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BOUNDARY VALUE PROBLEM FOR A COUPLED SYSTEM OF
FRACTIONAL DIFFERENTIAL EQUATIONS WITH

p-LAPLACIAN OPERATOR AT RESONANCE

LINGLING CHENG, WENBIN LIU, QINGQING YE

Abstract. In this article, we discuss the existence of solutions to boundary-

value problems for a coupled system of fractional differential equations with

p-Laplacian operator at resonance. We prove the existence of solutions when
dim ker L ≥ 2, using the coincidence degree theory by Mawhin.

1. Introduction

Along with the development of sciences and technology, the subject of fractional
differential equations (FDEs for short) has emerged as an important area of investi-
gation. Indeed, we can find a large number of applications in physics, electrochem-
istry, control, biology, etc. (see [10, 20]). Recently, many results on FDEs have
been obtained; see for example [1, 3, 4, 5, 12, 13, 18]. Many authors have studied
boundary value problems (BVPs for short) of FDEs; see [2, 6, 7, 14, 24, 25, 26, 27].

The papers [8, 9, 15, 16] considered the BVPs of FDEs with p-Laplacian operator.
In 2012, Chen et al. [9] showed the existence solutions by coincidence degree for
the Caputo fractional p-Laplacian equations

Dβ
0+φp(Dα

0+x(t)) = f(t, x(t), Dα
0+x(t)), 0 < t < 1,

Dα
0+x(0) = Dα

0+x(1) = 0,

where 0 < α, β ≤ 1, 1 < α + β ≤ 2, φp(s) = |s|p−2s, p > 1, f : [0, 1] × R2 → R is
continuous, Dα

0+ and Dβ
0+ are Caputo fractional derivatives. They used the operator

Lu = Dβ
0+φp(Dα

0+x(t)) with Dα
0+x(0) = Dα

0+x(1) = 0 and obtained dim kerL = 1.
Articles [11, 22] considered BVPs for a coupled system of FDEs. In 2009, Su [22]

showed the existence result by Schauder fix-point theorem for the coupled system
of FDEs:

Dαu(t) = f(t, v(t), Dµv(t)), 0 < t < 1,

Dβv(t) = f(t, u(t), Dνu(t)), 0 < t < 1,

u(0) = u(1) = v(0) = v(1) = 0,
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where 1 < α, β < 2, µ, ν > 0, α− ν ≥ 1, β − µ ≥ 1, f, g : [0, 1]×R2 → R are given
functions and D is the standard Riemann-Liouville dervative. In 2012 Jiang [11]
considered the existence results for a coupled system of FDEs:

Dαu(t) = f(t, u(t), v(t)), u(0) = 0, Dγu(t)|t=1 =
n∑
i=1

aiD
γu(t)|t=ξi

,

Dβv(t) = g(t, u(t), v(t)), v(0) = 0, Dδv(t)|t=1 =
m∑
i=1

biD
δv(t)|t=ηi

,

where t ∈ [0, 1], 1 < α, β ≤ 2, 0 < γ ≤ α − 1, 0 < δ ≤ β − 1, 0 < ξ1 < ξ2 < · · · <
ξn < 1, 0 < η1 < η2 < · · · < ηm < 1, and proved that dim kerL = 1.

As we know, there are only a few papers devoted to investigate the BVPs for a
coupled system of FDEs with p-Laplacian operator at resonance. What is more,
the case of dim kerL ≥ 2 have not been studied. In this paper we will study the
BVPs for higher order FDEs as follows:

Dγ
0+φp(Dα

0+u(t)) = f(t, v(t)),

Dγ
0+φp(D

β
0+v(t)) = g(t, u(t)),

Dα
0+u(0) = Dα

0+u(1) = Dβ
0+v(0) = Dβ

0+v(1) = 0,

(1.1)

where t ∈ [0, 1], n − 1 < α, β ≤ n, 0 < γ ≤ 1, f, g : [0, 1] × R → R are
continuous functions, Dα

0+ , D
β
0+ and Dγ

0+ are Caputo derivatives, and φp(s) ={
|s|p−2s s 6= 0,
0 s = 0

is a p-Laplacian operator with p > 1. Hence, if L(u, v) =

(Dγ
0+φp(Dα

0+u), Dγ
0+φp(D

β
0+v)) and

domL =
{

(u, v) ∈ X|(Dγ
0+φp(Dα

0+u), Dγ
0+φp(D

β
0+v)) ∈ Y,

Dα
0+u(0) = Dα

0+u(1) = Dβ
0+v(0) = Dβ

0+v(1) = 0
}
,

then dim kerL = n, n ≥ 2.

