Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 80, pp. 1-11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

LAPLACE TRANSFORM AND GENERALIZED HYERS-ULAM STABILITY OF LINEAR DIFFERENTIAL EQUATIONS

QUSUAY H. ALQIFIARY, SOON-MO JUNG

Abstract. By applying the Laplace transform method, we prove that the linear differential equation

$$
y^{(n)}(t)+\sum_{k=0}^{n-1} \alpha_{k} y^{(k)}(t)=f(t)
$$

has the generalized Hyers-Ulam stability, where α_{k} is a scalar, y and f are n times continuously differentiable and of exponential order.

1. Introduction

In 1940, Ulam [24] posed a problem concerning the stability of functional equations: "Give conditions in order for a linear function near an approximately linear function to exist." A year later, Hyers [5] gave an answer to the problem of Ulam for additive functions defined on Banach spaces: Let X_{1} and X_{2} be real Banach spaces and $\varepsilon>0$. Then for every function $f: X_{1} \rightarrow X_{2}$ satisfying

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon \quad\left(x, y \in X_{1}\right)
$$

there exists a unique additive function $A: X_{1} \rightarrow X_{2}$ with the property

$$
\|f(x)-A(x)\| \leq \varepsilon \quad\left(x \in X_{1}\right)
$$

After Hyers's result, many mathematicians have extended Ulam's problem to other functional equations and generalized Hyers's result in various directions (see [3, 6, 10, 18]). A generalization of Ulam's problem was recently proposed by replacing functional equations with differential equations: The differential equation $\varphi\left(f, y, y^{\prime}, \ldots, y^{(n)}\right)=0$ has Hyers-Ulam stability if for a given $\varepsilon>0$ and a function y such that $\left|\varphi\left(f, y, y^{\prime}, \ldots, y^{(n)}\right)\right| \leq \varepsilon$, there exists a solution y_{a} of the differential equation such that $\left|y(t)-y_{a}(t)\right| \leq K(\varepsilon)$ and $\lim _{\varepsilon \rightarrow 0} K(\varepsilon)=0$. If the preceding statement is also true when we replace ε and $K(\varepsilon)$ by $\varphi(t)$ and $\Phi(t)$, where φ, Φ are appropriate functions not depending on y and y_{a} explicitly, then we say that the corresponding differential equation has the generalized Hyers-Ulam stability (or Hyers-Ulam-Rassias stability).

[^0]Obłoza seems to be the first author who has investigated the Hyers-Ulam stability of linear differential equations (see [14, 15]). Thereafter, Alsina and Ger published their paper [1], which handles the Hyers-Ulam stability of the linear differential equation $y^{\prime}(t)=y(t)$: If a differentiable function $y(t)$ is a solution of the inequality $\left|y^{\prime}(t)-y(t)\right| \leq \varepsilon$ for any $t \in(a, \infty)$, then there exists a constant c such that $\left|y(t)-c e^{t}\right| \leq 3 \varepsilon$ for all $t \in(a, \infty)$.

Those previous results were extended to the Hyers-Ulam stability of linear differential equations of first order and higher order with constant coefficients in [12, 22, 23] and in [13, respectively. Furthermore, Jung has also proved the Hyers-Ulam stability of linear differential equations (see [7, 8, , 9]). Rus investigated the Hyers-Ulam stability of differential and integral equations using the Gronwall lemma and the technique of weakly Picard operators (see [20, 21]). Recently, the Hyers-Ulam stability problems of linear differential equations of first order and second order with constant coefficients were studied by using the method of integral factors (see [11, 25]). The results given in [8, 11, 12] have been generalized by Cimpean and Popa [2] and by Popa and Raşa [16, 17] for the linear differential equations of nth order with constant coefficients.

Recently, Rezaei, Jung and Rassias have proved the Hyers-Ulam stability of linear differential equations by using the Laplace transform method (see [19]).

In this paper, by using the Laplace transform method, we prove that the linear differential equation of the nth order

$$
y^{(n)}(t)+\sum_{k=0}^{n-1} \alpha_{k} y^{(k)}(t)=f(t)
$$

has the generalized Hyers-Ulam stability, where α_{k} is a scalar, y and f are n times continuously differentiable and of exponential order, respectively.

2. Preliminaries

Throughout this paper, \mathbb{F} will denote either the real field \mathbb{R} or the complex field \mathbb{C}. A function $f:(0, \infty) \rightarrow \mathbb{F}$ is said to be of exponential order if there are constants $A, B \in \mathbb{R}$ such that

$$
|f(t)| \leq A e^{t B}
$$

for all $t>0$. For each function $f:(0, \infty) \rightarrow \mathbb{F}$ of exponential order, we define the Laplace transform of f by

$$
F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

There exists a unique number $-\infty \leq \sigma<\infty$ such that this integral converges if $\Re(s)>\sigma$ and diverges if $\Re(s)<\sigma$, where $\Re(s)$ denotes the real part of the (complex) number s. The number σ is called the abscissa of convergence and denoted by σ_{f}. It is well known that $|F(s)| \rightarrow 0$ as $\Re(s) \rightarrow \infty$. Furthermore, f is analytic on the open right half plane $\{s \in \mathbb{C}: \Re(s)>\sigma\}$ and we have

$$
\frac{d}{d s} F(s)=-\int_{0}^{\infty} t e^{-s t} f(t) d t \quad(\Re(s)>\sigma)
$$

The Laplace transform of f is sometimes denoted by $\mathcal{L}(f)$. It is well known that \mathcal{L} is linear and one-to-one.

