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CONVERGENCE TO EQUILIBRIUM OF RELATIVELY
COMPACT SOLUTIONS TO EVOLUTION EQUATIONS

TOMÁŠ BÁRTA

Abstract. We prove convergence to equilibrium for relatively compact solu-

tions to an abstract evolution equation satisfying energy estimates near the

omega-limit set. These energy estimates generalize  Lojasiewicz and Kurdyka-
 Lojasiewicz-Simon gradient inequalities. We apply the abstract results to sev-

eral ODEs and PDEs of first and second order.

1. Introduction

Convergence results of the type “if ϕ is in the omega-limit set of u : R+ → X
and a condition (C) holds, then limt→+∞ u(t) = ϕ” have been extensively studied
(see, e.g., Haraux and Jendoubi [6], Albis et al. [1], Chill et al. [5], Lageman [7],
Chergui [3, 4], Bárta et al. [2]). Each of the proofs of these results can be split into
two parts: the first part shows the key estimate

− d

dt
E(u(t)) ≥ c‖u̇(t)‖ (1.1)

for some function E : X → R and the second part proves convergence with help of
this estimate.

The second part of the proofs is always the same (see proof of Theorem 2.6
below or corresponding parts of proofs in the articles mentioned above). The first
part follows from condition (C). Examples of condition (C) are the  Lojasiewicz
inequality

|E(u)− E(ϕ)|1−θ ≤ c‖E′(u)‖ for all u near ϕ (1.2)
or the more general Kurdyka- Lojasiewicz-Simon inequality

Θ(|E(u)− E(ϕ)|) ≤ c‖E′(u)‖ for all u near ϕ. (1.3)

If u is a solution to the ordinary differential equation

u̇+ F (u) = 0, (1.4)

one can write

− d

dt
E(u(t)) = −〈E′(u(t)), u̇(t)〉 = 〈E′(u(t)), F (u(t))〉. (1.5)
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In many important examples (e.g. if (1.4) is a gradient system with F = ∇E) one
can continue with

〈E′(u(t)), F (u(t))〉 ≥ c‖E′(u(t))‖ · ‖F (u(t))‖. (1.6)

This inequality is known as angle condition and it plays an important role in proving
(1.1).

For partial differential equations, the situation is more complicated since we
usually have E′ : V → V ′ and u̇ has values in V ′. So, already the first equality in
(1.5) is often unclear, since the expression on the right-hand side has no meaning.

Therefore, it seems to be a good idea to formulate a general convergence result
assuming that (1.1) holds and then study, under which conditions (1.1) holds.
Another reason for this splitting is that (1.1) is equivalent to the fact that u has
finite length (and all the mentioned convergence results are based on proving that
u has finite length).

Let us mention that another approach to convergence of (weak) solutions of first
and second order evolution equations with maximal monotone operators can be
found in the works by Djafari Rouhani and his co-workers, see [8] and references
therein.

In Section 2 we formulate and prove general convergence results assuming that
(1.1) holds. In Sections 3 and 4 we give several applications to first and second
order equations, respectively. Although the results in Sections 3 and 4 are known,
we present some proofs to illustrate the applicability of the results in Section 2.

2. General convergence results

Before we formulate and prove the main results, we introduce some notations.
Let V , H, be Hilbert spaces such that V ↪→ H ↪→ V ′. Then ‖ · ‖, ‖ · ‖V , ‖ · ‖∗ will
be the norms in H, V , and V ′, respectively. Corresponding scalar products will be
denoted by the same subscripts. The open ball in V of radius r centered at φ ∈ V
is denoted by BV (φ, r).

If u : R+ → V then the omega-limit set of u in V is

ωV (u) := {φ ∈ V : ∃tn ↗ +∞ such that ‖u(tn)− φ‖V → 0}.

We say that u ∈ C1(R+, H) has finite length in H if
∫ +∞

0
‖u̇(s)‖ ds < +∞.

We say that a function E satisfies  Lojasiewicz (or Simon- Lojasiewicz) inequality
on a neighborhood of ϕ, if there exists θ ∈ (0, 1/2] and c > 0 such that (1.2) holds
(‘u near φ’ means u ∈ BV (φ, ε) for some ε > 0). We say that E satisfies Kurdyka-
 Lojasiewicz-Simon inequality on a neighborhood of ϕ, if there exists c > 0 and a
function Θ ∈ C([0,+∞)) satisfying Θ(s) > 0 for all s > 0, 1/Θ ∈ L1

loc([0,+∞))
and condition (1.3). We will call functions Θ with the above properties Kurdyka
functions. Taking Θ(s) = s1−θ yields that  Lojasiewicz inequality is a special case
of Kurdyka- Lojasiewicz-Simon inequality. If Θ is a Kurdyka function, we define
ΦΘ(t) :=

∫ t
0

1/Θ(s) ds.
The following are well known results.

