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LOCAL SOLVABILITY AND BLOW-UP FOR
BENJAMIN-BONA-MAHONY-BURGERS, ROSENAU-BURGERS

AND KORTEWEG-DE VRIES-BENJAMIN-BONA-MAHONY
EQUATIONS

MAXIM O. KORPUSOV, EGOR V. YUSHKOV

Abstract. In this article some well-known problems in mathematical physics

for Benjamin-Bona-Mahony-Burgers, Rosenau-Burgers and Korteweg-de Vries-
Benjamin-Bona-Mahony equations are considered. These equations describe

important processes in different fields of physics, particulary in hydro- and
electrodynamics. We study initial-boundary problems with natural physical

boundary conditions. Sufficient conditions of local solvability and blow-up in

finite time are obtained. For this the methods of contraction mapping and
nonlinear capacity, developed by Galaktionov, Pokhozhaev and Mitidieri, are

used.

1. Introduction

The Kortweg-de Vries equation is well known in different fields of science and
technology,

ut + uux + uxxx = 0. (1.1)

Recently Pokhozaev obtained sufficient conditions for the finite time blow-up of
solutions of initial-boundary problems for KdV equation [23, 24, 25, 26]. He used
the powerful method of nonlinear capacity, developed in [18]. Note that in these
papers both classical, and weak solutions of the problems were considered.

By the method of nonlinear capacity, we study the following three equations
which are important in different physical applications such as waves on shallow
water, and processes in semiconductors with negative differential conductivity:
Benjamin-Bona-Mahony-Burgers equation

∂

∂t
(uxx − u) + uxx − uux = 0, (1.2)

Rosenau-Burgers equation:

∂

∂t
(uxxxx + u) + uxx − uux = 0, (1.3)
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Korteweg-de Vries-Benjamin-Bona-Mahony equation:

∂

∂t
(uxx − u)− uxxx − uux = 0. (1.4)

The literature on these equations is very extensive. Among them, we mention the
classical papers [1]–[27]. Also we mention our papers [12, 13, 30], where sufficient
conditions for blow-up in one- and multidimensional (1.2), (1.3) and (1.4) equations
were obtained, but for other boundary conditions and without solving of the local
solvability question.

Finally, for completeness we recall that there are three main methods for studying
blow-up: The method of nonlinear capacity, developed by Pokhozhaev and Mitidieri
[17, 18, 22]; the energy method developed by Levine [2, 11, 14, 15, 20, 21, 29]; and
the method, based on maximum principle, proposed by Samarskii, Galaktionov,
Kurdyumov and Mikhailov [8, 28].

2. Blow-up for equation (1.2)

Let us consider the initial-boundary problem (1.2) and

∂

∂t
(uxx − u) + uxx − uux = 0, x ∈ (0, L), t > 0, (2.1)

u(0, t) = ux(0, t) = 0, u(x, 0) = u0(x), x ∈ [0, L], t > 0, (2.2)

where L ∈ (0,+∞). We are looking for the solution of problem (2.1)–(2.2) such
that

u(x)(t) ∈ C(1)([0, T ]; C(2)
0 ([0, L])) (2.3)

for some T > 0. By definition, if f ∈ C(2)
0 , then f ∈ C(2) and f(0) = fx(0) = 0. In

this section we show the following result.

Theorem 2.1. For any u0 ∈ C(2)
0 ([0, L]) there exists one and only one solution of

problem (2.1), (2.2) such that

u(x)(t) ∈ C(1)([0, T0); C(2)
0 ([0, L])),

where either T0 = +∞ or T0 < +∞ and the limiting equality holds

lim sup
t↑T0

sup
x∈[0,L]

|u(x)(t)| = +∞. (2.4)

Proof. We begin with some notation. For any f ∈ C[0, L] we use the Volterra
operator

G ∗ f =
∫ x

0

dy

∫ y

0

f(z) dz =
∫ x

0

(x− z)f(z) dz for x ∈ [0, L].

By (2.3) we can rewrite (2.1) as

∂

∂t
[I−G∗]u+ u =

1
2

∫ x

0

u2 dx. (2.5)

The spectral radius of the Volterra operator is zero. Thus multiplying both sides
(2.5) by [I−G∗]−1, we obtain

∂u

∂t
+ u = −

+∞∑
k=1

[G∗]ku+
1
2

+∞∑
k=0

[G∗]k
∫ x

0

u2 dy. (2.6)
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With the new variables w = etu, integrating (2.6), we have

w = F[w] ≡ u0 +
∫ t

0

dsB[w](s), B[w] = B1[w]−B2[w], (2.7)

where

B1[w] = −
+∞∑
k=1

[G∗]kw, B2[w] = −e
−t

2

+∞∑
k=0

[G∗]k
∫ x

0

w2 dy.