2. Preliminaries

For convenience, we present here some necessary basic knowledge and a theorem,
which can be found in [19].

Let X and Y be real Banach spaces and L : domL ⊂ X → Y be a Fredholm
operator with index zero, P : X → X, Q : Y → Y be projectors such that

ImP = kerL, kerQ = ImL, X = kerL⊕ kerP, Y = ImL⊕ ImQ.

It follows that
L|domL∩kerP : domL ∩ kerP → ImL,

is invertible. We denote the inverse by Kp.
If Ω is an open bounded subset of X, domL ∩ Ω 6= ∅, the map N : X → Y

will be called L-compact on Ω if QN(Ω) is bounded and Kp(I −Q)N : Ω → X is
compact.

Theorem 2.1 ([19]). Let L : dom ⊂ X → Y be a Fredholm operator of index zero
and N : X → Y be called L-compact on Ω. Assume that the following conditions
are satisfied:

(1) Lx 6= λNx for every (x, λ) ∈ [(domL\ kerL) ∩ ∂Ω]× (0, 1);
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(2) Nx /∈ ImL for every x ∈ kerL ∩ ∂Ω;
(3) deg(QN |kerL,Ω ∩ kerL, 0) 6= 0, where Q : Y → Y is a projection such that

ImL = kerQ.
Then the equation Lx = Nx has at least one solution in domL ∩ Ω.

In this article, we take X = Cα−1[0, 1]× Cβ−1[0, 1] with norm

‖(u, v)‖ = max{‖u‖∞, ‖v‖∞, ‖Dα−1
0+ u‖∞, ‖Dβ−1

0+ v‖∞},
and Y = C[0, 1]× C[0, 1] with norm

‖(f, g)‖ = max{‖f(x)‖∞, ‖g(x)‖∞},

where Cα−1[0, 1] = {u|u,Dα
0+u ∈ C[0, 1]}, Cβ [0, 1] = {v|v,Dβ

0+v ∈ C[0, 1]}.
Define the operator L : domL ∩X → Y ,by

L(u(t), v(t)) = (Dγ
0+φp(Dα

0+u(t)), Dγ
0+φp(D

β
0+v(t))), (2.1)

where

domL =
{

(u, v) ∈ X|(Dγ
0+φp(Dα

0+u(t)), Dγ
0+φp(D

β
0+v(t))) ∈ Y,

Dα
0+u(0) = Dα

0+u(1) = Dβ
0+v(0) = Dβ

0+v(1) = 0}.
Define the operator N : X → Y , by

N(u(t), v(t)) = (N1u(t), N2v(t)), t ∈ [0, 1],

where N1u(t) = f(t, v(t)), N2v(t) = g(t, u(t)).
It is easy to see that X is a Banach space, and problem (1.1) is equivalent to the

operator equation
L(u, v) = N(u, v), (u, v) ∈ domL.

The following definitions can be found in [20, 23].

Definition 2.2. The Riemann-Liouville fractional integral of order α > 0 of a
function u : (0, 1)→ R is given by

Iα0+u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds,

provided that the right side integral is pointwise defined on (0,+∞).

Definition 2.3. The Caputo fractional derivative of order α > 0 of a continuous
function u : (0, 1)→ R is given by

Dα
0+u(t) = In−α0+

dnu(t)
dtn

=
1

Γ(n− α)

∫ t

0

(t− s)n−α−1un(s)ds,

where n is the smallest integer greater than or equal to α, provided that the right
side integral is pointwise defined on (0,+∞).

Lemma 2.4 ([17]). Let α > 0.The fractional differential equation Dα
0+u(t) = 0 has

solution
u(t) = C1 + C2t+ C3t

2 + · · ·+ Cnt
n−1.