Conversely, let $f(t)$ be a continuous function whose Laplace transform $F(s)$ has the abscissa of convergence σ_{f}, then the formula for the inverse Laplace transforms yields

$$
f(t)=\frac{1}{2 \pi i} \lim _{T \rightarrow \infty} \int_{\alpha-i T}^{\alpha+i T} F(s) e^{s t} d s=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{(\alpha+i y) t} F(\alpha+i y) d y
$$

for any real constant $\alpha>\sigma_{f}$, where the first integral is taken along the vertical line $\Re(s)=\alpha$ and converges as an improper Riemann integral and the second integral is used as an alternative notation for the first integral (see [4). Hence, we have

$$
\begin{gathered}
\mathcal{L}(f)(s)=\int_{0}^{\infty} f(t) e^{-s t} d t \quad\left(\Re(s)>\sigma_{f}\right) \\
\mathcal{L}^{-1}(F)(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{(\alpha+i y) t} F(\alpha+i y) d y \quad\left(\alpha>\sigma_{f}\right)
\end{gathered}
$$

The convolution of two integrable functions $f, g:(0, \infty) \rightarrow \mathbb{F}$ is defined by

$$
(f * g)(t):=\int_{0}^{t} f(t-x) g(x) d x
$$

Then $\mathcal{L}(f * g)=\mathcal{L}(f) \mathcal{L}(g)$.
Lemma 2.1 ([19]). Let $P(s)=\sum_{k=0}^{n} \alpha_{k} s^{k}$ and $Q(s)=\sum_{k=0}^{m} \beta_{k} s^{k}$, where m, n are nonnegative integers with $m<n$ and α_{k}, β_{k} are scalars. Then there exists an infinitely differentiable function $g:(0, \infty) \rightarrow \mathbb{F}$ such that

$$
\mathcal{L}(g)=\frac{Q(s)}{P(s)} \quad\left(\Re(s)>\sigma_{P}\right)
$$

and

$$
g^{(i)}(0)= \begin{cases}0 & \text { for } i \in\{0,1, \ldots, n-m-2\} \\ \beta_{m} / \alpha_{n} & \text { for } i=n-m-1\end{cases}
$$

where $\sigma_{P}=\max \{\Re(s): P(s)=0\}$.
Lemma $2.2([19])$. Given an integer $n>1$, let $f:(0, \infty) \rightarrow \mathbb{F}$ be a continuous function and let $P(s)$ be a complex polynomial of degree n. Then there exists an n times continuously differentiable function $h:(0, \infty) \rightarrow \mathbb{F}$ such that

$$
\mathcal{L}(h)=\frac{\mathcal{L}(f)}{P(s)} \quad\left(\Re(s)>\max \left\{\sigma_{P}, \sigma_{f}\right\}\right),
$$

where $\sigma_{P}=\max \{\Re(s): P(s)=0\}$ and σ_{f} is the abscissa of convergence for f. In particular, it holds that $h^{(i)}(0)=0$ for every $i \in\{0,1, \ldots, n-1\}$.

3. Main Results

Let \mathbb{F} denote either \mathbb{R} or \mathbb{C}. In the following theorem, using the Laplace transform method, we investigate the generalized Hyers-Ulam stability of the linear differential equation of first order

$$
\begin{equation*}
y^{\prime}(t)+\alpha y(t)=f(t) \tag{3.1}
\end{equation*}
$$

Theorem 3.1. Let α be a constant in \mathbb{F} and let $\varphi:(0, \infty) \rightarrow(0, \infty)$ be an integrable function. If a continuously differentiable function $y:(0, \infty) \rightarrow \mathbb{F}$ satisfies the inequality

$$
\begin{equation*}
\left|y^{\prime}(t)+\alpha y(t)-f(t)\right| \leq \varphi(t) \tag{3.2}
\end{equation*}
$$

for all $t>0$, then there exists a solution $y_{\alpha}:(0, \infty) \rightarrow \mathbb{F}$ of the differential equation (3.1) such that

$$
\left|y(t)-y_{\alpha}(t)\right| \leq e^{-\Re(\alpha) t} \int_{0}^{t} e^{\Re(\alpha) x} \varphi(x) d x
$$

for any $t>0$.
Proof. If we define a function $z:(0, \infty) \rightarrow \mathbb{F}$ by $z(t):=y^{\prime}(t)+\alpha y(t)-f(t)$ for each $t>0$, then

$$
\begin{equation*}
\mathcal{L}(y)-\frac{y(0)+\mathcal{L}(f)}{s+\alpha}=\frac{\mathcal{L}(z)}{s+\alpha} . \tag{3.3}
\end{equation*}
$$

