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SOLVABILITY OF FRACTIONAL MULTI-POINT
BOUNDARY-VALUE PROBLEMS WITH p-LAPLACIAN

OPERATOR AT RESONANCE

TENGFEI SHEN, WENBIN LIU, TAIYONG CHEN, XIAOHUI SHEN

Abstract. In this article, we consider the multi-point boundary-value prob-

lem for nonlinear fractional differential equations with p-Laplacian operator:

Dβ
0+ϕp(Dα

0+u(t)) = f(t, u(t), Dα−2
0+ u(t), Dα−1

0+ u(t), Dα
0+u(t)), t ∈ (0, 1),

u(0) = u′(0) = Dα
0+u(0) = 0, Dα−1

0+ u(1) =

mX
i=1

σiD
α−1
0+ u(ηi),

where 2 < α ≤ 3, 0 < β ≤ 1, 3 < α+β ≤ 4,
Pm
i=1 σi = 1, Dα

0+ is the standard

Riemann-Liouville fractional derivative. ϕp(s) = |s|p−2s is p-Laplacians oper-

ator. The existence of solutions for above fractional boundary value problem
is obtained by using the extension of Mawhin’s continuation theorem due to

Ge, which enrich konwn results. An example is given to illustrate the main
result.

1. Introduction

In recent years, fractional differential equations play a important role in many
fields such as physics, engineering, biology, control theory, etc., see [1, 12, 15, 17,
18]. It has been studied extensively by scholars have obtained many results, see
[2, 5, 10, 11, 14, 19, 22].

However, the existence of solutions for fractional boundary value problems at
resonance is less studied, see [3, 4, 7, 9, 20, 21]. There are few articles which consider
the boundary value problems (BVPs for shorts) at resonance for nonlinear fractional
differential equation with p-Laplacian operator. In 2012, Chen, Liu and Hu [6]
considered existence of solutions of boundary value problems for a Caputo fractional
differential equation with p-Laplacian operator at resonance by coincidence degree
theory by Mawhin:

Dβ
0+ϕp(Dα

0+u(t)) = f(t, u(t), Dα
0+u(t)), t ∈ (0, 1),

Dα
0+u(0) = Dα

0+u(1) = 0,
(1.1)

where 0 < α, β < 1, 1 < α + β ≤ 2, Dα
0+ is a Caputo fractional derivative,

ϕp(s) = |s|p−2s is a p-Laplacian operator, f : [0, 1]× R2 → R is continuous.
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In this article, we study fractional multi-point boundary value problem with p-
Laplacian operator at resonance by using the extension of Mawhin’s continuation
theorem due to Ge,

Dβ
0+ϕp(Dα

0+u(t)) = f(t, u(t), Dα−2
0+ u(t), Dα−1

0+ u(t), Dα
0+u(t)), t ∈ (0, 1),

u(0) = u′(0) = Dα
0+u(0) = 0, Dα−1

0+ u(1) =
m∑
i=1

σiD
α−1
0+ u(ηi),

(1.2)

where 2 < α ≤ 3, 0 < β ≤ 1, 3 < α + β ≤ 4, ηi ∈ (0, 1), σi ∈ R,
∑m
i=1 σi = 1,

1 < m,m ∈ N , ϕp(s) = |s|p−2s, 1 < p, 1/p + 1/q = 1, ϕp is invertible and its
inverse operator is ϕq, Dα

0+ is Riemann-Liouville standard fractional derivative,
f : [0, 1]× R4 → R is continuous.

There are few articles to investigate fractional multi-point boundary value prob-
lem with p-Laplacian operator at resonance. By constructing suitable continuous
linear projectors and using the extension of Mawhin’s continuation theorem due
to Ge, the existence of solutions were obtained. Our paper perfect and generalize
some known results.

To investigate the problem, we use the condition

∆ =
1

Γ(β + 1)q−1(qβ − β + 1)
(1−

m∑
i=1

σiη
qβ−β+1
i ) 6= 0.