Let us consider the following closed, bounded and convex subset in the Banach
space C([0, T ]× [0, L]):

BR ≡
{
w ∈ C([0, T ]× [0, L]) : ‖w‖ ≡ sup

(t,x)∈[0,T ]×[0,L]

|w(x, t)| 6 R
}
.

We prove that the operator F[w] : BR → BR f or large enough R > 0 and small
T > 0. Indeed, suppose that (t1, x1) and (t2, x2) belong to [0, L]× [0, T ]. Without
loss of generality we suppose that t2 6 t1. Then the following chain of inequalities
holds

‖
∫ t1

0

dsB1[w](s, x1)−
∫ t2

0

dsB1[w](s, x2)‖

6
∫ t2

t1

‖B1[w](s, x1)‖ ds+
∫ t1

0

‖B1[w](s, x1)−B1[w](s, x2)‖

6 |t2 − t1|
+∞∑
k=1

L2k

(2k)!
‖w‖+ T |x1 − x2|

+∞∑
k=1

L2k−1

(2k − 1)!
‖w‖.

(2.8)

In the same way, for B2[w] we have the estimate

‖
∫ t1

0

dsB2[w](s, x1)−
∫ t2

0

dsB2[w](s, x2)‖

6
∫ t2

t1

‖B2[w](s, x1)‖ ds+
∫ t1

0

‖B2[w](s, x1)−B2[w](s, x2)‖

6 |t2 − t1|
1
2

+∞∑
k=0

L2k+1

(2k + 1)!
‖w‖2 + T |x1 − x2|

1
2

+∞∑
k=0

L2k

(2k)!
‖w‖2.

(2.9)

This yields that the operator F is a mapping from C([0, T ] × [0, L]) to C([0, T ] ×
[0, L]). Now show that the operator is a mapping from BR to BR. It is clear that

‖F[w]‖ 6 ‖u0‖+
∫ T

0

ds‖B[w](s)‖

6 ‖u0‖+ T

+∞∑
k=1

L2k

(2k)!
‖w‖+

T

2

+∞∑
k=0

L2k+1

(2k + 1)!
‖w‖2.

(2.10)

From (2.10) we get that for large enough R > 0,

‖u0‖ 6
R

2
,

and for small enough T > 0,

T

+∞∑
k=1

L2k

(2k)!
R+

T

2

+∞∑
k=0

L2k+1

(2k + 1)!
R2 6

R

2
.
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The result of Theorem 1 is true. Now let us demonstrate the contraction mapping
F[w] on BR. It is not hard to show that the following chain of inequalities holds

‖F[w1]− F[w2]‖ 6 T‖B[w1]−B[w2]‖

6 T
[ +∞∑
k=1

L2k

(2k)!
+

+∞∑
k=0

L2k+1

(2k + 1)!
R
]
‖w1 − w2‖,

(2.11)

then from (2.11), for any

T
[ +∞∑
k=1

L2k

(2k)!
+

+∞∑
k=0

L2k+1

(2k + 1)!
R
]
6

1
2

we have a contraction F[w] on BR. This means that the unique, local in time,
solvability of the integral equation (2.7) is proved.

We claim that the solution w of (2.7) belongs to the class C([0, T0) × [0, L]);
moreover, either T0 = +∞, or T0 < +∞ and limt↑T0‖w‖ = +∞. Assuming the
converse: T0 < +∞, then we have

sup
t∈[0,T0]

‖w‖ < +∞.

From equation (2.7) we get the estimate

‖w′‖ 6 c(T0) < +∞ for all t ∈ [0, T0].