If we set $y_{\alpha}(t):=y(0) e^{-\alpha t}+\left(E_{-\alpha} * f\right)(t)$, where $E_{-\alpha}(t)=e^{-\alpha t}$, then $y_{\alpha}(0)=y(0)$ and

$$
\begin{equation*}
\mathcal{L}\left(y_{\alpha}\right)=\frac{y(0)+\mathcal{L}(f)}{s+\alpha}=\frac{y_{\alpha}(0)+\mathcal{L}(f)}{s+\alpha} \tag{3.4}
\end{equation*}
$$

Hence, we get

$$
\mathcal{L}\left(y_{\alpha}^{\prime}(t)+\alpha y_{\alpha}(t)\right)=s \mathcal{L}\left(y_{\alpha}\right)-y_{\alpha}(0)+\alpha \mathcal{L}\left(y_{\alpha}\right)=\mathcal{L}(f) .
$$

Since \mathcal{L} is a one-to-one operator, it holds that

$$
y_{\alpha}^{\prime}(t)+\alpha y_{\alpha}(t)=f(t)
$$

Thus, y_{α} is a solution of (3.1).
Moreover, by (3.3) and (3.4), we obtain $\mathcal{L}(y)-\mathcal{L}\left(y_{\alpha}\right)=\mathcal{L}\left(E_{-\alpha} * z\right)$. Therefore, we have

$$
\begin{equation*}
y(t)-y_{\alpha}(t)=\left(E_{-\alpha} * z\right)(t) \tag{3.5}
\end{equation*}
$$

In view of (3.2), it holds that

$$
\begin{equation*}
|z(t)| \leq \varphi(t) \tag{3.6}
\end{equation*}
$$

for all $t>0$, and it follows from the definition of convolution, 3.5), and (3.6) that

$$
\begin{aligned}
\left|y(t)-y_{\alpha}(t)\right| & =\left|\left(E_{-\alpha} * z\right)(t)\right| \\
& =\left|\int_{0}^{t} E_{-\alpha}(t-x) z(x) d x\right| \\
& \leq \int_{0}^{t}\left|e^{-\alpha(t-x)}\right| \varphi(x) d x \\
& \leq e^{-\Re(\alpha) t} \int_{0}^{t} e^{\Re(\alpha) x} \varphi(x) d x
\end{aligned}
$$

for all $t>0$. (We remark that $\int_{0}^{t} e^{\Re(\alpha) x} \varphi(x) d x$ exists for each $t>0$ provided φ is an integrable function.)

Corollary 3.2. Let α be a constant in \mathbb{F} and let $\varphi:(0, \infty) \rightarrow(0, \infty)$ be an integrable function such that

$$
\begin{equation*}
\int_{0}^{t} e^{\Re(\alpha)(x-t)} \varphi(x) d x \leq K \varphi(t) \tag{3.7}
\end{equation*}
$$

for all $t>0$ and for some positive real constant K. If a continuously differentiable function $y:(0, \infty) \rightarrow \mathbb{F}$ satisfies the inequality (3.2) for all $t>0$, then there exists a solution $y_{\alpha}:(0, \infty) \rightarrow \mathbb{F}$ of the differential equation (3.1) such that

$$
\left|y(t)-y_{\alpha}(t)\right| \leq K \varphi(t)
$$

for any $t>0$.

In the following remark, we show that there exists an integrable function φ : $(0, \infty) \rightarrow(0, \infty)$ satisfying the condition 3.7.
Remark 3.3. Let α be a constant in \mathbb{F} with $\Re(\alpha)>-1$. If we define $\varphi(t)=A e^{t}$ for all $t>0$ and for some $A>0$, then we have

$$
\begin{aligned}
\int_{0}^{t} e^{\Re(\alpha)(x-t)} \varphi(x) d x & =\int_{0}^{t} e^{\Re(\alpha)(x-t)} A e^{x} d x \\
& =\frac{1}{1+\Re(\alpha)}\left(A e^{t}-A e^{-\Re(\alpha) t}\right) \\
& \leq \frac{1}{1+\Re(\alpha)} \varphi(t)
\end{aligned}
$$

for each $t>0$.
Now, we apply the Laplace transform method to the proof of the generalized Hyers-Ulam stability of the linear differential equation of second order

$$
\begin{equation*}
y^{\prime \prime}(t)+\beta y^{\prime}(t)+\alpha y(t)=f(t) \tag{3.8}
\end{equation*}
$$