The rest of this article is organized as follows: In Section 2, we give some nota-
tions, definitions and Lemmas. In Section 3, basing on the extension of Mawhin’s
continuation theorem due to Ge, we establish a theorem of existence result for BVP
(1.2).

2. Preliminaries

For the convenience of the reader, we present here some basic knowledge and
definitions for fractional calculus theory, that can be found in [2, 8, 12].

Let X and Y be two Banach spaces with norms ‖ · ‖X and ‖u‖Y , respectively.
A continuous operator

M |domM∩X : X ∩ domM → Y

is said to be quasi-linear if
(i) ImM := M(X ∩ domM) is a closed subset of Y ,

(ii) kerM := {u ∈ X ∩ domM : Mu = 0} is is linearly homeomorphic to Rn,
n <∞.

Let X1 = kerM and X2 be the complement space of X1 in X, then X = X1⊕X2.
On the other hand, suppose Y1 is a subspace of Y and Y2 is the complement space
of Y1 in Y so that Y = Y1 ⊕ Y2. Let P : X → X1 be a projector and Q : Y → Y1 a
semi-projector, and Ω ⊂ X an open and bounded set with origin θ ∈ Ω. Where θ
is the origin of a linear space.

Suppose Nλ : Ω→ Y , λ ∈ [0, 1] is a continuous operator. Denote N1 by N . Let
Σλ = {u ∈ Ω : Mu = Nλu}. Nλ is said to be M -compact in Ω if there is a Y1 ⊂ Y
with dimY1 = dimX1 and an operator R : Ω× [0, 1]→ X continuous and compact
such that for λ ∈ [0, 1],

(I −Q)Nλ(Ω) ⊂ ImM ⊂ (I −Q)Y, (2.1)

QNλx = θ, λ ∈ (0, 1)⇔ QNx = θ, (2.2)
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R(·, λ) |Σλ= (I − P ) |Σλ (2.3)

and R(·, 0) is the zero operator,

M [P +R(·, λ)] = (I −Q)Nλ. (2.4)

Lemma 2.1 ([8]). Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two Banach spaces, and Ω ⊂ X
an open and bounded nonempty set. Suppose M : X∩domM → Y is a quasi-linear
operator Nλ : Ω→ Y , λ ∈ [0, 1] is M -compact in Ω. In addition, if:

(i) Mu 6= Nλu for all (u, λ) ∈ (domM ∩ ∂Ω)× (0, 1),
(ii) QNu 6= 0 for all u ∈ ∂Ω ∩ kerM ,

(iii) deg(JQN, kerM ∩Ω, 0) 6= 0, where J : ImQ→ kerM is a homeomorphism
with J(θ) = θ and N = N1,

then the equation Mu = Nu has at least one solution in domM ∩ Ω̄.

Definition 2.2. The Riemann-Liouville fractional integral of order α > 0 of a
function u is given by

Iα0+u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds,

provided that the right side integral is pointwise defined on (0,+∞).

Definition 2.3. The Riemann-Liouville fractional derivative of order α > 0 of a
function u is given by

Dα
0+u(t) =

1
Γ(n− α)

(
d

dt
)n
∫ t

0

u(s)
(t− s)α−n+1

ds,

provided that the right side integral is pointwise defined on (0,+∞).

Lemma 2.4. Assume that u ∈ C(0, 1) ∩ L1(0, 1) with a fractional derivative of
order α > 0 that belongs to C(0, 1) ∩ L1(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · ·+ cN t

α−N ,

for some ci ∈ R, i = 1, 2, . . . , N , where N is the smallest integer grater than or
equal to α.

Lemma 2.5. Assume u(t) ∈ C[0, 1] and 0 ≤ β ≤ α, then Dβ
0+I

α
0+u(t) = Iα−β0+ u(t).