This implies that

|w(x)(t1)− w(x)(t2)| 6
∫ t2

t1

|w′(x)(τ)| dτ 6 c(T0)|t2 − t1|,

where the constant c(T0) < +∞ does not depend on x ∈ [0, L]. Whence, for all
x ∈ [0, L] we can define w(x)(T0). Furthemore, if we take supremum of both sides
of the last inequality, then we obtain

w(x)(T0) ∈ B[0, L],

where B[0, L] is the set of bounded functions on the line segment [0, L]. We shall
see that

w(x)(T0) ∈ C[0, L].
Obviously, for all ε > 0 there is δ(ε) > 0 such that for all x1, x2 ∈ [0, L],

|x1 − x2| 6 δ(ε)/2
and we can choose t1, t2 ∈ [0, T0) such that

|T0 − t1| 6 δ(ε)/4, |T0 − t2| 6 δ(ε)/4
imply

|t1 − t2| 6 |T0 − t1|+ |T0 − t2| 6 δ(ε)/2, |t1 − t2|+ |x1 − x2| 6 δ(ε),
so the following chain of inequalities holds:
|w(x1)(T0)− w(x2)(T0)|
6 |w(x1)(T0)− w(x1)(t1)|+ |w(x1)(t1)− w(x2)(t2)|+ |w(x2)(T0)− w(x2)(t2)|
6 c(T0)|T0 − t1|+ |w(x1)(t1)− w(x2)(t2)|+ c(T0)|T0 − t2|

6 c(T0)(
ε

4
+
ε

2
+
ε

4
) = c(T0)ε.

(2.12)
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Therefore, we can define
w(x)(T0) ∈ C([0, L])

and can extend the classical solution over the time moment T0 > 0, taking the
following initial function w(x)(t) for t = T0. This contradiction concludes the result
of existance of a maximal solution. Finally, using so called ”bootstrap” method for
the integral equation (2.7) under the additional condition u0(x) ∈ C(2)

0 ([0, L]), we
get that

w(x)(t) ∈ C(1)([0, T0); C(2)
0 ([0, L])).

proof is complete. �

Now we shall obtain a blow-up result.

Theorem 2.2. Suppose that for some positive λ > 3, the initial function satisfies
the condition

J(0) >
m

k
, (2.13)

where

J(t) =
∫ L

0

(L− x)λ−3[λ(λ− 1)− (L− x)2]((L− x)u− (λ− 1)) dx,

or ∫ L

0

(L− x)λ−2[λ(λ− 1)− (L− x)2]u0 dx

> (λ− 1)Lλ−1
∣∣∣λ(λ− 1)2

λ− 2
− 2

1
λ

(λ− 1)L2 +
λL4

λ(λ+ 2)

∣∣∣1/2
+
λ(λ− 1)2

λ− 2
Lλ−2 − λ− 1

λ
Lλ,

then the classical solution of problem (2.1)–(2.2) does not exist globally in time.
Furthermore, the following estimate holds

J(t) >
m

k

(kJ(0) +m) + (kJ(0)−m) exp(2mkt)
(kJ(0) +m)− (kJ(0)−m) exp(2mkt)

, (2.14)

consequently,

lim
t→Tb

J(t) = +∞, Tb 6 −
1

2mk
ln(

kJ(0)−m
kJ(0) +m

), (2.15)

m2 =
(λ− 1)2Lλ

2
, k2 =

L2−λ

2

∣∣∣λ(λ− 1)2

λ− 2
− 2

1
λ

(λ− 1)L2 +
λL4

λ(λ+ 2)

∣∣∣−1

.

Proof. To obtain sufficient conditions of the blow-up we use the method of nonlinear
capacity. Let us take the test function

ϕ(x) = (L− x)λ, λ > 3

to remove boundary conditions on the right side (x = L). Multiplying both sides
of (1.2) by ϕ(x) and integrating by parts over [0, L], we use the following equalities∫ L

0

(L− x)λuxx(x, t) dx = λ(λ− 1)
∫ L

0

(L− x)λ−2u dx,∫ L

0

(L− x)λuux(x, t) dx =
λ

2

∫ L

0

(L− x)λ−1u2 dx,
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and get the ordinary differential equation

d

dt

∫ L

0

(L− x)λ−2[λ(λ− 1)− (L− x)2]u dx

= −λ(λ− 1)
∫ L

0

(L− x)λ−2u dx+
λ

2

∫ L

0

u2(L− x)λ−1 dx.

(2.16)

Constructing the perfect square in the right side of (2.16) and adding in the left
side the time-independent function, we obtain

d

dt

∫ L

0

(L− x)λ−3[λ(λ− 1)− (L− x)2]((L− x)u− (λ− 1)) dx

=
λ

2

∫ L

0

[u(L− x)− (λ− 1)]2(L− x)λ−3 dx− λ(λ− 1)2

2

∫ L

0

(L− x)λ−1 dx.

