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BOUNDARY DIFFERENTIABILITY FOR INHOMOGENEOUS
INFINITY LAPLACE EQUATIONS

GUANGHAO HONG

Abstract. We study the boundary regularity of the solutions to inhomoge-

neous infinity Laplace equations. We prove that if u ∈ C(Ω̄) is a viscosity

solution to ∆∞u :=
Pn
i,j=1 uxiuxj uxixj = f with f ∈ C(Ω)∩L∞(Ω) and for

x0 ∈ ∂Ω both ∂Ω and g := u|∂Ω are differentiable at x0, then u is differentiable
at x0.

1. Introduction

Infinity Laplace equation ∆∞u = 0 arose as the Euler equation of L∞ varia-
tional problem of |∇u|, or equivalently, absolutely minimizing Lipschitz extension
(AML) problem. This problem was initially studied by Aronsson [1] at the classical
solutions level from 1960’s. In 1993, Jensen [7] proved that a function u(x) ∈ C(Ω)
is an AML:

for any V ⊂⊂ Ω, Lip(u, V ) = Lip(u, ∂V )
if and only if u(x) is a viscosity solution to ∆∞u = 0. Moreover, for any bounded
domain Ω ⊂ Rn and g ∈ C(∂Ω), the Dirichlet problem:

∆∞u = 0 in Ω, u = g on ∂Ω (1.1)

has an unique viscosity solution. Such an solution is called an infinity harmonic
function.

In 2001, Crandall, Evans and Gariepy [3] proved that a function u(x) ∈ C(Ω)
is an infinity harmonic function if and only if u satisfies the following comparison
with cone property : for any V ⊂⊂ Ω and and c(x) = a+ b|x− x0|,

u(x) ≤ c(x) on ∂{V \{x0}} ⇒ u(x) ≤ c(x) in V,

u(x) ≥ c(x) on ∂{V \{x0}} ⇒ u(x) ≥ c(x) in V.

This comparison property turns out to be a very useful tool in the study of many
aspects of this equation. Especially, it implies the following conclusions as a direct
result [3].

Lemma 1.1. Let u(x) ∈ C(Ω) satisfy comparison with cone property, x0 ∈ Ω,
0 < r < dist(x0, ∂Ω). Then
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(1) the slope functions

S+
r (x0) := max

x∈∂B(x0,r)

u(x)− u(x0)
r

, S−r (x0) := max
x∈∂B(x0,r)

u(x0)− u(x)
r

are non-negative and non-decreasing as a function of r for fixed x0. So the
limits S±(x0) := limr→0 S

±
r (x0) exist.

(2) S+(x0) = S−(x0) := S(x0).
(3) S(x) is upper-semicontinuous, i.e., lim supy→x S(y) ≤ S(x) for all x ∈ Ω.

The lemma implies locally Lipschitz continuity of u immediately. Crandall and
Evans [2] applied this lemma to prove that at any interior point x0, a blow-up limit

v(x) = lim
rj→0

u(x0 + rjx)− u(x0)
rj

of an infinity harmonic function u must be a linear function, i.e., v(x) = a · x for
some a ∈ Rn with |a| = S(x0). The sketch of their proof is the following. Firstly, (3)
of Lemma 1.1 implies Lip(v,Rn) ≤ S(x0). Secondly, for any R > 0 fixed, for every
j there exists a maximal direction ej ∈ Rn with |ej | = 1 such that u(x0 +Rrjej) =
maxx∈∂BRrj

(x0) u(x). The sequence {ej} must have an accumulating point say e+,
then v(Re+) = Re+. For all R, we will have the same e+. By considering the
minimum directions we will get an e− and moreover e− = −e+. So v is tight on
the line te+, t ∈ (−∞,∞). Finally, a Lipschitz function on Rn that is tight on
a line must be linear. However, this result does not imply the differentiability of
u in general since for different sequences rj one may get different linear functions
v although they must have same slope S(x0). Ten years later, by using much
deeper pde techniques Evans and Smart [4] proved that the blow-up limits are
unique and accomplished the proof of interior differentiability. The continuously
differentiability is still left open as the most prominent problem in this field although
in 2 dimension C1 and C1,α regularity was achieved by Savin [10] and Evans-Savin
[4] respectively.