And, for all α ≥ 0, β > −1, we have

Dα
0+tβ =

Γ(β + 1)
Γ(β − α+ 1)

tβ−α,

giving in particular Dα
0+tα−m = 0, m = 1, 2, . . . , N , where N is the smallest integer

grater than or equal to α.

In this article, we take X = {u|u,Dα−2
0+ u,Dα−1

0+ u,Dα
0+u ∈ C[0, 1]} with the norm

‖u‖X = max{‖u‖∞, ‖Dα−2
0+ u‖∞ ‖Dα−1

0+ u‖∞, ‖Dα
0+u‖∞}, where ‖u‖∞ = maxt∈[0,1]

|u(t)|, and Y = C[0, 1] with the norm ‖y‖Y = ‖y‖∞. By means of the linear
functional analysis theory, it is easy to prove that X and Y are Banach spaces. so,
we omit it.

Define the operator M : domM ⊂ X → Y by

Mu = Dβ
0+ϕp(Dα

0+u(t)), (2.5)
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domM =
{
u ∈ X : Dβ

0+ϕp(Dα
0+u) ∈ Y, u(0) = u′(0) = Dα

0+u(0) = 0,

Dα−1
0+ u(1) =

m∑
i=1

σiD
α−1
0+ u(ηi)

}
.

(2.6)

Define the operator Nλ : X → Y , λ ∈ [0, 1],

Nλu(t) = f(t, u(t), Dα−2
0+ u(t), Dα−1

0+ u(t), Dα
0+u(t)), t ∈ [0, 1],

then (1.2) is equivalent to the operator equation Mu = Nu, where N = N1.

3. Main result

In this section, we show existence of solutions for BVP (1.2). Let us make some
assumptions which will be used throughout this article.

(H1) There exist nonnegative functions a, b, c, d, e ∈ Y such that

|f(t, u, v, w, z))| ≤ a(t) + b(t)|u|p−1 + c(t)|v|p−1 + d(t)|w|p−1 + e(t)|z|p−1,

for all t ∈ [0, 1], (u, v, w, z) ∈ R4.
(H2) There exists a constant A > 0 such that∫ 1

0

ϕq

( 1
Γ(β)

∫ s

0

(s− τ)β−1f(τ, u, v, w, z)dτ
)
ds

−
m∑
i=1

σi

∫ ηi

0

ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1f(τ, u, v, w, z)dτ)ds 6= 0,

for all t ∈ [0, 1], (u, v, w, z) ∈ R4, |v|+ |w| > A.
(H3) There exists a constant B > 0 such that

0 6= Λ := c
1
∆

(∫ 1

0

ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1f(τ, cτα−1, cΓ(α)τ, cΓ(α), 0)dτ)ds

−
m∑
i=1

σi

∫ ηi

0

ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1f(τ, cτα−1, cΓ(α)τ, cΓ(α), 0)dτ)ds
)
,

for all |c| > B, c ∈ R.

Theorem 3.1. Let f : [0, 1]×R4 → R be continuous and the condition (H1)–(H3)
hold. Then BVP (1.2) has at least one solution provided that

1
Γ(β + 1)

( D‖b‖∞
Γ(α)p−1 +D‖c‖∞ +D‖d‖∞ + ‖e‖∞

)
< 1. (3.1)

Lemma 3.2. The operator M : domM ∩X → Y is a quasi-linear, and

kerM = {u ∈ X : u(t) = ctα−1, ∀t ∈ [0, 1], c ∈ R} (3.2)

ImM =
{
y ∈ Y :

∫ 1

0

ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1y(τ)dτ)ds

−
m∑
i=1

σi

∫ ηi

0

ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1y(τ)dτ)ds = 0
} (3.3)
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Proof. By Lemma 2.4 and Dβ
0+ϕp(Dα

0+u(t)) = 0, we have

Dα
0+u(t) = ϕq(c0tβ−1).

From condition Dα
0+u(0) = 0, we obtain that c0 = 0. Thus,

u(t) = c1t
α−1 + c2t

α−2 + c3t
α−3.

