1 + sign(xy)

2
· CDα

0yu = f(x, y), α ∈ (0, 1). (2.2)

This equation for x > 0, y > 0 is the fractional order diffusion equation

∂2u(x, y)
∂x2

− CD
α
0yu(x, y) = f(x, y),

which coincides at α = 1 with the diffusion equation [26]

∂2u

∂x2
− ∂u

∂y
= f(x, y).

Consider the (2.2) in a finite domain Ω ⊂ R2, bounded for x > 0, y > 0 by
segments A0B0, B0B of straight lines y = 1, x = 1; at x > 0, y < 0 by segments
AC,BC of characteristics x + y = 0, x − y = 1 of the (2.2); at x < 0, y > 0 by
segments AD,A0D of characteristics x+ y = 0, y − x = 1 of the (2.2).

The parabolic part of the mixed domain Ω will be denoted by Ω3, and the
hyperbolic part by Ω1, at x > 0 and by Ω2 at x < 0, respectively.

The function u(x, y) is called a regular solution of the (2.2), if it has necessary
continuous derivatives participating in the (2.2) and satisfies it in Ω1 ∪ Ω2 ∪ Ω3.

In the domain Ω we study the following boundary problem.
Problem DS. Find a function u(x, y) ∈ C(Ω), such that:

(1) u is a regular solution of the (2.2) in the domain Ω\(AA0 ∪AB);
(2) satisfies boundary conditions

u(x, y)
∣∣
BB0∪DC

= 0; (2.3)

(3) on lines of type changing it satisfies the gluing conditions

u(x,−0) = u(x,+0), u(−0, y) = u(+0, y), (2.4)

uy(x,−0) = l1(x) · lim
y→+0

y1−αuy(x, y) +m1(x) · u(x, 0) + n1(x), (2.5)

ux(−0, y) = l2(y) · ux(+0, y) +m2(y) · u(0, y) + n2(y), (2.6)

where li(t), mi(t), ni(t), y ∈ [0, 1], i = 1, 2 are given functions.
Note that Problem DS generalizes a problem studied in [13].



EJDE-2014/57 MIXED PARABOLIC-HYPERBOLIC EQUATIONS 3

Theorem 2.1. Let the following conditions be fulfilled: f(x, y) ∈ Cδ(Ω), 0 < δ < 1,
li(t) ∈ C1[0, 1], mi(t), ni(t) ∈ C[0, 1], li(t) 6= 0, l′i(t) − 2li(t) · mi(t) ≥ 0 for all
t ∈ [0, 1], l2(1) > 0, i = 1, 2. Then problem DS has a unique regular solution.

Proof Theorem 2.1. First, we find the main functional relations on AB, AA0

deduced from the domains Ω1 and Ω2. We introduce the following notation

u(x, 0) = τ1(x), , u(0, y) = τ2(y), (2.7)

uy(x,−0) = ν−1 (x), lim
y→+0

y1−αuy(x, y) = ν+
1 (x), (2.8)

ux(−0, y) = ν−2 (y), ux(+0, y) = ν+
2 (x). (2.9)

The solution to problem DS in Ω1 can be represented by the D’Alembert’s formula

u(ξ, η) =
1
2

[
τ1(ξ) + τ1(η)−

∫ η

ξ

ν−1 (t)dt
]
−
∫ η

ξ

dt

∫ η

y

f1(y, τ)dτ (2.10)

where
ξ = x+ y, η = x− y, f1(ξ, η) =

1
4
f
(ξ + η

2
,
ξ − η

2
)
.

Then using condition (2.3) from (2.10) we get the following relation, reduced from
the domain Ω1 to the segment AB,

τ ′1(x)− ν−1 (x) = 2
∫ x

0

f1(t, x)dt, x ∈ (0, 1).

Similarly, from the formula

u(ξ, η) =
1
2

[
τ2(ξ) + τ2(η)−

∫ η

ξ

ν−2 (t)dt
]
−
∫ η

ξ

dt

∫ η

y

f2(y, τ)dτ (2.11)

by (2.3), from the domain Ω2 one can deduce the following relation between func-
tions τ2(y) and ν−2 (y):

τ ′2(y)− ν−2 (y) = 2
∫ y

0

f2(t, y)dt, y ∈ (0, 1), (2.12)

where
ξ = x+ y, η = y − x, f2(ξ, η) = −1

4
f
(ξ − η

2
,
ξ + η

2
)
.

First, we prove the uniqueness of the solution of problem DS.

Lemma 2.2. Let the conditions of the theorem be valid. Then problem DS can not
have more than one regular solution.