Boundary regularity for infinity harmonic function was initially studied by Wang
and Yu [11]. They proved the following result.

Theorem 1.2. For n ≥ 2, let Ω ⊂ Rn be a bounded domain with ∂Ω ∈ C1 and
g ∈ C1(Rn). Assume that u ∈ C(Ω̄) is the viscosity solution of the infinity Laplace
equation (1.1). Then u is differentiable on the boundary, i.e., for any x0 ∈ ∂Ω,
there exists Du(x0) ∈ Rn such that

u(x) = u(x0) +Du(x0) · (x− x0) + o(|x− x0|), ∀x ∈ Ω̄.

The boundary differentiability is much easier than interior differentiability. They
defined the slope functions near and on the boundary by

S+
r (x) = sup

y∈∂(B(x,r)∩Ω)\{x}

u(y)− u(x)
|y − x|

and S−r (x) = sup
y∈∂(B(x,r)∩Ω)\{x}

u(x)− u(y)
|y − x|

for x ∈ Ω̄ and r > 0 small. S±r (x) are still monotone and have limits S±(x). But
S+(x) 6= S−(x) in general if x ∈ ∂Ω. Denote S(x) := max{S+(x), S−(x)}. S(x)
is upper-semicontinuous ∀x ∈ Ω̄ with the assumption that both ∂Ω and g are C1.
They applied a similar argument as in [2] and proved that any blow-up limit of u
at a boundary point x0 is a linear function v(x) = e ·x with |e| = S(x0) on the half
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space Rn+ = {xn > 0}. But this time it is very easy to prove the uniqueness of blow-
up limits since the tangential part of e is already given by the boundary data. So
e = (

√
S(x0)2 − |DT g(x0)|2, DT g(x0)) or e = (−

√
S(x0)2 − |DT g(x0)|2, DT g(x0)).

The former happens when S(x0) = S+(x0) and the latter happens when S(x0) =
S−(x0).

It is not natural to put C1 assumption on the boundary conditions in order
to prove merely differentiability of a solution. In a recent work [6] we improved
Wang-Yu’s Theorem to the following sharp version.

Theorem 1.3. Let Ω ⊂ Rn be a domain and u ∈ C(Ω̄) is an infinity harmonic
function in Ω. Assume that for x0 ∈ ∂Ω, ∂Ω and g := u|∂Ω are differentiable at x0.
Then u is differentiable at x0.

Under this weaker assumption, it is not true that S(x) is upper-semicontinuous
at x0. However we managed to show that lim supx→x0

S(x) ≤ S(x0) if x→ x0 in a
non-tangentially way. This is enough to imply Lip(v,Rn+) ≤ S(x0).

The inhomogeneous infinity Laplace Equation ∆∞u = f was studied by Lu and
Wang [9]. They proved existence and uniqueness of a viscosity solution of the
Dirichlet problem

∆∞u = f in Ω, u = g on ∂Ω (1.2)

under the conditions that Ω ⊂ Rn is bounded, f ∈ C(Ω) with infΩ f > 0 or supΩ f <
0 and g ∈ C(∂Ω). They also proved some comparison principles and stability
results. Lindgren [8] investigated the interior regularity of viscosity solutions of
(1.2). He proved that the blow-ups are linear if f ∈ C(Ω) ∩ L∞(Ω) and u is
differentiable if f ∈ C1(Ω) ∩ L∞(Ω). For inhomogeneous equation (1.2), the slope
functions S±r (x) is not monotone anymore, but so is S±r (x) + r [8, Corollary 1].
Hence the limits S±(x) := limr→0 S

±
r (x) still exist and the arguments in [2] and [4]

work.
In this paper, we combine the techniques used in [6, 8, 11] to prove boundary

differentiability for inhomogeneous infinity Laplace equation.