Combined with u(0) = u′(0) = 0 , we have c2 = c3 = 0, u(t) = c1t
α−1, c1 ∈ R.

Thus, (3.2) is satisfied.
If y ∈ ImM , then there exists a function u ∈ domM such that

y(t) = Dβ
0+ϕp(Dα

0+u(t)).

Then by Lemma 2.4 and boundary value condition, we have

u(t) = Iα0+ϕq(I
β
0+y(s)) + c1t

α−1,

Dα−1
0+ u(t) = Dα−1

0+ Iα0+ϕq(I
β
0+y(s)) + c1Γ(α).

Combing this with
∑m
i=1 σi = 1, we obtain∫ 1

0

ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1y(τ)dτ)ds

−
m∑
i=1

σi

∫ ηi

0

ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1y(τ)dτ)ds = 0.

On the other hand, suppose y ∈ Y and satisfies (3.3). Let u(t) = Iα0+ϕq(I
β
0+y(t)),

then u ∈ domM and Mu(t) = Dβ
0+ϕp(Dα

0+u(t)) = y(t). so y ∈ ImM and ImM :=
M(domM) is a closed subset of Y . Thus, M is a quasi-linear operator. �

Lemma 3.3. Let Ω ⊂ X be an open and bounded set, then Nλ is M -compact in Ω.

Proof. Define the continuous projectors P : X → X1 and Q : Y → Y1 by

Pu(t) =
1

Γ(α)
Dα−1

0+ u(0)tα−1, t ∈ [0, 1],

Qy(t) = ϕp(
1
∆

(
∫ 1

0

ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1y(τ)dτ)ds

−
m∑
i=1

σi

∫ ηi

0

ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1y(τ)dτ)ds)), t ∈ [0, 1].

Obviously, X1 = kerM = ImP and Y1 = ImQ. Thus, we have dimY1 = dimX1 =
1. For any y ∈ Y , we have

Q2y = Q(Qy) = Qyϕp

( 1
∆

(∫ 1

0

ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1dτ)ds

−
m∑
i=1

σi

∫ ηi

0

ϕq

( 1
Γ(β)

∫ s

0

(s− τ)β−1dτ
)
ds
))

= Qy.

Hence, Q2 = Q, Q is a semi-projector. Based on the definition of M and Q, it is easy
to see that kerQ = ImM . Let Ω ⊂ X be an open and bounded set with θ ∈ Ω. For
each u ∈ Ω, we can get Q[(I−Q)Nλ(u)] = 0. Thus, (I−Q)Nλ(u) ∈ ImM = kerQ.
Taking any y ∈ ImM and noting Qy = 0 , we can get y ∈ (I −Q)Y . So (2.1) holds.
It is easy to verify (2.2).
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Define R : Ω× [0, 1]→ X2 by

R(u, λ)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1ϕq

( 1
Γ(β)

∫ s

0

(s− τ)β−1((I −Q)Nλu(τ))dτ
)
ds.

By the continuity of f , it is easy to get that R(u, λ) is continuous on Ω×[0, 1]. More-
over, for all u ∈ Ω, there exists a constant L > 0 such that |Iβ0+(I −Q)Nλu(τ))| ≤ L,
so we can easily obtain that R(Ω, λ), Dα−2

0+ R(Ω, λ), Dα−1
0+ R(Ω, λ) and Dα

0+R(Ω, λ)
are uniformly bounded. By Arzela-Ascoli theorem, we just need to prove that
R : Ω× [0, 1]→ X2 is equicontinuous.