Lemma 2.5 ([12]). Assume that u(t) with a fractional derivative of order α > 0.
Then

Iα0+Dα
0+u(t) = u(t) + C1 + C2t+ C3t

2 + · · ·+ Cnt
n−1, Ci ∈ R, i = 1, 2, . . . , n,

where n is the smallest integer greater than or equal to α.
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3. Main result

In this section, a theorem on existence of solutions for problem (1.1) will be
given. Define the operators T1 and T2 as follows:

T1y1(s) =
∫ 1

0

(1− s)α−1y1(s)ds, T2y2(s) =
∫ 1

0

(1− s)β−1y2(s)ds.

Theorem 3.1. Let f, g : [0, 1]×R→ R be continuous and assume that
(H1) there exist nonnegative functions a(t), b(t), c(t), d(t) ∈ C[0, 1], such that

|f(t, v)| ≤ a(t) + b(t)|v|p−1; |g(t, u)| ≤ c(t) + d(t)|u|p−1;

(H2) for (u, v) ∈ domL, there exist constants Mi > 0, i = 1, 2, such that, if
either |u(t)| > M1, t ∈ [ξ, 1], or |v(t)| > M2, t ∈ [η, 1], then either

T1N1u 6= 0, or T2N2v 6= 0;

(H3) there exist a positive constant B, such that for each (u, v) ∈ kerL, if
min{|πi|, |π′i|} > B, i = 1, 2, . . . n.

Then either (1)
(i) (

∑n
i=1 π

′
i)T1N1u > 0, (

∑n
i=1 πi)T2N2v > 0,

(ii) (
∑n
i=1 π

′
i)T1N1u > 0, (

∑n
i=1 πi)T2N2v < 0;

or (2)
(i) (

∑n
i=1 π

′
i)T1N1u < 0, (

∑n
i=1 πi)T2N2v < 0,

(ii) (
∑n
i=1 π

′
i)T1N1u < 0, (

∑n
i=1 πi)T2N2v > 0, where b(t), d(t) satisfy

‖b‖∞‖d‖∞ <
(Γ(γ + 1))2

4
(
ξηΓ(α+ 1)Γ(β + 1)

(1 + ξ)(1 + η)
)1−q.

Lemma 3.2. Let L be defined by (2), then

kerL =
{

(u, v) ∈ X : (u, v) = (
n∑
i=1

πit
i−1,

n∑
i=1

π′it
i−1),

πi, π
′
i ∈ R, i = 1, 2, . . . , n, t ∈ [0, 1]

}
,

(3.1)

ImL = {(y1, y2) ∈ Y |T1y1 = 0, T2y2 = 0}. (3.2)

Proof. By Lemmas 2.4 and 2.5, and φ−1
p (s) = φq(s), 1/p + 1/q = 1, the equation

Dγ
0+φp(Dα

0+u(t)) = 0 has solution

u(t) = Iα0+φq(c) +
n∑
i=1

πit
i−1, πi ∈ R, i = 1, 2, . . . , n,

which satisfies Dα
0+u(t) = φq(c), combining with the boundary value condition

Dα
0+u(0) = 0, we can get u(t) =

∑n
i=1 πit

i−1, similarly v(t) =
∑n
i=1 π

′
it
i−1. So, it

has (3.1) holds.
On the one hand, if (y1, y2) ∈ ImL, then there exist two functions u, v ∈ domL

such that
y1 = Dγ

0+φp(Dα
0+u(t)), y2 = Dγ

0+φp(D
β
0+v(t)).

Based on Lemma 2.5 and Dα
0+u(0) = Dα

0+v(0) = 0,

Dα
0+u(t) = φqI

γ
0+y1, D

β
0+u(t) = φqI

γ
0+y2.
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From condition the Dα
0+u(1) = Dβ

0+v(1) = 0, we obtain that

T1y1 =
∫ 1

0

(1− s)α−1y1(s)ds = 0, T2y2 =
∫ 1

0

(1− s)β−1y2(s)ds = 0.