(2.17)
By Holder’s inequality ∣∣ ∫ ab

∣∣ 6 ∣∣ ∫ a2
∣∣1/2∣∣ ∫ b2

∣∣1/2 (2.18)

we can substitute

a2 = [u(L− x)− (λ− 1)]2(L− x)λ−3,

b2 = [λ(λ− 1)− (L− x)2]2(L− x)λ−3,

and integrate over the line segment [0, L]. Then (2.18) gives the following estimate∫ L

0

[u(L− x)− (λ− 1)]2(L− x)λ−3 dx > J2|
∫ L

0

b2dx|−1.

From equation (2.17) we get the ODE

dJ(t)
dt
>
λJ2

2

∣∣ ∫ L

0

b2dx
∣∣−1 − λ(λ− 1)2

2

∫ L

0

(L− x)λ−1 dx, (2.19)

where

J(t) =
∫ L

0

(L− x)λ−3[λ(λ− 1)− (L− x)2]((L− x)u− (λ− 1)) dx.

The final inequality (2.19) can be written as

dJ(t)
dt
> k2J2 −m2, (2.20)

where

m2 =
λ(λ− 1)2

2

∫ L

0

(L− x)λ−1 dx =
(λ− 1)2Lλ

2
,

k2 =
λ

2

∣∣ ∫ L

0

b2dx
∣∣−1

=
λ

2

∣∣ ∫ L

0

[λ2(λ− 1)2 − 2λ(λ− 1)(L− x)2 + (L− x)4](L− x)λ−3 dx
∣∣−1

=
L2−λ

2

∣∣λ(λ− 1)2

λ− 2
− 2

1
λ

(λ− 1)L2 +
L4

λ(λ+ 2)

∣∣−1
.

Integrating the inequality (2.20), we complete the proof. �
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Note that the Theorem 2.2 is proved for any fixed L ∈ (0,+∞). But we should
stress that the time moment T0 > 0 is the function of L > 0 such that the following
situation is possible:

T0 → +0 as L→ +∞.

Theorem 2.3. Suppose that the initial data satisfies the inequalities

J(0) > 1, λ > 1, (2.21)

where

J(t) =
∫ +∞

0

(u− λ)e−λx dx,

or, which is the same, ∫ +∞

0

u0(x)e−λx dx > 2 .

Then the global in time solution of the problem (2.1), (2.2) does not exist in the
half-space (L =∞). Furthermore,

J(t) >
1 + C exp(λ2t/(λ2 − 1))
1− C exp(λ2t/(λ2 − 1))

, (2.22)

where

lim
t→Tb

J(t) = +∞, Tb 6 −
λ2 − 1
λ2

lnC, C =
J(0)− 1
J(0) + 1

. (2.23)

Proof. To remove conditions for L = +∞ we use the test function ϕ(x) = exp(−λx),
λ > 1. Multiplying both sides of (1.2) by ϕ(x), we integrate by parts over [0,∞).
By the boundary conditions we have the following equalities∫ +∞

0

e−λxuxx(x, t) dx = λ2

∫ +∞

0

e−λxu(x, t) dx,∫ +∞

0

e−λxuux(x, t) dx =
λ

2

∫ +∞

0

e−λxu2(x, t) dx.

So we can rewrite the equation (2.1) as

d

dt

∫ ∞
0

e−λx[λ2 − 1]u dx = −λ2

∫ ∞
0

e−λxu dx+
λ

2

∫ ∞
0

e−λxu2 dx. (2.24)

As above, we make the perfect square in the right side of (2.24) and add the time-
independent function in the left side, we obtain

d

dt

∫ +∞

0

e−λx[λ2 − 1](u− λ) dx =
λ

2

∫ +∞

0

(u− λ)2e−λx dx− λ3

2

∫ +∞

0

e−λx dx.

(2.25)
It is not hard to prove the inequality∣∣ ∫ +∞

0

(u− λ)e−λx dx
∣∣2 6 ∫ +∞

0

(u− λ)2e−λx dx
∫ +∞

0

e−λx dx

=
1
λ

∫ +∞

0

(u− λ)2e−λx dx.
(2.26)

Thus from (2.25) we get the ODE

dJ(t)
dt
>

λ2

2(λ2 − 1)
J2 − λ2

2(λ2 − 1)
, (2.27)
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where

J(t) =
∫ +∞

0

(u− λ)e−λx dx.