For u ∈ Ω, 0 < t1 < t2 ≤ 1, 2 < α ≤ 3, 0 < β ≤ 1, 3 < α+ β ≤ 4, we have

|R(u, λ)(t2)−R(u, λ)(t1)|

=
1

Γ(α)
|
∫ t2

0

(t2 − s)α−1ϕq(I
β
0+((I −Q)Nλu(τ)))ds

−
∫ t1

0

(t1 − s)α−1ϕq(I
β
0+((I −Q)Nλu(τ)))ds|

≤ ϕq(L)
Γ(α)

(
∫ t1

0

((t2 − s)α−1 − (t1 − s)α−1)ds+
∫ t2

t1

(t2 − s)α−1ds)

=
ϕq(L)

Γ(α+ 1)
(tα2 − tα1 ),

|Dα−2
0+ R(u, λ)(t2)−Dα−2

0+ R(u, λ)(t1)|

= |
∫ t2

0

(t− s)ϕq(Iβ0+((I −Q)Nλu(τ)))ds−
∫ t1

0

(t− s)ϕq(Iβ0+((I −Q)Nλu(τ)))ds|

≤ ϕq(L)(
∫ t1

0

(t2 − s)− (t1 − s)ds+
∫ t2

t1

(t2 − s)ds)

=
ϕq(L)

2
(t22 − t21)

and

|Dα−1
0+ R(u, λ)(t2)−Dα−1

0+ R(u, λ)(t1)|

= |
∫ t2

0

ϕq(I
β
0+((I −Q)Nλu(τ)))ds−

∫ t1

0

ϕq(I
β
0+((I −Q)Nλu(τ)))ds|

≤ ϕq(L)(t2 − t1).

Since tα is uniformly continuous on [0, 1], it follows that R(Ω, λ), Dα−2
0+ R(Ω, λ)

and Dα−1
0+ R(Ω, λ) are equicontinuous. Similarly, we can get Iβ0+((I −Q)Nλu(τ)) ⊂

C[0, 1] is equicontinuous, Considering of ϕq(s) is uniformly continuous on [−L,L],
we have Dα

0+R(Ω, λ) = ϕq(I
β
0+((I −Q)Nλ(Ω))) is also equicontinuous. So, we can

obtain that R : Ω× [0, 1]→ X2 is compact.
For each u ∈ Σλ, we have Dβ

0+ϕp(Dα
0+u(t)) = Nλ(u(t)) ∈ ImM . Thus,

R(u, λ)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1((I −Q)Nλu(τ))dτ)ds

=
1

Γ(α)

∫ t

0

(t− s)α−1ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1Dβ
0+ϕp(Dα

0+u(τ))dτ)ds,
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which together with u(0) = u′(0) = Dα
0+u(0) = 0 yields

R(u, λ)(t) = u(t)− 1
Γ(α)

Dα−1
0+ u(0)tα−1 = (I − P )u(t).

It is easy to verify that R(u, 0)(t) is the zero operator. So (2.3) holds. Besides, for
any u ∈ Ω,

M [Pu+R(u, λ)](t)

= M [
1

Γ(α)

∫ t

0

(t− s)α−1ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1((I −Q)Nλu(τ))dτ)ds

+
1

Γ(α)
Dα−1

0+ u(0)tα−1

= (I −Q)Nλu(t),

which implies (2.4). So Nλ is M -compact in Ω. �

Lemma 3.4. Suppose (H1), (H2) hold, Then the set

Ω1 =
{
u ∈ domM \ kerM : Mu = λNu, λ ∈ (0, 1)}

is bounded.

Proof. By lemma 2.4, for each u ∈ domM , Dα−1
0+ u ∈ C[0, 1], we have

u(t) = Iα−1
0+ Dα−1

0+ u(t) + c1t
α−2 + c2t

α−3.

Combining this with u(0) = u′(0) = 0, we get c1 = c2 = 0. Thus,

‖u‖∞ = ‖Iα−1
0+ Dα−1

0+ u‖∞ ≤ |
1

Γ(α− 1)

∫ t

0

(t− s)α−2ds|‖Dα−1
0+ u‖∞

≤ 1
Γ(α)

‖Dα−1
0+ u‖∞.