On the other hand, for each (y1, y2) ∈ Y satisfying Tiyi = 0, i = 1, 2. Let

u(t) = Iα0+φq(I
γ
0+y1(t)), v(t) = Iβ0+φq(I

γ
0+y2(t)),

then (u, v) ∈ domL and

L(u(t), v(t)) = (Dγ
0+φp(Dα

0+u(t)), Dγ
0+φp(D

β
0+v(t))),

so that (y1, y2) ∈ ImL. Therefore, (3.2) holds. The proof is complete. �

Lemma 3.3. Let L be defined by (2.1), then L is a Fredholm operator of index
zero, and the linear continuous projector operators P : X → X,Q : Y → Y can be
defined as

P (u(t), v(t)) = (P1u(t), P2v(t)), (3.3)

Q(y1(t), y2(t)) = (Q1y1(t), Q2y2(t)), (3.4)

where

P1u(t) = u(0) +
n−1∑
i=1

u(i)ti, P2v(t) = v(0) +
n−1∑
i=1

v(i)ti,

Q1y1(t) = Λ(
n∑
i=1

Λiti−1)T1y1(t), Q2y2(t) = Λ′(
n∑
i=1

Λ′it
i−1)T2y2(t),

1
Λ

=
n∑
i=1

ΛiΓ(α)Γ(i)
Γ(α+ i)

,
1
Λ′

=
n∑
i=1

Λ′iΓ(β)Γ(i)
Γ(β + i)

.

Furthermore, the operator Kp : ImL→ domL ∩ kerP can be written as

KP (y1(t), y2(t)) = (KP1y1(t),KP2y2(t))

= (Iα0+φq(I
γ
0+y1(t)), Iβ0+φq(I

γ
0+y2(t))), ∀t ∈ [0, 1].

Proof. For each (y1, y2) ∈ Y and (3.4), we have

Q2
1y1 = Q1[Λ

( n∑
i=1

Λiti−1
)
T1y1(t)]

= Λ
( n∑
i=1

Λiti−1
)
T1Λ

( n∑
i=1

Λiti−1
)
T1y1(t)

= Λ
( n∑
i=1

Λiti−1
) n∑
i=1

ΛiΓ(α)Γ(i)
Γ(α+ i)

T1y1(t)

= Λ
n∑
i=1

ΛiΓ(α)Γ(i)
Γ(α+ i)

Q1y1.

From 1
Λ =

∑n
i=1

ΛiΓ(α)Γ(i)
Γ(α+i) , we obtain

Q2
1y1 = Q1y1. (3.5)

Similarly, we can derive
Q2

2y2 = Q1y1. (3.6)
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So, for each (y1, y2) ∈ Y and t ∈ [0, 1] , it follows from (3.5) (3.6) that

Q2(y1, y2) = Q(Q1y1, Q1y1) = (Q2
1y1, Q

2
2y2) = (Q1y1, Q1y1) = Q(y1, y2).

Obviously,
kerQ = {(y1, y2) ∈ Y |T1y1 = T2y2 = 0} = ImL.

Let (y1, y2) = [(y1, y2) − Q(y1, y2)] + (y1, y2), then (y1, y2) − Q(y1, y2) ∈ kerQ =
ImL,Q(y1, y2) ∈ ImQ. For (y1, y2) ∈ ImL ∩ ImQ, we can get (y1, y2) = (0, 0),
then we have

Y = ImL⊕ ImQ.

For each (u, v) ∈ X by (3.3), we have

P 2
1 u(t) = P1(u(0) +

n−1∑
i=1

u(i)ti)

= u(0) +
n−1∑
i=1

(u(0) +
n−1∑
i=1

u(i)ti)(i)|t=0t
i

= u(0) +
n−1∑
i=1

u(i)ti

= P1u(t);

that is,
P 2

1 u(t) = P1u(t). (3.7)
Similarly, we can derive that

P 2
2 u(t) = P2u(t). (3.8)

So, for each (u, v) ∈ X and t ∈ [0, 1], it follows from (3.7) (3.8) that

P 2(u(t), v(t)) = P (u(t), v(t)).