Proof. Suppose the opposite. Let problem DS has two different regular solutions
u1(x, y), u2(x, y) and let

u(x, y) = u1(x, y)− u2(x, y).

It is not difficult to see that u(x, y) is a regular solution of the homogeneous problem
DS (f(x, y) = 0, ni(t) = 0, i = 1, 2). This is why one only needs to prove that
homogeneous problem has only the trivial solution.

Let u(x, y) be a regular solution of the homogeneous problem DS in the domain
Ω. Since uuxx = (u · ux)x−u2

x, then integrating the identity u
(
uxx−CDα

0yu(x, y)
)

=
0 along the domain Ω3, taking (2.3), (2.7)-(2.9) into account, after some evaluations
we deduce∫∫

Ω3

u · CDα
0yu(x, y) dx dy +

∫ 1

0

τ2(x)ν+
2 (x)dx+

∫∫
Ω3

u2
x dx dy = 0 (2.13)
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Consider the integral

I2 =
∫ 1

0

τ2(y)ν+
2 (y)dy.

Taking into consideration the relation

ν+
2 (y) =

1
l2(y)

ν−2 (y)− m2(y)
l2(y)

τ2(y),

which follows from gluing conditions (2.5) and notation (2.9), integral I2 is rewritten
as

I2 =
∫ 1

0

1
l2(y)

τ2(y)ν−2 (y)dy −
∫ 1

0

m2(y)
l2(y)

τ2
2 (y)dy.

On the other hand from (2.12) it follows that∫ 1

0

1
l2(y)

τ2(y)ν−2 (y)dy =
τ2
2 (1)

2l2(1)
+

1
2

∫ 1

0

l′2(y)
l22(y)

τ2
2 (y)dy.

Hence

I2 =
τ2
2 (1)

2l2(1)
+

1
2

∫ 1

0

l′2(y)− l2(y)m2(y)
l22(y)

τ2
2 (y)dy. (2.14)

Using the formula [see [26, p. 53]

lim
t→0

Dβ−1
0t ϕ(t) = Γ(β) lim

t→0
t1−βϕ(t), t1−βϕ(t) ∈ C[0, 1), 0 < β < 1

from the (2.2) passing to the limit at y → +0, taking notations (2.7) and (2.8) into
account, we obtain

τ ′′1 (x)− Γ(α)ν+
1 (x) = 0, x ∈ (0, 1). (2.15)

Considering condition (2.5), equality (2.15) can be rewritten as

τ ′′1 (x)− Γ(α)
l1(x)

[ν−1 (x)−m1(x)τ1(x)] = 0.

From here we obtain

−
∫ 1

0

[τ ′1(x)]2dx− Γ(α)
∫ 1

0

1
l1(x)

τ1(x)ν−1 (x)dx+ Γ(α)
∫ 1

0

m1(x)
l1(x)

τ2
1 (x)dx = 0.

(2.16)
On the other hand from (2) it follows that∫ 1

0

1
l1(x)

τ1(x)ν−1 (x)dx =
∫ 1

0

l′1(x)
2l22(x)

τ2
1 (x)dx.

Then relation (2.16) will have the form∫ 1

0

[τ ′1(x)]2dx+ Γ(α)
∫ 1

0

l′1(x)− 2l1(x)m1(x)
2l21(x)

τ2
1 (x)dx = 0.

Here considering the conditions of the theorem we have τ ′1(x) = 0. Hence, τ1(x) =
const. Since, τ1(0) = 0, it follows that τ1(x) = 0, x ∈ [0, 1].

Taking (2.14), τ1(x) = 0 and formula (2.1) into account, (2.13) is rewritten as∫∫
Ω3

uDα
RLu(x, y) dx dy+

τ2
2 (1)

2l2(1)
+

1
2

∫ 1

0

l′2(x)− 2l2(x)m2(x)
l22(x)

τ2
2 (x)dx

+
∫∫

Ω3

u2
x(x, y) dx dy = 0.
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According to [24, Theorem 1.7.1], from the last equality we have u(x, y) ≡ 0
in Ω3. Further, from formulas (2.10) and (2.11), by virtue of the uniqueness of
the solution of the Cauchy problem we have that u(x, y) ≡ 0 in Ω1 ∪ Ω2. Hence,
u(x, y) ≡ 0; i.e., u1(x, y) ≡ u2(x, y) in Ω̄. The proof is complete �

Now we prove the existence of the solution of problem DS.
From the (2.2) we deduce the following functional relation between functions

τ1(x) and ν+
1 (x), on AB

τ ′′1 (x)− Γ(α)ν+
1 (x) = f(x, 0).

