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BOUNDARY DIFFERENTIABILITY FOR INHOMOGENEOUS
INFINITY LAPLACE EQUATIONS

GUANGHAO HONG

ABSTRACT. We study the boundary regularity of the solutions to inhomoge-
neous infinity Laplace equations. We prove that if u € C() is a viscosity
solution to Asou := ZZ]':I Uz, Uz ; Uz, ) = f with f € C(Q)NL>(Q) and for
zo € 2 both 9 and g := u|gq are differentiable at xg, then u is differentiable
at xp.

1. INTRODUCTION

Infinity Laplace equation A, u = 0 arose as the Fuler equation of L*° varia-
tional problem of |Vu|, or equivalently, absolutely minimizing Lipschitz extension
(AML) problem. This problem was initially studied by Aronsson [I] at the classical
solutions level from 1960’s. In 1993, Jensen [7] proved that a function u(z) € C'(2)
is an AML:

for any V cC Q, Lip(u,V) = Lip(u, V)
if and only if u(z) is a viscosity solution to A,u = 0. Moreover, for any bounded
domain Q C R™ and g € C(9N2), the Dirichlet problem:

Axu=01in ), u=g on 00 (1.1)

has an unique viscosity solution. Such an solution is called an infinity harmonic
function.

In 2001, Crandall, Evans and Gariepy [3] proved that a function u(xz) € C(2)
is an infinity harmonic function if and only if u satisfies the following comparison
with cone property: for any V .CC Q and and ¢(z) = a + blx — xo,

u(z) < e(z) on H{V\{zo}} = u(z) <ec(z) inV,
u(z) > c(x) on H{V\{zo}} = u(z) > c(z) in V.

This comparison property turns out to be a very useful tool in the study of many
aspects of this equation. Especially, it implies the following conclusions as a direct
result [3].

Lemma 1.1. Let u(z) € C() satisfy comparison with cone property, xo € £,
0 < r < dist(zg, 9Q). Then
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(1) the slope functions

u() — u(zo)

St(zo):= max ——2——22  S7(xg):= max u(zo) — u(x)

z€0B(zo,r) r z€B(xo,r) r
are non-negative and non-decreasing as a function of v for fixed xy. So the
limits S*(x¢) := lim,_o S;F(20) eist.
(2) St (xo) = S~ (x0) :== S(z0).
(3) S(x) is upper-semicontinuous, i.e., limsup, ., S(y) < S(x) for all x € Q.

The lemma implies locally Lipschitz continuity of u immediately. Crandall and
Evans [2] applied this lemma to prove that at any interior point zq, a blow-up limit

v(z) = lim U0 F752) — ulwo)
r;—0 Tj

of an infinity harmonic function u must be a linear function, i.e., v(z) = a - x for
some a € R™ with |a| = S(x). The sketch of their proof is the following. Firstly, (3)
of Lemma implies Lip(v, R™) < S(xq). Secondly, for any R > 0 fixed, for every
J there exists a maximal direction e; € R™ with |e;| = 1 such that u(zo + Rrje;) =
MaXye) By, (o) u(z). The sequence {e;} must have an accumulating point say e*,
then v(Re™) = Re™. For all R, we will have the same ¢™. By considering the
minimum directions we will get an e~ and moreover e~ = —e*. So v is tight on
the line te™, t € (—o0,00). Finally, a Lipschitz function on R™ that is tight on
a line must be linear. However, this result does not imply the differentiability of
u in general since for different sequences r; one may get different linear functions
v although they must have same slope S(xg). Ten years later, by using much
deeper pde techniques Evans and Smart [4] proved that the blow-up limits are
unique and accomplished the proof of interior differentiability. The continuously
differentiability is still left open as the most prominent problem in this field although
in 2 dimension C* and C1* regularity was achieved by Savin [10] and Evans-Savin
[] respectively.

Boundary regularity for infinity harmonic function was initially studied by Wang
and Yu [II]. They proved the following result.

Theorem 1.2. Forn > 2, let Q C R"™ be a bounded domain with 0Q € C' and
g € CY(R™). Assume that u € C(Q) is the viscosity solution of the infinity Laplace
equation . Then u is differentiable on the boundary, i.e., for any xg € 09,
there exists Du(zg) € R™ such that

u(z) = u(wg) + Du(wg) - (x — z0) + o]z — x0]), Vax € Q.