Obviously, ImP = kerL,

kerP = {(u, v) ∈ X : u(0) = v(0) = u(i)(0) = v(i)(0) = 0, i = 1, 2, . . . , n− 1}.
Let (u, v) = [(u, v)−P (u, v)]+P (u, v), we can get (u, v)−P (u, v) ∈ kerP , P (u, v) ∈
ImP , so X = kerP+kerL. By simple calculation, we can get kerL∩kerP = (0, 0),
then

X = kerL⊕ kerP.
Thus

dim kerL = dim ImQ = codim ImL = n, n ≥ 2.
This means that L is a Fredholm operator of index zero.

From the definitions of P,Kp, it is easy to see that the generalized inverse of L
is KP . In fact, for (y1, y2) ∈ ImL, we have

LKP (y1, y2) = L(Iα0+φq(I
γ
0+y1(t)), Iβ0+φq(I

γ
0+y2(t))) = (y1, y2). (3.9)

Moreover, for (u, v) ∈ domL ∩ kerP , we get u(0) = v(0) = u(i)(0) = v(i)(0) = 0,
i = 1, 2, . . . , n− 1. Hence

KPL(u, v) = KP (Dγ
0+φp(Dα

0+u(t)), Dγ
0+φp(D

β
0+v(t))) = (u, v). (3.10)

Combining (3.9) and (3.10), we know that KP = (L|domL∩kerP )−1. The proof is
complete. �
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Lemma 3.4. Assume Ω ⊂ X is an open boundary subset such that domL∩Ω 6= ∅,
then N is L-compact on Ω.

Proof. By the continuity of f, g, we can get that QN(Ω) and KP (I − Q)N(Ω)
are bounded. So, in view of the Arzela-Ascoli theorem, we need only prove that
KP (I −Q)(Ω) ⊂ X is equicontinuous.

From the continuity of f, g, there exists a constant M > 0 such that

|(I −Qi)Ni(u, v)| ≤M, ∀t ∈ [0, 1], (u, v) ∈ Ω, i = 1, 2,

where I : C[0, 1]→ C[0, 1] is the indentity mapping. Furthermore, denote KP,Q =
KP (I −Q)N and for 0 ≤ t1 < t2 ≤ 1,(u, v) ∈ Ω, we have

KP,Q(u(t2), v(t2))−KP,Q(u(t1), v(t1))

= (KP1(I −Q1)N1u(t2)−KP1(I −Q1)N1u(t1),

KP2(I −Q2)N2u(t2)−KP2(I −Q2)N2u(t1)),

From

|KP1(I −Q1)N1u(t2)−KP1(I −Q1)N1u(t1)|

=
1

Γ(α)
|
∫ t2

0

(t2 − s)α−1φq(
1

Γ(γ)

∫ s

0

(s− τ)γ−1I −Q1)N1u(τ)dτ)ds

−
∫ t1

0

(t1 − s)α−1φq(
1

Γ(γ)

∫ s

0

(s− τ)γ−1I −Q1)N1u(τ)dτ)ds|

≤ φq(M)
Γ(α)

|
∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]ds+
∫ t2

t1

(t2 − s)α−1ds|

≤ φq(M)
Γ(α)

(tα2 − tα1 ),

and

|Dα−1
0+ KP1(I −Q1)N1u(t2)−Dα−1

0+ KP1(I −Q1)N1u(t1)|

= |
∫ t2

0

φq(
1

Γ(γ)

∫ s

0

(s− τ)γ−1(I −Q1)N1u(τ)dτ)ds

−
∫ t1

0

φq(
1

Γ(γ)

∫ s

0

(s− τ)γ−1(I −Q1)N1u(τ)dτ)ds|

= |
∫ t2

t1

φq(
1

Γ(γ)

∫ s

0

(s− τ)γ−1(I −Q1)N1u(τ)dτ)ds|

≤ φq(M)(t2 − t1).

Similarly,

|KP2(I −Q2)N1u(t2)−KP2(I −Q2)N1u(t1)| ≤ φq(M)
Γ(β)

(tβ2 − t
β
1 ),

|Dβ−1
0+ KP2(I −Q2)N1u(t2)−Dβ−1

0+ KP2(I −Q1)N2u(t1)| ≤ φq(M)(t2 − t1),

and since tα, tβ are uniformly continuous on [0, 1], we can get thatKP (I−Q)N(Ω) ⊂
X is equicontinuous. Thus, we get that KP (I − Q)N : Ω → X is compact. The
proof is complete. �
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Lemma 3.5. Suppose (H1)–(H2) hold. Then the set

Ω1 = {(u, v)|(u, v) ∈ domL\ kerL,L(u, v) = λN(u, v), λ ∈ (0, 1)}

is bounded.