Take any u ∈ Ω1, then Nu ∈ ImM = kerQ. Thus, QNu = 0 for all t ∈ [0, 1]. It
follows from (H2) that there exists t0 ∈ [0, 1] such that |Dα−2

0+ u(t0)|+ |Dα−1
0+ u(t0)| ≤

A. Thus

Dα−1
0+ u(t) = Dα−1

0+ u(t0) +
∫ t

t0

Dα
0+u(t)dt,

Dα−2
0+ u(t) = Dα−2

0+ u(t0) +
∫ t

t0

Dα−1
0+ u(t)dt,

‖Dα−1
0+ u‖∞ ≤ A+ ‖Dα

0+u‖∞,
‖Dα−2

0+ u‖∞ ≤ A+ ‖Dα−1
0+ u‖∞ ≤ 2A+ ‖Dα

0+u‖∞,

‖u‖∞ ≤
1

Γ(α)
(A+ ‖Dα

0+u‖∞).

Combined with Mu = λNu and Dα
0+u(0) = 0, we obtain

ϕp(Dα
0+u(t)) = λIβ0+Nu(t).

From (H1) and λ ∈ (0, 1), we have

|ϕp(Dα
0+u(t))| ≤ 1

Γ(β)

∫ t

0

(t− s)β−1|f(s, u(s), Dα−2
0+ u(s), Dα−1

0+ u(s), Dα
0+u(s))|ds
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≤ 1
Γ(β)

∫ t

0

(t− s)β−1(a(s) + b(s)|u(s)|p−1 + c(s)|Dα−2
0+ u(s)|p−1

+ d(s)|Dα−1
0+ u(s)|p−1 + e(s)|Dα

0+u(s)|p−1)ds

≤ 1
Γ(β + 1)

(‖a‖∞ + ‖b‖∞‖u‖p−1
∞ + ‖c‖∞‖Dα−2

0+ u‖p−1
∞

+ ‖d‖∞‖Dα−1
0+ u‖p−1

∞ + ‖e‖∞‖Dα
0+u‖p−1

∞
), ∀t ∈ [0, 1],

which together with |ϕp(Dα
0+u(t))| = |Dα

0+u(t)|p−1, and the basic inequality (|a|+
|b|)p ≤ Cp(|a|p + |b|p), where Cp = 2p−1 when p > 1 and where Cp = 1 when
0 < p ≤ 1, a, b ∈ R (see [13]). We can get

‖Dα
0+u‖p−1

∞ ≤ 1
Γ(β + 1)

(‖a‖∞ + ‖b‖∞‖u‖p−1
∞ + ‖c‖∞‖Dα−2

0+ u‖p−1
∞

+ ‖d‖∞‖Dα−1
0+ u‖p−1

∞ + ‖e‖∞‖Dα
0+u‖p−1

∞ )

≤ 1
Γ(β + 1)

(‖a‖∞ + ‖b‖∞D(
1

Γ(α)p−1
‖Dα

0+u‖p−1
∞ +

Ap−1

Γ(α)p−1
)

+ ‖c‖∞D(2p−1Ap−1 + ‖Dα
0+u‖p−1

∞ ) + ‖d‖∞D(Ap−1 + ‖Dα
0+u‖p−1

∞ )

+ ‖e‖∞‖Dα
0+u‖p−1

∞ ).

where D = max{1, 2p−2}. From (3.1), we can see that there exists a constant
M1 > 0 such that

‖Dα
0+u‖∞ ≤M1, ‖Dα−1

0+ u‖∞ ≤ A+M1 := M2,

‖Dα−2
0+ u‖∞ ≤ 2A+M1 := M3, ‖u‖∞ ≤

1
Γ(α)

M1 +
A

Γ(α)
:= M4.

Thus

‖u‖X = max
{
‖u‖∞, ‖Dα−2

0+ u‖∞, ‖Dα−1
0+ u‖∞, ‖Dα

0+u‖∞
}

≤ max{M1,M2,M3,M4} := M.