Theorem 1.4. Let Ω ⊂ Rn and u ∈ C(Ω̄) is a viscosity solution of the inhomo-
geneous infinity Laplace equation (1.2). Assume that f ∈ C(Ω) ∩ L∞(Ω) and for
x0 ∈ ∂Ω, both ∂Ω and g are differentiable at x0. Then u is differentiable at x0.

2. Proof of Theorem 1.4

Without lost of generality, we may assume that x0 = 0 and the tangential plane
of ∂Ω at 0 is {x = (x′, xn) ∈ Rn : xn = 0}. Denote B(x, r) := {y ∈ Rn : |y−x| < r}
for x ∈ Rn, B(r) := B(0, r), B̂(x′, r) := {y′ ∈ Rn−1 : |y′ − x′| < r} for x′ ∈ Rn−1

and B̂(r) := B̂(0, r). We assume for some 0 < r0 < 1,

Ω ∩B(r0) = {x ∈ B(r0) : xn > f(x′)},

where f ∈ C(B̂(r0)) is differentiable at 0 with f(0) = Df(0) = 0. Denote ĝ(x′) =
g(x′, f(x′)) for x′ ∈ B̂(r0), then ĝ(x′) ∈ C(B̂(r0)) is differentiable at 0.

We will prove the following easier conclusion first and then apply it to prove
Theorem 1.4.

Proposition 2.1. Assume that u, f , Ω and g satisfy the conditions in Theorem
1.4. We assume additionally ĝ(x′) ∈ C1(B̂(r0)). Then u is differentiable at 0.
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For x ∈ Ω̄ ∩Br0/2 and 0 < r < r0/2, we define

S+
r (x) = sup

y∈∂(B(x,r)∩Ω)\{x}

u(y)− u(x)
|y − x|

and

S−r (x) = sup
y∈∂(B(x,r)∩Ω)\{x}

u(x)− u(y)
|y − x|

.

We make the following two assumptions on the solution u of (1.2) as in [8]:
(A1) S±r (x) ≥ 1 for all x and r;
(A2) − 3

4 ≤ f ≤ −
1
4 .

This is not a restriction since we can define

ũ(x1, . . . , xn+2) =
u(x1, . . . , xn)

4
1
3 ‖f‖

1
3
L∞(Ω)

+ xn+1 −
3

4
3

2
1
3 · 4
|xn+2|

3
4

to make ũ satisfy the assumptions. Any regularity result (up to C1, 13 ) on ũ in
general dimension also holds for u.

Lemma 2.2. Under the assumptions and notation above, S±r (x)+r is non-decreasing
for all x ∈ Ω̄∩Br0/2 and 0 < r < r0

2 . So the limit S±(x) := limr→0 S
±
r (x)+r exist.

Proof. Fix a point x ∈ Ω̄ ∩Br0/2 and 0 < r < r0
2 . Define

φ(y) := u(x) + S+
r (x)r

r

S
+
r (x) · |y − x|

1− r

S
+
r (x) .

Direct computation shows that

∆∞φ(y) = S+
r (x)3r

3r

S
+
r (x) (− r

S+
r (x)

)|y − x|
− 3r

S
+
r (x)

−1
≤ −S+

r (x)2 ≤ −1 < f

when y ∈ Br(x)∩Ω\{x}. And φ(y) ≥ u(y) on ∂(B(x, r)∩Ω)∪{x}. So φ(y) ≥ u(y)
in B(x, r) ∩ Ω from the comparison principle [9, Theorem 3].

For 0 < ρ < r, let y ∈ ∂(B(x, ρ) ∩ Ω)\{x}. If y ∈ ∂Ω ∩ B(x, ρ)\{x} then
y ∈ ∂Ω ∩B(x, r)\{x}, so u(y)−u(x)

|y−x| ≤ S+
r (x). If y ∈ ∂B(x, ρ) ∩ Ω, then

u(y)− u(x)
|y − x|

≤ φ(y)− u(x)
ρ

= S+
r (x)(

r

ρ
)

r

S
+
r (x) .