Theorem 3.4. Let α and β be constants in \mathbb{F} such that there exist $a, b \in \mathbb{F}$ with $a+b=-\beta, a b=\alpha$, and $a \neq b$. Assume that $\varphi:(0, \infty) \rightarrow(0, \infty)$ is an integrable function. If a twice continuously differentiable function $y:(0, \infty) \rightarrow \mathbb{F}$ satisfies the inequality

$$
\begin{equation*}
\left|y^{\prime \prime}(t)+\beta y^{\prime}(t)+\alpha y(t)-f(t)\right| \leq \varphi(t) \tag{3.9}
\end{equation*}
$$

for all $t>0$, then there exists a solution $y_{c}:(0, \infty) \rightarrow \mathbb{F}$ of the differential equation (3.8) such that

$$
\left|y(t)-y_{c}(t)\right| \leq \frac{e^{\Re(a) t}}{|a-b|} \int_{0}^{t} e^{-\Re(a) x} \varphi(x) d x+\frac{e^{\Re(b) t}}{|a-b|} \int_{0}^{t} e^{-\Re(b) x} \varphi(x) d x
$$

for all $t>0$.
Proof. If we define a function $z:(0, \infty) \rightarrow \mathbb{F}$ by $z(t):=y^{\prime \prime}(t)+\beta y^{\prime}(t)+\alpha y(t)-f(t)$ for each $t>0$, then we have

$$
\begin{equation*}
\mathcal{L}(z)=\left(s^{2}+\beta s+\alpha\right) \mathcal{L}(y)-\left[s y(0)+\beta y(0)+y^{\prime}(0)\right]-\mathcal{L}(f) \tag{3.10}
\end{equation*}
$$

In view of 3.10), a function $y_{0}:(0, \infty) \rightarrow \mathbb{F}$ is a solution of 3.8 if and only if

$$
\begin{equation*}
\left(s^{2}+\beta s+\alpha\right) \mathcal{L}\left(y_{0}\right)-s y_{0}(0)-\left[\beta y_{0}(0)+y_{0}^{\prime}(0)\right]=\mathcal{L}(f) \tag{3.11}
\end{equation*}
$$

Now, since $s^{2}+\beta s+\alpha=(s-a)(s-b)$, 3.10) implies that

$$
\begin{equation*}
\mathcal{L}(y)-\frac{s y(0)+\left[\beta y(0)+y^{\prime}(0)\right]+\mathcal{L}(f)}{(s-a)(s-b)}=\frac{\mathcal{L}(z)}{(s-a)(s-b)} \tag{3.12}
\end{equation*}
$$

If we set

$$
\begin{equation*}
y_{c}(t):=y(0) \frac{a e^{a t}-b e^{b t}}{a-b}+\left[\beta y(0)+y^{\prime}(0)\right] E_{a, b}(t)+\left(E_{a, b} * f\right)(t) \tag{3.13}
\end{equation*}
$$

where $E_{a, b}(t):=\frac{e^{a t}-e^{b t}}{a-b}$, then $y_{c}(0)=y(0)$. Moreover, since

$$
\begin{aligned}
& y_{c}^{\prime}(t)=y(0) \frac{a^{2} e^{a t}-b^{2} e^{b t}}{a-b}+\left[\beta y(0)+y^{\prime}(0)\right] \frac{a e^{a t}-b e^{b t}}{a-b}+\frac{d}{d t}\left(E_{a, b} * f\right)(t) \\
& \left(E_{a, b} * f\right)(t)=\frac{e^{a t}}{a-b} \int_{0}^{t} e^{-a x} f(x) d x-\frac{e^{b t}}{a-b} \int_{0}^{t} e^{-b x} f(x) d x
\end{aligned}
$$

we have

$$
\begin{aligned}
y_{c}^{\prime}(0) & =y(0) \frac{a^{2}-b^{2}}{a-b}+\left[\beta y(0)+y^{\prime}(0)\right] \frac{a-b}{a-b} \\
& =(a+b) y(0)+\beta y(0)+y^{\prime}(0) \\
& =y^{\prime}(0)
\end{aligned}
$$

It follows from (3.13) that

$$
\begin{equation*}
\mathcal{L}\left(y_{c}\right)=\frac{s y_{c}(0)+\left[\beta y_{c}(0)+y_{c}^{\prime}(0)\right]+\mathcal{L}(f)}{(s-a)(s-b)} \tag{3.14}
\end{equation*}
$$

Now, (3.11) and (3.14) imply that y_{c} is a solution of 3.8. Applying (3.12) and (3.14) and considering the facts that $y_{c}(0)=y(0), y_{c}^{\prime}(0)=y^{\prime}(0)$, and $\mathcal{L}\left(E_{a, b} * z\right)=$ $\frac{\mathcal{L}(z)}{(s-a)(s-b)}$, we obtain $\mathcal{L}(y)-\mathcal{L}\left(y_{c}\right)=\mathcal{L}\left(E_{a, b} * z\right)$ or equivalently, $y(t)-y_{c}(t)=$ $\left(E_{a, b} * z\right)(t)$.