Integrating inequality (2.27), we obtain the stated result. �

3. Blow-up for the Rosenau-Burgers equation

Let us consider (1.3) with the initial-boundary conditions
∂

∂t
(uxxxx + u) + uxx − uux = 0, x ∈ (0, L), t > 0, (3.1)

u(0, t) = ux(0, t) = uxx(0, t) = uxxx(0, t) = 0, u(x, 0) = u0(x), (3.2)

where L ∈ (0,+∞). Assume that there is such T > 0, that classical solution u of
the problem (3.1)–(3.2) exists and satisfies

u(x)(t) ∈ C(1)([0, T ]; C(4)
0 ([0, L])) . (3.3)

By definition, if f ∈ C(4)
0 , then f ∈ C(4) and f(0) = fx(0) = fxx(0) = fxxx(0) = 0.

In this section we prove the following result.

Theorem 3.1. For any initial data u0 ∈ C(4)
0 ([0, L]) there exists only one solution

u of problem (3.1), (3.2) such that

u(x)(t) ∈ C(1)([0, T0); C(4)
0 ([0, L])),

for some T0 > 0 such that either T0 = +∞ or T0 < +∞ and

lim sup
t↑T0

sup
x∈[0,L]

|u(x)(t)| = +∞. (3.4)

The proof of the above theorem is the same as that for the Theorem 2.1. So we
omit it. Let us prove now a blow-up result.

Theorem 3.2. Suppose that there exists such λ > 7 that initial function satisfies
the inequality

J(0) >
m

k
, (3.5)

where

J(t) =
∫ L

0

(L− x)λ−5[λ(λ− 1)(λ− 2)(λ− 3) + (L− x)4]((L− x)u− (λ− 1)) dx.

then the the classical solution of (3.1) does not exist globally in time. Moreover,
for m and k from (3.2) the following estimate holds

J(t) >
m

k

(kJ(0) +m) + (kJ(0)−m) exp(2mkt)
(kJ(0) +m)− (kJ(0)−m) exp(2mkt)

, (3.6)

and, consequently,
lim
t→Tb

J(t) = +∞, (3.7)

where

Tb 6 −
1

2mk
ln(

kJ(0)−m
kJ(0) +m

), m2 =
(λ− 1)2Lλ

2
,

k2 =
L6−λ

2

∣∣∣∣λ(λ− 1)2(λ− 2)2(λ− 3)2

(λ− 6)
+ 2(λ− 1)(λ− 3)L4 +

L8

λ(λ+ 2)

∣∣∣∣−1
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Proof. Multiplying both sides (3.1) by ϕ(x) = (L− x)λ, we integrate by parts. By
the boundary conditions, we have∫ L

0

(L− x)λuxxxx(x, t) dx = λ(λ− 1)(λ− 2)(λ− 3)
∫ L

0

(L− x)λ−4u(x, t) dx;

By this equality we can rewrite (1.3) as the integro-differential expression

d

dt

∫ L

0

(L− x)λ−4[λ(λ− 1)(λ− 2)(λ− 3) + (L− x)4]u dx

= −λ(λ− 1)
∫ L

0

(L− x)λ−2u dx+
λ

2

∫ L

0

u2(L− x)λ−1 dx.

(3.8)

As before, in the right-hand side of (3.8) we complete the square and in the left-hand
side add the time-independent function:

d

dt

∫ L

0

(L− x)λ−5[λ(λ− 1)(λ− 2)(λ− 3) + (L− x)4]((L− x)u− (λ− 1)) dx

=
λ

2

∫ L

0

[u(L− x)− (λ− 1)]2(L− x)λ−3 dx− λ(λ− 1)2

2

∫ L

0

(L− x)λ−1 dx.

(3.9)
Substituting

a2 = [u(L− x)− (λ− 1)]2 (L− x)λ−3,

b2 = [λ(λ− 1)(λ− 2)(λ− 3)− (L− x)4]2(L− x)λ−7

in (2.18) and integrating over the segment [0, L], we obtain∫ L

0

[u(L− x)− (λ− 1)]2(L− x)λ−3 dx 6 J2
∣∣∣ ∫ L

0

b2dx
∣∣∣−1

= J2
∣∣∣λ2(λ− 1)2(λ− 2)2(λ− 3)2

(λ− 6)
Lλ−6 + 2λ(λ− 1)(λ− 3)Lλ−2 +

Lλ+2

λ+ 2

∣∣∣−1

.

(3.10)
Finally, from (3.9) we obtain the ordinary differential inequality

dJ(t)
dt
> k2J2 −m2, (3.11)

where m2 = (λ−1)2Lλ

2 ,

k2 =
L6−λ

2

∣∣∣λ(λ− 1)2(λ− 2)2(λ− 3)2

(λ− 6)
+ 2(λ− 1)(λ− 3)L4 +

L8

λ(λ+ 2)

∣∣∣−1

,

J(t) =
∫ L

0

(L− x)λ−5[λ(λ− 1)(λ− 2)(λ− 3) + (L− x)4]((L− x)u− (λ− 1)) dx.