The boundary differentiability is much easier than interior differentiability. They
defined the slope functions near and on the boundary by
St(x) = sup uly) — ulz) and S, (z) = sup ul@) — uly)

y€A(B(z,r)NQ)\{z} ly — | y€A(B(z,r)NQ)\{z} ly — x|

for x € Q and 7 > 0 small. SF(z) are still monotone and have limits S*(x). But
S*(z) # S~ (x) in general if x € 9Q. Denote S(z) := max{S*(z),S5(z)}. S(z)
is upper-semicontinuous Vz € ) with the assumption that both 99 and g are C!.
They applied a similar argument as in [2] and proved that any blow-up limit of u
at a boundary point xg is a linear function v(x) = ez with |e| = S(zo) on the half
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space R} = {z;,, > 0}. But this time it is very easy to prove the uniqueness of blow-
up limits since the tangential part of e is already given by the boundary data. So
¢ = (\/S(20)? — [Drg(@0)P, Drg(ao)) or € = (—/S(@0)” — [Drg(wo) P, Drg(xo))-
The former happens when S(zo) = ST (x¢) and the latter happens when S(zg) =
S~ (zo).

It is not natural to put C' assumption on the boundary conditions in order
to prove merely differentiability of a solution. In a recent work [6] we improved
Wang-Yu’s Theorem to the following sharp version.

Theorem 1.3. Let Q C R" be a domain and v € C(Q) is an infinity harmonic
function in Q. Assume that for xg € 9Q, O and g := u|sq are differentiable at xq.
Then u is differentiable at xg.

Under this weaker assumption, it is not true that S(z) is upper-semicontinuous
at xo. However we managed to show that limsup, ., S(z) < S(xo) if 2 — 20 in a
non-tangentially way. This is enough to imply Lip(v,R’}) < S(xo).

The inhomogeneous infinity Laplace Equation A, u = f was studied by Lu and
Wang [9]. They proved existence and uniqueness of a viscosity solution of the
Dirichlet problem

Asu=fin Q, wu=gon 0 (1.2)

under the conditions that  C R™ is bounded, f € C(2) with infg f > 0 or supq, f <
0 and g € C(99). They also proved some comparison principles and stability
results. Lindgren [8] investigated the interior regularity of viscosity solutions of
(1.2). He proved that the blow-ups are linear if f € C(Q) N L>®(Q) and w is
differentiable if f € C*(Q) N L>(2). For inhomogeneous equation (L.2)), the slope
functions SF(z) is not monotone anymore, but so is SF(z) + r [8, Corollary 1].
Hence the limits S*(z) := lim,_o S () still exist and the arguments in [2] and [4]
work.

In this paper, we combine the techniques used in [6, 8, [II] to prove boundary
differentiability for inhomogeneous infinity Laplace equation.

Theorem 1.4. Let Q C R™ and u € C(Q) is a viscosity solution of the inhomo-
geneous infinity Laplace equation (1.2]). Assume that f € C(Q2) N L>®(Q) and for
xo € 0L, both O and g are differentiable at xo. Then w is differentiable at xg.

2. PROOF OF THEOREM [L.4]

Without lost of generality, we may assume that zg = 0 and the tangential plane
of 0Q at 0is {z = (2',z,) € R" : x,, = 0}. Denote B(z,r):={y € R": ly—z| <r}
for z € R", B(r) := B(0,r), B(z',r) := {3/ € R"" ' : |y —a/| <r} for 2/ € R"~1
and B(r) := B(0,r). We assume for some 0 < 1o < 1,

QN B(ry) = {x € B(ro) : @, > f(2')},

where f € C(B(ro)) is differentiable at 0 with f(0) = Df(0) = 0. Denote j(z') =
g(a’, f(z')) for 2’ € B(ro), then §(z') € C(B(ro)) is differentiable at 0.