Therefore, Ω1 is bounded. �

Lemma 3.5. Suppose (H2) holds, then the set Ω2 = {u ∈ kerM : Nu ∈ ImM} is
bounded.

Proof. For each u ∈ Ω2, we can have that u(t) = ctα−1 for all c ∈ R and QNu =
0. It follow from (H2) that there exists a t0 ∈ [0, 1] such that |Dα−1

0+ u(t0)| +
|Dα−2

0+ u(t0)| ≤ A, which implies |c| ≤ A
Γ(α)(1+t0) . Therefore, Ω2 is bounded. �

Lemma 3.6. Suppose (H3) holds, then the set

Ω3 = {u ∈ kerM : (−1)mλJ−1u+ (1− λ)QNu = 0, λ ∈ [0, 1]}

is bounded, where m = 1 when Λ < 0 and m = 2 when Λ > 0.

Proof. Case 1, suppose Λ < 0, for each u ∈ Ω3, we can get that u(t) = ctα−1 for all
c ∈ R. We define the isomorphism J : ImQ → kerM by J(c) = ctα−1, c ∈ R, t ∈
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[0, 1]. So, we have

λc = (1− λ)ϕp
( 1

∆

(∫ 1

0

ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1f(τ, cτα−1, cΓ(α)τ, cΓ(α), 0)dτ)ds

−
m∑
i=1

σi

∫ ηi

0

ϕq

( 1
Γ(β)

∫ s

0

(s− τ)β−1f(τ, cτα−1, cΓ(α)τ, cΓ(α), 0)dτ
)
ds
))
.

(3.4)

If λ = 0, then |c| ≤ B because of the first part of (H3). If λ ∈ (0, 1], we can also
obtain |c| ≤ B. Otherwise, if |c| > B, in view of the first part of (H3), one has

c(1− λ)ϕp
( 1

∆

(∫ 1

0

ϕq(
1

Γ(β)

∫ s

0

(s− τ)β−1f(τ, cτα−1, cΓ(α)τ, cΓ(α), 0)dτ)ds

−
m∑
i=1

σi

∫ ηi

0

ϕq

( 1
Γ(β)

∫ s

0

(s− τ)β−1f(τ, cτα−1, cΓ(α)τ, cΓ(α), 0)dτ
)
ds
))
≤ 0.

(3.5)

On the other hand, λc2 > 0 which contradicts to (3.4). Therefore, Ω3 is bounded.
Case 2, suppose Λ > 0, it is similar to case 1 to proof Ω3 is bounded. So, we

omit it. �

Proof of Theorem 3.1. Assume that Ω is a bounded open set of X with ∪3
i=1Ωi ⊂ Ω.

By Lemma 3.3, we obtain that N is M -compact on Ω. Then by Lemmas 3.4 and
3.5, we have

(i) Mx 6= Nλx for each (u, λ) ∈ (domM\ kerM)× (0, 1),
(ii) QNu 6= 0, for all u ∈ ∂Ω ∩ kerM .

Thus, we need to prove that (iii) of Lemma 2.1 is true, Let I be the identity operator
in the Banach space X, and H(u, λ) = (−1)mλJ−1(u) + (1− λ)QN(u). According
to Lemma 3.6 we know that for each u ∈ ∂Ω ∩ kerM , H(u, λ) 6= 0. Thus, by the
homotopic property of degree, we have

deg(JQN |kerM ,Ω ∩ kerM, 0) = deg(H(·, 0),Ω ∩ kerM, 0)

= deg(H(·, 1),Ω ∩ kerM, 0)

= deg(±I,Ω ∩ kerM, 0) 6= 0.

which means (iii) of Lemma 2.1 is satisfied. Consequently, by Lemma 2.1, the
equation Mu = Nu has at least one solution in domM ∩ Ω. Namely, BVP (1.2)
have at least one solution in the space X. �
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