Integrating (3.11), we complete the proof. �

As for equation (1.2), we can obtain results for the Rosenau-Burgers in the
unbounded domain. For problem (3.1)-(3.2) on the half-line [0,+∞) we shall prove
the following result.

Theorem 3.3. Suppose that the initial data satisfies the inequality∫ +∞

0

u0(x)e−λx dx > 2,
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then the classical solution of the problem for Rosenau-Burgers on the half line does
not exist globally in time. Furthermore, there exists the lower estimate

J(t) >
1 + C exp(λ2t/(λ4 + 1))
1− C exp(λ2t/(λ4 + 1))

, J(t) =
∫ +∞

0

(u− λ)e−λx dx, (3.12)

and, consequently,

lim
t→Tb

J(t) = +∞, Tb 6 −
λ4 + 1
λ2

lnC, C =
J(0)− 1
J(0) + 1

. (3.13)

Proof. The proof is similar to the Theorem 2.3; so we present on the main points.
First let us multiply both sides of (1.3) by ϕ(x) = exp(−λx), with λ > 1, and
integrate by parts over [0, L):

d

dt

∫ ∞
0

e−λx[λ4 + 1]u dx = −λ2

∫ ∞
0

e−λxu dx+
λ

2

∫ ∞
0

e−λxu2 dx. (3.14)

Then extracting perfect square in the side part (3.14) and adding a time-independed
function to the left-hand side, we obtain the equality

d

dt

∫ +∞

0

e−λx[λ4 + 1](u− λ) dx =
λ

2

∫ +∞

0

(u− λ)2e−λx dx− λ3

2

∫ +∞

0

e−λx dx.

(3.15)
By (2.26) we can rewrite (3.15) as

dJ(t)
dt
>

λ2

2(λ4 + 1)
J2 − λ2

2(λ4 + 1)
, (3.16)

where

J(t) =
∫ +∞

0

(u− λ)e−λx dx.

Integrating (3.16), we obtain the result of the theorem. �

4. Blow-up for equation (1.4)

It is readily seen that the method of nonlinear capacity is usable for Sobolev
type equations also with additional terms like higher-order derivatives u(n). As an
example, we consider the problem for the equation, which describes processes in
cristalline semiconductors and has the third-order derivative:

(uxx − u)t + uxxx − uux = 0, t > 0, x ∈ (0, L), L > 0, (4.1)

u(0, t) = ux(0, t) = uxx(0, t) = 0, u(x, 0) = u0(x), x ∈ [0, L], t > 0. (4.2)

The physical model for problem (4.1)–(4.2) is presented in [31]. Let us prove the
solvability result.

Theorem 4.1. For any function ũ0(x) such that

ũ0(x) =

{
u0(x), for x > 0;
0, for x < 0,

ũ0(x) ∈ C(4)(−∞, L],

there exists only one solution u of (4.1), (4.2) such that

u(x)(t) ∈ C(1)([0, T0); C(3)
0 ([0, L])),
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for some T0 > 0. By definition, if f ∈ C(3)
0 , then f ∈ C(3) and f(0) = fx(0) =

fxx(0) = 0. Moreover, it can be proved that either T0 = +∞ or T0 < +∞ and the
following limiting equality holds

sup
t↑T0

sup
x∈[0,L]

|u(x)(t)| = +∞.

Remark 4.2. By the boundary conditions (4.2) and natural matching condition
of initial and boundary data it is easily shown that ũ0(x) ∈ C(3)

0 (−∞, L], however,
larger smoothness is not indispensable. In addition, it is clear that necessary and
sufficient conditions for ũ0(x) ∈ C(4)(−∞, L] are the following

u0(x) ∈ C(4)([0, L]) and (u0)xxx(0 + 0) = (u0)xxxx(0 + 0) = 0.

Proof of Theorem 4.1. As above for equation (1.2), taking into account the bound-
ary conditions, integrating with respect to x and inverting the operator

(I−G∗), where G ∗ f =
∫ x

0

dy

∫ y

0

f(z) dz,

we obtain the equation

∂u

∂t
+
∂u

∂x
= Q[u](x, t) ≡

+∞∑
k=0

[G∗]k
∫ x

0

u dy +
1
2

+∞∑
k=0

[G∗]k
∫ x

0

u2 dy, (4.3)

where we use that
∫ x
0
uy dy = u(x), and, thus,

+∞∑
k=1

[G∗]kux =
+∞∑
k=0

[G∗]k
∫ x

0

u dy.