In view of (3.9), it holds that $|z(t)| \leq \varphi(t)$, and it follows from the definition of the convolution that

$$
\begin{aligned}
\left|y(t)-y_{c}(t)\right| & =\left|\left(E_{a, b} * z\right)(t)\right| \\
& \leq \frac{e^{\Re(a) t}}{|a-b|} \int_{0}^{t} e^{-\Re(a) x} \varphi(x) d x+\frac{e^{\Re(b) t}}{|a-b|} \int_{0}^{t} e^{-\Re(b) x} \varphi(x) d x
\end{aligned}
$$

for any $t>0$. We remark that $\int_{0}^{t} e^{-\Re(a) x} \varphi(x) d x$ and $\int_{0}^{t} e^{-\Re(b) x} \varphi(x) d x$ exist for any $t>0$ provided φ is an integrable function.

Corollary 3.5. Let α and β be constants in \mathbb{F} such that there exist $a, b \in \mathbb{F}$ with $a+b=-\beta, a b=\alpha$, and $a \neq b$. Assume that $\varphi:(0, \infty) \rightarrow(0, \infty)$ is an integrable function for which there exists a positive real constant K with

$$
\begin{equation*}
\int_{0}^{t}\left(e^{\Re(a)(t-x)}+e^{\Re(b)(t-x)}\right) \varphi(x) d x \leq K \varphi(t) \tag{3.15}
\end{equation*}
$$

for all $t>0$. If a twice continuously differentiable function $y:(0, \infty) \rightarrow \mathbb{F}$ satisfies the inequality (3.9) for all $t>0$, then there exists a solution $y_{c}:(0, \infty) \rightarrow \mathbb{F}$ of the differential equation (3.8) such that

$$
\left|y(t)-y_{c}(t)\right| \leq \frac{K}{|a-b|} \varphi(t)
$$

for all $t>0$.
We now show that there exists an integrable function $\varphi:(0, \infty) \rightarrow(0, \infty)$ which satisfies the condition (3.15).

Remark 3.6. Let α and β be constants in \mathbb{F} such that there exist $a, b \in \mathbb{F}$ with $a+b=-\beta, a b=\alpha, \Re(a)<1, \Re(b)<1$, and $a \neq b$. If we define $\varphi(t)=A e^{t}$ for all $t>0$ and for some $A>0$, then we get

$$
\begin{aligned}
& \int_{0}^{t}\left(e^{\Re(a)(t-x)}+e^{\Re(b)(t-x)}\right) \varphi(x) d x \\
& =\int_{0}^{t}\left(e^{\Re(a)(t-x)}+e^{\Re(b)(t-x)}\right) A e^{x} d x \\
& =\frac{A}{1-\Re(a)}\left(e^{t}-e^{\Re(a) t}\right)+\frac{A}{1-\Re(b)}\left(e^{t}-e^{\Re(b) t}\right)
\end{aligned}
$$

$$
\leq\left(\frac{1}{1-\Re(a)}+\frac{1}{1-\Re(b)}\right) \varphi(t)
$$

for all $t>0$.
Similarly, we apply the Laplace transform method to investigate the generalized Hyers-Ulam stability of the linear differential equation of nth order

$$
\begin{equation*}
y^{(n)}(t)+\sum_{k=0}^{n-1} \alpha_{k} y^{(k)}(t)=f(t) \tag{3.16}
\end{equation*}
$$

Theorem 3.7. Let $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ be scalars in \mathbb{F} with $\alpha_{n}=1$, where n is an integer larger than 1. Assume that $\varphi:(0, \infty) \rightarrow(0, \infty)$ is an integrable function of exponential order. If an n times continuously differentiable function $y:(0, \infty) \rightarrow \mathbb{F}$ satisfies the inequality

$$
\begin{equation*}
\left|y^{(n)}(t)+\sum_{k=0}^{n-1} \alpha_{k} y^{(k)}(t)-f(t)\right| \leq \varphi(t) \tag{3.17}
\end{equation*}
$$

for all $t>0$, then there exist real constants $M>0$ and σ_{g} and a solution y_{c} : $(0, \infty) \rightarrow \mathbb{F}$ of the differential equation (3.16) such that

$$
\left|y(t)-y_{c}(t)\right| \leq M \int_{0}^{t} e^{\alpha(t-x)} \varphi(x) d x
$$

for all $t>0$ and $\alpha>\sigma_{g}$.
Proof. Applying integration by parts repeatedly, we derive

$$
\mathcal{L}\left(y^{(k)}\right)=s^{k} \mathcal{L}(y)-\sum_{j=1}^{k} s^{k-j} y^{(j-1)}(0)
$$

for any integer $k>0$. Using this formula, we can prove that a function $y_{0}:$ $(0, \infty) \rightarrow \mathbb{F}$ is a solution of 3.16 if and only if