Proof. Take (u, v) ∈ Ω1, then N(u, v) ∈ ImL. By (3.2),we have

T1N1u = 0, T2N2v = 0.

By L(u, v) = λN(u, v) and Dα
0+u(0) = Dβ

0+v(0) = 0, we have

(u(t), v(t))

= λ
( 1

Γ(α)

∫ t

0

(t− s)α−1φq(
1

Γ(γ)

∫ s

0

(s− τ)γ−1f(τ, v(τ))dτ)ds+
n−1∑
i=0

cit
i,

1
Γ(β)

∫ t

0

(t− s)β−1φq(
1

Γ(γ)

∫ s

0

(s− τ)γ−1g(τ, u(τ))dτ)ds+
n−1∑
i=0

c′it
i
)
.

(3.11)

Together with (H2) means that there exist constants t0 ∈ [ξ, 1], t1 ∈ [η, 1] such that
|u(t0)| ≤M1, |v(t1)| ≤M2. By (3.11), we have

n−1∑
i=0

|ci|ti0 ≤M1 +
1

Γ(α)

∫ 1

0

(1− s)α−1φq(
1

Γ(γ)

∫ 1

0

(1− τ)γ−1f(τ, v(τ))dτ)ds,

(3.12)
n−1∑
i=0

|c′i|ti1 ≤M2 +
1

Γ(β)

∫ 1

0

(1− s)β−1φq(
1

Γ(γ)

∫ 1

0

(1− τ)γ−1g(τ, u(τ))dτ)ds.

(3.13)

It follows from (H1) and (3.11) (3.12) that

|u(t)|

≤ 1
Γ(α)

∫ 1

0

(1− s)α−1φq(
1

Γ(γ)

∫ 1

0

(1− τ)γ−1|f(τ, v(τ))|dτ)ds+ |c0|+
1
ξ

(
n−1∑
i=1

|ci|ti0)

≤ M1

ξ
+

1 + ξ

ξΓ(α)

∫ 1

0

(1− s)α−1φq(
1

Γ(γ)

∫ 1

0

(1− τ)γ−1(a(t) + b(t)|v(t)|p−1)dτ)ds

≤ M1

ξ
+

1 + ξ

ξΓ(α)

∫ 1

0

(1− s)α−1φq(
1

Γ(γ)

∫ 1

0

(1− τ)γ−1(‖a‖∞ + ‖b‖∞‖v‖p−1
∞ )dτ)ds

=
M1

ξ
+

1 + ξ

ξΓ(α+ 1)
φq(

1
Γ(γ + 1)

(‖a‖∞ + ‖b‖∞‖v‖p−1
∞ ))

≤ M1

ξ
+

2q−1(1 + ξ)
ξΓ(α+ 1)

(φq(
‖a‖∞

Γ(γ + 1)
) + (φq

‖b‖∞‖v‖p−1
∞

Γ(γ + 1)
))

≤ M1

ξ
+

2q−1(1 + ξ)
ξΓ(α+ 1)

((
‖a‖∞

Γ(γ + 1)
)q−1 + (

‖b‖∞
Γ(γ + 1)

)q−1‖v‖∞);

that is,

‖u(t)‖∞ ≤
M1

ξ
+

2q−1(1 + ξ)
ξΓ(α+ 1)

((
‖a‖∞

Γ(γ + 1)
)q−1 + (

‖b‖∞
Γ(γ + 1)

)q−1‖v‖∞).
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Similarly, from (H1), (3.11), (3.13) and φp(s + t) ≤ 2p(φp(s) + φp(t)), s, t > 0, we
obtain

‖v(t)‖∞ ≤
M2

η
+

2q−1(1 + η)
ξΓ(β + 1)

((
‖c‖∞

Γ(γ + 1)
)q−1 + (

‖d‖∞
Γ(γ + 1)

)q−1‖u‖∞).