From the definition of operator Q[u](x, t) it follows that Q[u](0, t) = 0, moreover,
u(0, t) = 0. Then we can continue the function Q[u](x, t) by zero for x < 0,
furthermore, this function Q[u](x, t) is smooth function with respect to the first
input. Corresponding to this continuation we define

f(x, t) ≡ Q̃[u](x, t) and ũ(x, t).

Now consider the differential problem

∂v

∂t
+
∂v

∂x
= f(x, t), v(x, 0) = v0(x), v(x, t) ≡ ũ(x, t). (4.4)

The solution of (4.3) we can be written as

u(x, t) = ũ0(x− t) +
∫ t

0

f(x− t+ τ, τ) dτ, x ∈ [0, L], t ∈ [0, T ], (4.5)

where L > 0 is fixed, and T > 0 is small enough.
To prove the local solvability of the integral equation (4.5) we use the contraction

mapping method. In the notation of the previous section we can rewrite the integral
equation (4.5) in the abstract form

u(x, t) = F[u](x, t) ≡ ũ0(x− t) +
∫ t

0

Q̃[u](x− t+ τ, τ) dτ. (4.6)

As before, it can easily be checked that, if u0(x) ∈ C(3)
0 ([0, L]), then

F[·] : C([0, T ]× [0, L])→ C([0, T ]× [0, L]).
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Let us prove now that F[·] is an operator between BR and BR for large enough
R > 0 and small T > 0. Indeed, we can fix R > 0 such large that

‖u0‖ 6
R

2
.

On the other hand, we have the inequality

‖u‖ 6 ‖u0‖+ T

+∞∑
k=0

(L∗)2k+1

(2k + 1)!
[
‖u‖+

1
2
‖u‖2

]
, L∗ = max{L, |L− T |}. (4.7)

From (4.7), for small enough T > 0,

T

+∞∑
k=0

(L∗)2k+1

(2k + 1)!
[R+

R2

2
] 6

R

2
,

and we obtain our result. As in the second section it is easily shown that F is
contraction mapping on a space BR, if we change L to L∗. Thus, we complete the
proof of local in time solvability of the integral equation (4.5).

Now we can continue the solution in time. Assume that u0(x) ∈ C(3)
0 ([0, L]),

then from the necessary matching condition of initial and boundary data we obtain
that ũ0(x) ∈ C(4)((−∞, L]). Moreover, it can easily be checked that

u(x)(t) ∈ C(3)
0 ([0, T ]× [0, L]).

Let us denote

w(x)(t) ≡ ũ0(x− t) +
∫ t

0

Q̃[u](x− t+ τ, τ) dτ,

then under the condition T0 < +∞, the following inequality holds

sup
t∈[0,T0]

‖u‖ < +∞.

By a standard way we obtain w(x)(T0) ∈ C([0, L]). At the same time we can write

w(x)(T0) = ũ0(x− T0) +
∫ T0

0

Q̃[u](x− T0 + τ, τ) dτ ∈ C(1)([0, L]).

Therefore, in (4.3), taking u(x)(t) for t = T0 as initial data, we can continue
the solution over the time moment T0. This contradiction concludes the proof of
existence of the maximum solution.

Using the “bootstrap” method, it is possible to show that, if ũ0(x) ∈ C(4)(−∞, L],
then the solution of (4.5) belong to the class C(1)([0, T0); C(3)

0 ([0, L])). �

As above, to obtain sufficient conditions of blow-up we use the method of nonlin-
ear capacity for the power test function ϕ(x) = (L−x)5. Suppose that the solution
u(x, t) of problem (1.4), (4.2) is classical:

u(x)(t) ∈ C(1)([0, T ]; C(3)([0;L])) for some T > 0.

Multiplying both sides of (1.4) by the test function ϕ(x) and integrating by parts,
we obtain the equality:

d

dt

∫ L

0

(L−x)3[20−(L−x)2]u dx =
5
2

∫ L

0

u2(L−x)4 dx+60
∫ L

0

u(L−x)2 dx. (4.8)
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As before, let us make in the right-hnad side (2.16) the perfect square and in the
left add the time-independent function

d

dt

∫ L

0

(L−x)[20− (L−x)2]((L−x)2u+12) dx =
5
2

∫ L

0

[(L−x)2u+12]2 dx−360L.