$$
\begin{align*}
\mathcal{L}(f) & =\sum_{k=0}^{n} \alpha_{k} s^{k} \mathcal{L}\left(y_{0}\right)-\sum_{k=1}^{n} \alpha_{k} \sum_{j=1}^{k} s^{k-j} y_{0}^{(j-1)}(0) \\
& =\sum_{k=0}^{n} \alpha_{k} s^{k} \mathcal{L}\left(y_{0}\right)-\sum_{j=1}^{n} \sum_{k=j}^{n} \alpha_{k} s^{k-j} y_{0}^{(j-1)}(0) \tag{3.18}\\
& =P_{n, 0}(s) \mathcal{L}\left(y_{0}\right)-\sum_{j=1}^{n} P_{n, j}(s) y_{0}^{(j-1)}(0)
\end{align*}
$$

where $P_{n, j}(s):=\sum_{k=j}^{n} \alpha_{k} s^{k-j}$ for $j \in\{0,1, \ldots, n\}$.
Let us define a function $z:(0, \infty) \rightarrow \mathbb{F}$ by

$$
\begin{equation*}
z(t):=y^{(n)}(t)+\sum_{k=0}^{n-1} \alpha_{k} y^{(k)}(t)-f(t) \tag{3.19}
\end{equation*}
$$

for all $t>0$. Then, similarly as in (3.18), we obtain

$$
\mathcal{L}(z)=P_{n, 0}(s) \mathcal{L}(y)-\sum_{j=1}^{n} P_{n, j}(s) y^{(j-1)}(0)-\mathcal{L}(f)
$$

Hence, we get

$$
\begin{equation*}
\mathcal{L}(y)-\frac{1}{P_{n, 0}(s)}\left(\sum_{j=1}^{n} P_{n, j}(s) y^{(j-1)}(0)+\mathcal{L}(f)\right)=\frac{\mathcal{L}(z)}{P_{n, 0}(s)} \tag{3.20}
\end{equation*}
$$

Let σ_{f} be the abscissa of convergence for f, let $s_{1}, s_{2}, \ldots, s_{n}$ be the roots of the polynomial $P_{n, 0}(s)$, and let $\sigma_{P}=\max \left\{\Re\left(s_{k}\right): k \in\{1,2, \ldots, n\}\right\}$. For any s with $\Re(s)>\max \left\{\sigma_{f}, \sigma_{P}\right\}$, we set

$$
\begin{equation*}
G(s):=\frac{1}{P_{n, 0}(s)}\left(\sum_{j=1}^{n} P_{n, j}(s) y^{(j-1)}(0)+\mathcal{L}(f)\right) \tag{3.21}
\end{equation*}
$$

By Lemma 2.2, there exists an n times continuously differentiable function f_{0} such that

$$
\begin{equation*}
\mathcal{L}\left(f_{0}\right)=\frac{\mathcal{L}(f)}{P_{n, 0}(s)} \tag{3.22}
\end{equation*}
$$

for all s with $\Re(s)>\max \left\{\sigma_{f}, \sigma_{P}\right\}$ and

$$
\begin{equation*}
f_{0}^{(i)}(0)=0 \tag{3.23}
\end{equation*}
$$

for any $i \in\{0,1, \ldots, n-1\}$.
For $j \in\{1,2, \ldots, n\}$, we note that

$$
\begin{equation*}
\frac{P_{n, j}(s)}{P_{n, 0}(s)}=\frac{1}{s^{j}}-\frac{\sum_{k=0}^{j-1} \alpha_{k} s^{k}}{s^{j} P_{n, 0}(s)} \tag{3.24}
\end{equation*}
$$

for every s with $\Re(s)>\max \left\{0, \sigma_{P}\right\}$. Applying Lemma 2.1 for the case of $Q(s)=$ $\sum_{k=0}^{j-1} \alpha_{k} s^{k}$ and $P(s)=s^{j} P_{n, 0}(s)$, we can find an infinitely differentiable function g_{j} such that

$$
\begin{equation*}
\mathcal{L}\left(g_{j}\right)=\frac{\sum_{k=0}^{j-1} \alpha_{k} s^{k}}{s^{j} P_{n, 0}(s)} \tag{3.25}
\end{equation*}
$$

and $g_{j}^{(k)}(0)=0$ for $k \in\{0,1, \ldots, n-1\}$.
Let

$$
\begin{equation*}
f_{j}(t):=\frac{t^{j-1}}{(j-1)!}-g_{j}(t) \tag{3.26}
\end{equation*}
$$

for $j \in\{1,2, \ldots, n\}$. Then we have

$$
f_{j}^{(i)}(0)= \begin{cases}0 & \text { for } i \in\{0,1, \ldots, j-2, j, j+1, \ldots, n-1\} \tag{3.27}\\ 1 & \text { for } i=j-1\end{cases}
$$