Let
M1

ξ
+

2q−1(1 + ξ)
ξΓ(α+ 1)

(
‖a‖∞

Γ(γ + 1)
)q−1 = A,

2q−1(1 + ξ)
ξΓ(α+ 1)

(
‖b‖∞

Γ(γ + 1)
)q−1 = B,

M2

η
+

2q−1(1 + η)
ηΓ(β + 1)

(
‖c‖∞

Γ(γ + 1)
)q−1 = A′,

2q−1(1 + η)
ηΓ(β + 1)

(
‖d‖∞

Γ(γ + 1)
)q−1 = B′,

then, the condition

‖b‖∞‖d‖∞ <
(Γ(γ + 1))2

4
(
ξηΓ(α+ 1)Γ(β + 1)

(1 + ξ)(1 + η)
)1−q,

which by Theorem 3.1 could written as BB′ < 1, so, we obtain

‖u(t)‖∞ ≤
A+A′B

1−BB′
, ‖v(t)‖∞ ≤

A′ +AB′

1−BB′
.

By (3.12) and (3.13) we have

|cn−1| ≤
M1

ξ
+

1
ξΓ(α)

∫ 1

0

(1− s)α−1φq(
1

Γ(γ)

∫ 1

0

(1− τ)γ−1|f(τ, v(τ))|dτ)ds

≤ M1

ξ
+

2q−1

ξΓ(α+ 1)
((
‖a‖∞

Γ(γ + 1)
)q−1 + (

‖b‖∞
Γ(γ + 1)

)q−1‖v‖∞),

(3.14)

|c′n−1| ≤
M2

η
+

1
ηΓ(β)

∫ 1

0

(1− s)β−1φq(
1

Γ(γ)

∫ 1

0

(1− τ)γ−1|f(τ, u(τ))|dτ)ds

≤ M2

η
+

2q−1

ξΓ(β + 1)
((
‖c‖∞

Γ(γ + 1)
)q−1 + (

‖d‖∞
Γ(γ + 1)

)q−1‖u‖∞).

(3.15)
Then, by (3.11), (3.12) and (3.13) we obtain

|Dα−1
0 u(t)| ≤

∫ 1

0

φq(
1

Γ(γ)

∫ 1

0

(1− τ)γ−1|f(τ, v(τ))|dτ)ds+
|cn−1|tn−α

Γ(n+ 1− α)

≤ M1

ξ
+

2q−1(1 + ξΓ(α+ 1))
ξΓ(α+ 1)

((
‖a‖∞

Γ(γ + 1)
)q−1 + (

‖b‖∞
Γ(γ + 1)

)q−1‖v‖∞),

|Dβ−1
0 u(t)| ≤

∫ 1

0

φq(
1

Γ(γ)

∫ 1

0

(1− τ)γ−1|f(τ, u(τ))|dτ)ds+
|c′n−1|tn−β

Γ(n+ 1− β)

≤ M2

η
+

2q−1(1 + ηΓ(β + 1))
ξΓ(β + 1)

((
‖a‖∞

Γ(γ + 1)
)q−1 + (

‖d‖∞
Γ(γ + 1)

)q−1‖u‖∞).

Hence the Ω1 is bounded in X. The proof is complete. �

Lemma 3.6. Suppose that (H3) hold. Then the set

Ω2 = {(u, v)|(u, v) ∈ kerL,N(u, v) ∈ ImL}

is bounded in X.
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Proof. For (u, v) ∈ Ω2, we have (u(t), v(t)) = (
∑n

1 πit
i−1,

∑n
1 π
′
it
i−1), πi, π′i ∈

R, i = 1, 2, . . . , n and T1N1(
∑n

1 πit
i−1) = T2N2(

∑n
1 π
′
it
i−1) = 0. By (H3), we

obtain that max{|πi|, |π′i|} ≤ B, i = 1, 2, . . . , n, so max{‖u‖∞, ‖v‖∞} ≤ 2B. Fur-
thermore,

|Dα−1
0+ u(t)| = 1

Γ(n− α)

∫ t

0

(t− s)n−1−α|πn|ds ≤
|π|n

Γ(n+ 1− α)
≤ B

Γ(n+ 1− α)
,

|Dβ−1
0+ v(t)| ≤ B

Γ(n+ 1− β)
.