(4.9)
The following inequalities can be easily proved:∣∣∣ ∫ L

0

(L− x)[20− (L− x)2]((L− x)2u+ 12) dx
∣∣∣2

6
∣∣∣ ∫ L

0

(L− x)2[20− (L− x)2]2 dx
∣∣∣ ∣∣∣ ∫ L

0

((L− x)2u+ 12)2 dx
∣∣∣

=
5

2k2

∫ L

0

((L− x)2u+ 12)2 dx,

(4.10)

where

k2 =
∣∣∣160L3

3
− 16L5

5
+

2L7

35

∣∣∣−1

.

From equation (4.9) and estimate (4.10) we obtain the ordinary differential inequal-
ity

dJ(t)
dt
> k2J2 − 360L, (4.11)

where

J(t) =
∫ L

0

(L− x)[20− (L− x)2]((L− x)2u+ 12) dx.

Integrating (4.11), we obtain the following result.

Theorem 4.3. Let the initial function satisfies the condition

J(0) =
∫ L

0

(L− x)[20− (L− x)2]((L− x)2u0(x) + 12) dx >

√
360L
k2

(4.12)

or∫ L

0

(L− x)3[20− (L− x)2]u0(x) dx > 120L2

√
4
3
− 2L2

25
+

L4

700
− 120L2 + 3L4,

then there is no global in time classical solutions of (1.4). Moreover, the following
lower bound holds

J(t) >
6
√

10L
k

1 + C exp(12
√

10Lkt)
1− C exp(12

√
10Lkt)

, (4.13)

and, consequently, limt→Tb J(t) = +∞,

T 6 Tb 6 −
1

12
√

10Lk
lnC,

C =
kJ(0)− 6

√
10L

kJ(0) + 6
√

10L
, k2 =

∣∣∣160L3

3
− 16L5

5
+

2L7

35

∣∣∣−1

.

Using the nonlinearity capacity method with the test function ϕ(x) = exp(−λx),
λ > 1, we obtain the blow-up result on the halfline. Multiplying both sides of (1.4)
equation by ϕ(x) and integrating by parts, we obtain the equality:

d

dt

∫ ∞
0

e−λx[λ2 − 1]u dx = λ3

∫ ∞
0

e−λxu dx+
λ

2

∫ ∞
0

e−λxu2 dx. (4.14)
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Similarly to the bounded domain, forming perfect square and adding time-inde-
pendent function, we obtain that

d

dt

∫ +∞

0

e−λx[λ2 − 1](u+ λ2) dx =
λ

2

∫ +∞

0

(u+ λ2)2e−λx dx− λ5

2

∫ +∞

0

e−λx dx.

(4.15)
It is not hard to prove the following chain of inequalities:∣∣∣ ∫ +∞

0

(u+ λ2)e−λx dx
∣∣∣2 6 ∫ +∞

0

(u+ λ2)2e−λx dx
∫ +∞

0

e−λx dx

=
1
λ

∫ +∞

0

(u+ λ2)2e−λx dx.
(4.16)

Thus, we can rewrite (4.15) as

dJ(t)
dt
>

λ2

2(λ2 − 1)
J2 − λ4

2(λ2 − 1)
, (4.17)

where

J(t) =
∫ +∞

0

(u+ λ2)e−λx dx.

After integrating (4.17), we can formulate the following statement.

Theorem 4.4. Suppose that the initial data satisfies the condition

J(0) =
∫ +∞

0

(u0(x) + λ2)e−λx dx > 1, λ > 1 . (4.18)

Then the classical solution of (1.4), (4.2) does not exist globally in time. Further-
more, the following inequality holds

J(t) >
1 + C exp(λ3t/(λ2 − 1))
1− C exp(λ3t/(λ2 − 1))

, (4.19)

consequently,

lim
t→Tb

J(t) = +∞, Tb 6 −
λ2 − 1
λ3

lnC, C =
J(0)− λ
J(0) + λ

. (4.20)

Conclusion. This article shows that the nonlinear capacity method allow us to
study not only standard Kortweg-de Vries equations, but also other problems
of modern mathematical physics: problems for Benjamin-Bona-Mahony-Burgers,
Rosenau-Burgers and Korteweg-de Vries-Benjamin-Bona-Mahony equations. More-
over, it is possible to unite the proof of blow-up in problems with nonclassical
boundary conditions and the existence of correct blow-up solutions.

This research was supported by RFBR (grant 08-01-00376-a, 11-01-12018-ofi-m-
2011) and by grant from the President of the Russian Federation for young Russian
scientists MD-99.2009.1
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