If we define

$$
y_{c}(t):=\sum_{j=1}^{n} y^{(j-1)}(0) f_{j}(t)+f_{0}(t)
$$

then the conditions 3.23 and 3.27 imply that

$$
\begin{equation*}
y_{c}^{(i)}(0)=y^{(i)}(0) \tag{3.28}
\end{equation*}
$$

for every $i \in\{0,1, \ldots, n-1\}$. Moreover, it follows from (3.21)-3.28) that

$$
\begin{align*}
\mathcal{L}\left(y_{c}\right) & =\sum_{j=1}^{n} y^{(j-1)}(0) \mathcal{L}\left(f_{j}\right)+\mathcal{L}\left(f_{0}\right) \\
& =\sum_{j=1}^{n} y^{(j-1)}(0)\left(\frac{1}{s^{j}}-\mathcal{L}\left(g_{j}\right)\right)+\frac{\mathcal{L}(f)}{P_{n, 0}(s)} \tag{3.29}\\
& =\frac{1}{P_{n, 0}(s)}\left(\sum_{j=1}^{n} P_{n, j}(s) y^{(j-1)}(0)+\mathcal{L}(f)\right)
\end{align*}
$$

for each s with $\Re(s)>\max \left\{0, \sigma_{f}, \sigma_{P}\right\}$.
Now, (3.18) implies that y_{c} is a solution of (3.16). Moreover, by (3.20) and (3.29), we have

$$
\begin{equation*}
\mathcal{L}(y)-\mathcal{L}\left(y_{c}\right)=\frac{\mathcal{L}(z)}{P_{n, 0}(s)} \tag{3.30}
\end{equation*}
$$

Applying Lemma 2.1 for the case of $Q(s)=1$ and $P(s)=P_{n, 0}(s)$, we find an infinitely differentiable function $g:(0, \infty) \rightarrow \mathbb{F}$ such that

$$
\begin{equation*}
\mathcal{L}(g)=\frac{1}{P_{n, 0}(s)} \tag{3.31}
\end{equation*}
$$

which implies that

$$
g(t)=\mathcal{L}^{-1}\left(\frac{1}{P_{n, 0}(s)}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{(\alpha+i y) t} \frac{1}{P_{n, 0}(\alpha+i y)} d y
$$

for any real constant $\alpha>\sigma_{g}$. Moreover, it holds that

$$
\begin{align*}
|g(t-x)| & \leq \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|e^{(\alpha+i y)(t-x)}\right| \frac{1}{\left|P_{n, 0}(\alpha+i y)\right|} d y \\
& \leq \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{\alpha(t-x)} \frac{1}{\left|P_{n, 0}(\alpha+i y)\right|} d y \tag{3.32}\\
& \leq \frac{1}{2 \pi} e^{\alpha(t-x)} \int_{-\infty}^{\infty} \frac{1}{\left|P_{n, 0}(\alpha+i y)\right|} d y \\
& \leq M e^{\alpha(t-x)}
\end{align*}
$$

for all $\alpha>\sigma_{g}$, where

$$
M=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{\left|P_{n, 0}(\alpha+i y)\right|} d y<\infty
$$

because n is an integer larger than 1. By (3.17) and (3.19), it also holds that $|z(t)| \leq \varphi(t)$ for all $t>0$.

In view of 3.30, 3.31), and 3.32, we obtain

$$
\mathcal{L}(y)-\mathcal{L}\left(y_{c}\right)=\mathcal{L}(g) \mathcal{L}(z)=\mathcal{L}(g * z)
$$

Consequently, we have $y(t)-y_{c}(t)=(g * z)(t)$ for any $t>0$. Hence, it follows from (3.17), 3.19), and (3.32) that

$$
\left|y(t)-y_{c}(t)\right|=|(g * z)(t)| \leq \int_{0}^{t}|g(t-x)||z(x)| d x \leq M \int_{0}^{t} e^{\alpha(t-x)} \varphi(x) d x
$$

for all $t>0$ and for any real constant $\alpha>\sigma_{g}$, which completes the proof.

Corollary 3.8. Let $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ be scalars in \mathbb{F} with $\alpha_{n}=1$, where n is an integer larger than 1. Assume that there exist real constants α and $K>0$ such that a function $\varphi:(0, \infty) \rightarrow(0, \infty)$ satisfies

$$
\int_{0}^{t} e^{\alpha(t-x)} \varphi(x) d x \leq K \varphi(t)
$$

for all $t>0$. Moreover, assume that the constant σ_{g} given in Theorem 3.7 is less than α. If an n times continuously differentiable function $y:(0, \infty) \rightarrow \mathbb{F}$ satisfies the inequality (3.17) for all $t>0$, then there exist a real constants $M>0$ and a solution $y_{c}:(0, \infty) \rightarrow \mathbb{F}$ of the differential equation 3.16) such that

$$
\left|y(t)-y_{c}(t)\right| \leq K M \varphi(t)
$$

for all $t>0$.
Remark 3.9. Assume that $\alpha<1$. If we define $\varphi(t)=A e^{t}$ for all $t>0$ and for some $A>0$, then we get

$$
\int_{0}^{t} e^{\alpha(t-x)} \varphi(x) d x=\int_{0}^{t} e^{\alpha(t-x)} A e^{x} d x=\frac{A}{1-\alpha}\left(e^{t}-e^{\alpha t}\right) \leq \frac{1}{1-\alpha} \varphi(t)
$$

for all $t>0$.
Acknowledgements. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2013R1A1A2005557).