We will prove the following easier conclusion first and then apply it to prove
Theorem [[4

Proposition 2.1. Assume that u, f, Q and g satisfy the conditions in Theorem
. We assume additionally g(z') € C*(B(ro)). Then u is differentiable at 0.
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For x € QN B, /5 and 0 < r < r¢/2, we define

S,Jr(x) — sup U(y) B u(x)
yed(B(z,r)nO\{z} 1Y — T
and
ST (z) = sup M

y€d(B(z,r)NQ)\{x} ly — |

We make the following two assumptions on the solution u of as in [8]:
(A1) SE(z) > 1 for all z and r;
(A2) -3 <f<-1

This is not a restriction since we can define
4

. u(xy,...,x 3 3
W(xy, ... Tpya) = M + Tpt1 — 217|$l€n+2|4

1 1 1
B i

to make @ satisfy the assumptions. Any regularity result (up to C’l’%) on % in
general dimension also holds for wu.

Lemma 2.2. Under the assumptions and notation above, SE(x)+r is non-decreasing
for allz € QN B, /5 and 0 < r < 2. So the limit S*(z) := lim, o S (x)+7 ewist.

Proof. Fix a point x € QN B,,/2 and 0 <17 < . Define

r 1—
P(y) = u(z) + S (x)rsr@ |y —a| sFe.
Direct computation shows that
r
St (x)

when y € B.(2)NQ\{z}. And ¢(y) > u(y) on (B(x,r)NQ)U{z}. So ¢(y) > u(y)
in B(z,r) N from the comparison principle [0, Theorem 3].

For 0 < p <7, let y € O(B(z,p) N Q\{z}. If y € 90N B(z,p)\{z} then
y € 90N B(z,r)\{z}, so % < SF(x). If y € 0B(z, p) N, then

Bocdly) = S} (@)r T O~y —a] T <-Sf@)? <1<

uly) —u(e) _ o) —ule) _ gup 7 s
< B - S @) () T

Hence, S (z) < SF(z)(%) ST Therefore,

St(z) — S (x SH@)(1— (£)F®
liminfM > lim inf @) (p) ) =—1.

p—T T—p p—T r—p
The same argument applies to S, (). (]

Define S(z) := max{S*(z), S~ (z)}. we prove that S(z) is upper-semicontinuous
at 0 under the conditions of Proposition 1.

Lemma 2.3. For any € > 0, there exists r(e,u) > 0, such that

sup  S(z) < S(0) +e.
2eQNB(r)
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Proof. For € > 0, since §(z') € CY(B(ro)) and |Dg(0)| < S(0), there exists r; > 0
such that
_ AN Ao
#ycdQNB(ry) |$ - y‘ r#ycdQNB(ry) |.Z‘ -y | 3

Since lim,._¢ S,(0) = S(0), there exists 0 < 2 < min(r/2, §), such that
$r2(0) < S(0) + 7.

From the continuity of u, there exists 0 < r3 < 19, such that

sup [uly) = u(@)| SS(O)—}—E for x€ QN B(rs). (2.2)
y€OB(z,m2)N T2 3
From ([2.1) and (2.2), we have
S, (z) = sup @) =v@] g0y + € for w000 Blra).
yed(Blar)nO\{z} Y — 7| 3

From Lemma we have

u(y) — u(z)|
ly — x|

2e

< Sy, (x) 4+ 12 < 5(0) + 3 (2.3)

for x € 002N B(rs) and y € QN B(rs). From the continuity of v again, there exists
0 < rq <r3/2, such that

_ 2 _
sup [uly) = u(@)] < S5(0) + = forzen B(ry). (2.4)
y€IB(z,r3/2)NQY T3/2 3
From (2.3) and (2.4) and Lemma[2.2] we have
S(x) < Sy pala) + = = sup July) Zu@] | s 5(0) + ¢
yed(B(z,rs /2NN {} Y — | 2
for x € QN B(ry). Finally we choose r(e,u) = ry. O

The rest of the proof of Proposition 1 is the same as that in [II]. We have
described the idea in the introduction and refer the readers to [I1] for the details.

Now we prove the non-tangentially upper-semicontinuity of S(x) at 0 under the
conditions of Theorem [1.4] and assumptions (A1) and (A2).

Lemma 2.4. Given any 0 < 0 < 1, we have that for all 0 < € < é, there exists
r(e,8,u) > 0, such that

sup S(a) <5(0) +e
z€QNB(r)N{z, >0]a’|}

The proof of Lemma is essentially same as the proof of [6l Lemma 2] for the
homogeneous equation. Several places need minor modification, but this can be
easily justified. So we omit the proof and refer the readers to [6].

With the result in Lemma [2.4] the rest of the proof of Theorem [T.4] follows the
same way as in the homogeneous equation case.
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