Hence, Ω2 is bounded in X. The proof is complete. �

Lemma 3.7. Suppose that (H3)(1) holds. Then the set

Ω3 = {(u, v) ∈ kerL|λJ(u, v) + (1− λ)Q(N1u, θN2v) = (0, 0), λ ∈ [0, 1]}
is bounded in X. If (H3)(1)(i) holds, then θ = 1, if (H3)(1)(ii) hold, then θ = −1,
where, J : kerL→ ImQ is a linear isomorphism given by

J(
n∑
1

πit
i−1,

n∑
1

π′it
i−1) = (Λ(

n∑
1

Λi)(
n∑
1

π′it
i−1),Λ′(

n∑
1

Λ′i)(
n∑
1

πit
i−1)),

where Λ(
∑n

1 Λi) 6= 0,Λ′(
∑n

1 Λ′i) 6= 0.

Proof. For (u, v) ∈ Ω3, we have (u(t), v(t)) = (
∑n

1 πit
i−1,

∑n
1 π
′
it
i−1), πi, π′i ∈

R, i = 1, 2, . . . , n, by (H3)(1)(i), there exists λ ∈ [0, 1] such that

λJ(
n∑
1

πit
i−1,

n∑
1

π′it
i−1) + (1− λ)(Λ(

n∑
1

Λi)T1N1(
n∑
1

πit
i−1),

Λ′(
n∑
1

Λ′i)T2N2(
n∑
1

π′it
i−1))) = (0, 0).

(3.16)

If λ = 0, we can get that max{|πi|, |π′i|} ≤ B, i = 1, 2, then max{‖u‖∞, ‖v‖∞} ≤
2B. Hence, Ω3 is bounded.

If λ = 1, then u = v = 0.
For λ(0, 1), let Λi = π′i, Λ′i = πi, i = 1, 2, . . . , n, if min{|πi|, |π′i|} > B, i =

1, 2, . . . , n, we have the following inequalities:

λ(
n∑
1

π′i)
2 + (1− λ)(

n∑
1

π′i)T1N1(
n∑
1

πi) > 0,

λ(
n∑
1

πi)2 + (1− λ)(
n∑
1

πi)T2N2(
n∑
1

π′i) > 0,

this contradicts (3.16), so, Ω3 is bounded in X.
Similarly, if (H3)(1)(ii) holds, we have Ω3 is bounded in X. The proof is com-

plete. �

Lemma 3.8. If (H3)(2) hold, then the set

Ω3 = {(u, v) ∈ kerL| − λJ(u, v) + (1− λ)Q(N1u, θN2v) = (0, 0), λ ∈ [0, 1]}
is bounded in X.

The proof of the above lemma is similarly with Lemma 3.7, and it is omitted.
Now with Lemmas 3.2–3.8 in hand, we prove our main result.
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Proof the Theorem 3.1. Let Ω is a bounded open set of X with ∪3
i=1 ⊂ Ω. By

Lemma 3.4, we can get that N is L-compact on Ω. Then by Lemmas 3.5 and 3.6, we
have (1) Lx 6= λNx for every (x, λ) ∈ [(domL\ kerL)∩ ∂Ω]× (0, 1); (2) Nx /∈ ImL
for every x ∈ kerL∩ ∂Ω; we need to prove only (3) deg(QN |kerL,Ω∩ kerL, 0) 6= 0.

Take
H(u, v, λ) = ±λJ(u, v) + (1− λ)Q(N1u, θN2v),

according to Lemma 3.7, we have H(u, v, λ) 6= 0 for (u, v) ∈ ∂Ω ∩ kerL. By the
homotopy property of degree, we can get

deg(QN |kerL,Ω ∩ kerL, (0, 0)) = deg(H(·, 0),Ω ∩ kerL, (0, 0))

= deg(H(·, 1),Ω ∩ kerL, (0, 0))

= deg(±J,Ω ∩ kerL, (0, 0)) 6= 0.

By Theorem 2.1, we obtain that L(u, v) = N(u, v) has at least one solution in
domL∩Ω; i.e, problem (1.1) has at least one solution in X, The proof is complete.

�
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