References

[1] C. Alsina, R. Ger; On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2, pp. 373-380, 1998.
[2] D. S. Cimpean, D. Popa; On the stability of the linear differential equation of higher order with constant coefficients, Appl. Math. Comput. 217, pp. 4141-4146, 2010.
[3] S. Czerwik; Functional Equations and Inequalities in Several Variables, World Scientific, Singapore, 2002.
[4] B. Davies; Integral Transforms and Their Apllications, Springer, New York, 2001.
[5] D. H. Hyers; On the stability of the linear functional equation, Proc. Natl. Soc. USA 27, pp. 222-224, 1941.
[6] D. H. Hyers, G. Isac, Th. M. Rassias; Stability of Functional Equations in Several Variables, Birkhäuser, Boston, 1998.
[7] S.-M. Jung; Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17, pp. 1135-1140, 2004.
[8] S.-M. Jung; Hyers-Ulam stability of linear differential equations of first order, III, J. Math. Anal. Appl. 311, pp. 139-146, 2005.
[9] S.-M. Jung; Hyers-Ulam stability of linear differential equations of first order, II, Appl. Math. Lett. 19, pp. 854-858, 2006.
[10] S.-M. Jung; Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
[11] Y. Li, Y. Shen; Hyers-Ulam stability of linear differential equations of second order, Appl. Math. Lett. 23, pp. 306-309, 2010.
[12] T. Miura, S. Miyajima, S.-E. Takahasi; A characterization of Hyers-Ulam stability of first order linear differential operators, J. Math. Anal. Appl. 286, pp. 136-146, 2003.
[13] T. Miura, S. Miyajima, S.-E. Takahasi; Hyers-Ulam stability of linear differential operator with constant coefficients, Math. Nachr. 258, pp. 90-96, 2003.
[14] M. Obłoza; Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat. 13, pp. 259-270, 1993.
[15] M. Obłoza; Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat. 14, pp. 141-146, 1997.
[16] D. Popa, I. Raşa; On the Hyers-Ulam stability of the linear differential equation, J. Math. Anal. Appl. 381, pp. 530-537, 2011.
[17] D. Popa, I. Raşa; Hyers-Ulam stability of the linear differential operator with non-constant coefficients, Appl. Math. Comput. 219, pp. 1562-1568, 2012.
[18] Th. M. Rassias; On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72, pp. 297-300, 1978.
[19] H. Rezaei, S.-M. Jung, Th. M. Rassias; Laplace transform and Hyers-Ulam stability of linear differential equations, J. Math. Anal. Appl. 403, pp. 244-251, 2013.
[20] I. A. Rus; Remarks on Ulam stability of the operatorial equations, Fixed Point Theory 10, pp. 305-320, 2009.
[21] I. A. Rus; Ulam stability of ordinary differential equations, Stud. Univ. Babes-Bolyai Math. 54, pp. 125-134, 2009.
[22] S.-E. Takahasi, T. Miura, S. Miyajima; On the Hyers-Ulam stability of the Banach spacevalued differential equation $y^{\prime}=\lambda y$, Bull. Korean Math. Soc. 39, pp. 309-315, 2002.
[23] S.-E. Takahasi, H. Takagi, T. Miura, S. Miyajima; The Hyers-Ulam stability constants of first order linear differential operators, J. Math. Anal. Appl. 296, pp. 403-409, 2004.
[24] S. M. Ulam; Problems in Modern Mathematics, Chapter VI, Scince Editors, Wiley, New York, 1960.
[25] G. Wang, M. Zhou, L. Sun; Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 21, pp. 1024-1028, 2008.

Qusuay H. Alqifiary
Department of Mathematics, University of Belgrade, Belgrade, Serbia.
University of Al-Qadisiyah, Al-Diwaniya, Iraq
E-mail address: qhaq2010@gmail.com
Soon-Mo Jung
Mathematics Section, College of Science and Technology, Hongik University, 339-701
Sejong, Korea
E-mail address: smjung@hongik.ac.kr

[^0]: 2000 Mathematics Subject Classification. 44A10, 39B82, 34A40, 26D10.
 Key words and phrases. Laplace transform method; differential equations; generalized Hyers-Ulam stability.
 © 2014 Texas State University - San Marcos.
 Submitted March 5, 2014. Published March 21, 2014.