Defining function ν+
1 (x). from conditioin (2.5) and (2) and substituting into the

above equation we obtain the following problem for the unknown τ1(x):

τ1
′′(x) + p(x)τ1′(x) + q(x)τ1(x) = g(x),

τ1(0) = τ1(1) = 0,

where

p(x) = −Γ(α)
l1(x)

, q(x) =
m1(x)
l1(x)

, g(x) = − 1
l1(x)

[
n1(x) + 2

∫ x

0

f1(t, x)dt
]
.

The uniqueness of the solution of this problem follows from the uniqueness of the
solution of problem DS. Note that this solution can be written by Green’s function
(see [13]). Since, function τ1(x) is now known, from (2) we find ν−1 (y). Hence, the
solution of the problem in Ω1 is known.

The unknown function τ2(y) can be found by the formula of the solution of the
first boundary problem for the (2.2) in Ω3 [6]:

u(x, y) =
∫ y

0

Gξ(x, y, 0, η)τ2(η)dη +
∫ 1

0

G̃(x− ξ, y)τ1(ξ)dξ

−
∫∫

Ω3

G(x, y, ξ, η)f(ξ, η)dξdη,
(2.17)

where G(x, y, ξ, η) is the Green’s function of the first boundary problem for the
diffusion equation with the Riemann-Liouville fractional differential operator (see
[26, p. 108])

G(x, y, ξ, η) =
(y − η)β−1

2

∞∑
n=−∞

[
e1,β

1,β

(
−|x− ξ + 2n|

(y − η)β
)
− e1,β

1,β

(
−|x+ ξ + 2n|

(y − η)β
)]
,

G̃(x− ξ, y) =
1

Γ(1− α)

∫ y

0

η−αG(x, y, ξ, η)dη, β =
α

2
,

where e1,β
1,β(z) is the Wright’s function, which has the form

e1,δ
1,β(z) =

∞∑
n=0

zn

n! Γ(δ − βn)
.

Calculating ux(x, y) from (2.17) and letting x go to zero, bearing in mind [26,
Lemma 2.2.2], we get a relation between functions τ2(y) and ν+

2 (y) on AA0:

ν+
2 (y) = −

∫ y

0

K(y − t)τ2′(t)dt+ Φ0(y),
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where

K(y − t) =
1

(y − t)β
[ 1

Γ(1− β)
+ 2

∞∑
n=1

e1,1−β
1,β

(
− 2n

(y − t)β
)]
,

Φ0(y) = lim
x→+0

[∫ 1

0

G̃x(x− ξ, y)τ1(ξ)dξ −
∫∫

Ω3

Gx(x, y, ξ, η)f(ξ, η)dξdη
]
.

Considering ν−2 (y) = ν+
2 (x) = ν2(x), excluding ν2(x) from (2.12) and (20), we

get the Volterra integral equation of second kind regarding the unknown function
τ2
′(y):

τ2
′(y) +

∫ y

0

K(y − t)τ2′(t)dt = Φ(y), (2.18)

where

Φ(y) = Φ0(y) + 2
∫ y

0

f2(t, y)dt.

Since a solution of the integral equation depends on the kernel K(y − t), we shall
study it in detail. The function K(y − t) we represent as a sum of two kernels

K(y − t) = K1(y − t) +K2(y − t),

where

K1(y − t) = − (y − t)−β

Γ(1− β)
, K2(y − t) = − 2

(y − t)β
∞∑
n=1

e1,1−β
1,β

(
− 2n

(y − t)β
)
.

Note that K1(y − t) is a kernel with weak singularity. The kernel K2(y − t) repre-
sented as a series of Wright’s type functions. From [26, (2.2.5), (2.2.24)] it follows
that the kernel K2(y− t) has also weak singularity. Therefore, equation (2.18) is a
Volterra equation of second kind with weak singularity.

Using formulas [26, 2.2.19, 2.2.25, 2.3.8, 3.3.3], it is not difficult to show that
the right hand side of (2.18) is a continuous function. Then, from the theory of
integral equations follows that (2.18) has a unique continuous solution (see, for
example [23]).

After finding the functions τ1(x), τ2(x), ν1(x) and ν2(y), the solution of problem
DS in the domain Ω3 will be found by formula (2.17), and in the domains Ω1, Ω2 as
a solution of the Cauchy problem by the formulas (2.10) and (2.11), respectively.

The proof of Theorem 2.1 is complete.

Acknowledgements. Author is grateful to Professor M. Kirane for his useful
remarks and suggestions.
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