Hence, S+
ρ (x) ≤ S+

r (x)( rρ )
r

S
+
r (x) . Therefore,

lim inf
ρ→r

S+
r (x)− S+

ρ (x)
r − ρ

≥ lim inf
ρ→r

S+
r (x)(1− ( rρ )

r

S
+
r (x) )

r − ρ
= −1.

The same argument applies to S−r (x). �

Define S(x) := max{S+(x), S−(x)}. we prove that S(x) is upper-semicontinuous
at 0 under the conditions of Proposition 1.

Lemma 2.3. For any ε > 0, there exists r(ε, u) > 0, such that

sup
x∈Ω̄∩B(r)

S(x) ≤ S(0) + ε.
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Proof. For ε > 0, since ĝ(x′) ∈ C1(B̂(r0)) and |Dĝ(0)| ≤ S(0), there exists r1 > 0
such that

sup
x 6=y∈∂Ω∩B(r1)

|u(x)− u(y)|
|x− y|

≤ sup
x 6=y∈∂Ω∩B(r1)

|ĝ(x′)− ĝ(y′)|
|x′ − y′|

≤ S(0) +
ε

3
. (2.1)

Since limr→0 Sr(0) = S(0), there exists 0 < r2 ≤ min(r1/2, ε3 ), such that

Sr2(0) ≤ S(0) +
ε

4
.

From the continuity of u, there exists 0 < r3 � r2, such that

sup
y∈∂B(x,r2)∩Ω

|u(y)− u(x)|
r2

≤ S(0) +
ε

3
for x ∈ Ω̄ ∩B(r3). (2.2)

From (2.1) and (2.2), we have

Sr2(x) = sup
y∈∂(B(x,r2)∩Ω)\{x}

|u(y)− u(x)|
|y − x|

≤ S(0) +
ε

3
for x ∈ ∂Ω ∩B(r3).

From Lemma 2.2, we have

|u(y)− u(x)|
|y − x|

≤ Sr2(x) + r2 ≤ S(0) +
2ε
3

(2.3)

for x ∈ ∂Ω∩B(r3) and y ∈ Ω∩B(r3). From the continuity of u again, there exists
0 < r4 ≤ r3/2, such that

sup
y∈∂B(x,r3/2)∩Ω

|u(y)− u(x)|
r3/2

≤ S(0) +
2ε
3

for x ∈ Ω̄ ∩B(r4). (2.4)

From (2.3) and (2.4) and Lemma 2.2, we have

S(x) ≤ Sr3/2(x) +
r3

2
= sup
y∈∂(B(x,r3/2)∩Ω)\{x}

|u(y)− u(x)|
|y − x|

+
r3

2
≤ S(0) + ε

for x ∈ Ω̄ ∩B(r4). Finally we choose r(ε, u) = r4. �

The rest of the proof of Proposition 1 is the same as that in [11]. We have
described the idea in the introduction and refer the readers to [11] for the details.

Now we prove the non-tangentially upper-semicontinuity of S(x) at 0 under the
conditions of Theorem 1.4 and assumptions (A1) and (A2).

Lemma 2.4. Given any 0 < θ � 1, we have that for all 0 < ε < 1
8 , there exists

r(ε, θ, u) > 0, such that

sup
x∈Ω̄∩B(r)∩{xn≥θ|x′|}

S(x) ≤ S(0) + ε.

The proof of Lemma 2.4 is essentially same as the proof of [6, Lemma 2] for the
homogeneous equation. Several places need minor modification, but this can be
easily justified. So we omit the proof and refer the readers to [6].

With the result in Lemma 2.4 the rest of the proof of Theorem 1.4 follows the
same way as in the homogeneous equation case.
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