Lemma 2.1. If u has finite length in H, then it has a limit in H.

Lemma 2.2. Let u : R+ → V . If limt→+∞ u(t) = ψ in H and u has precompact
range in V , then limt→+∞ u(t) = ψ in V .
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Lemma 2.3. Let u : R+ → V . If u has finite length in H and precompact range
in V , then it converges in V (as t→ +∞).

We formulate the general convergence result proposed in the introduction. Its
proof follows immediately from Theorem 2.6. Let us emphasize that H can be an
arbitrarily large space. So, in the applications, it is sufficient to verify (1.1) with a
very weak norm on the right-hand side.

Theorem 2.4. Let u ∈ C(R+, V ) ∩ C1(R+, H) with V -precompact range and ϕ ∈
ωV (u). Let ρ > 0 and E ∈ C(V,R) be such that t 7→ E(u(t)) is nonincreasing on
R+ and (1.1) holds for almost every t ∈ {s ∈ R+ : u(s) ∈ B := BV (ϕ, ρ)}. Then
limt→+∞ ‖u(t)− ϕ‖V = 0.

Remark 2.5. By the previous Lemmas, it is sufficient to show that u has finite
length in H. One can see from the proof of Theorem 2.6 below, that the theorem
remains valid if E is only defined on the closure of the range of u and continuous
in V -norm on this set. Moreover, if u is injective, then this weaker condition is
not only sufficient but also necessary for u to have finite length in H. In fact, one
can define E(u(t)) :=

∫ +∞
t
‖u̇(s)‖ ds, then (1.1) holds on R+, so t 7→ E(u(t)) is

nonincreasing on R+ and continuity of E also holds.

Theorem 2.4 does not speak about differential equations but it can be applied
immediately to a solution of a first order equation

u̇(t) + F (u) = 0

if E is nonicreasing along the solution (e.g. a Lyapunov function) and (1.1) holds.
Here F may be an unbounded nonlinear operator. Second order equations

ü(t) + F (u(t), u̇(t)) +M(u(t)) = 0

can be reformulated as a first order equation on a product space denoting v := u̇.
But then the energy or Lyapunov function typically depends on u and v but we
are interested in convergence of the first coordinate u only (the second coordinate
converges to zero “automatically” — see Theorem 2.8). So, we will formulate
Theorem 2.6 suitable for this situation. It is easy to see that Theorem 2.4 follows
immediately from Theorem 2.6 (take V2 = {0} = H2 and V := V1 × V2, H :=
H1 ×H2), so we will not prove it.

Theorem 2.6. Let u = (u1, u2) satisfy u1 ∈ C(R+, V1) ∩ C1(R+, H1) and u2 ∈
C(R+, V2) ∩ C1(R+, H2) with V1 ↪→ H1, and let (u1(·), u2(·)) have a precompact
range in V1 × V2. Let ϕ ∈ ωV1(u1), ρ > 0 and E ∈ C(V1 × V2,R) be such that
t 7→ E(u(t)) is nonincreasing on R+ and

− d

dt
E(u(t)) ≥ ‖u̇1(t)‖H1 (2.1)

for almost every t ∈ {s ∈ R+ : u1(s) ∈ B := BV1(ϕ, ρ)}. Then limt→+∞ ‖u1(t) −
ϕ‖V1 = 0.

Remark 2.7. (i) It will be clear from the proof that Theorem 2.6 remains valid if
(2.1) holds only for almost every t ∈ {s ∈ [T,+∞) : u1(s) ∈ B := BV1(ϕ, ρ)} for
some T > 0.

Proof of Theorem 2.6. Let tn ↗ +∞ be an increasing sequence such that ‖u1(tn)−
ϕ‖V1 → 0. By precompactness of the range we may assume that ‖u2(tn)−ψ‖V2 → 0
for some ψ ∈ V2 (passing to a subsequence of tn if necessary).
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Since t 7→ E(u(t)) is nonincreasing it has a limit for t → +∞. Since it is
continuous, we have limt→+∞ E(u(t)) = E(ϕ,ψ) and we can assume without loss
of generality E(ϕ,ψ) = 0 and E(u(t)) ≥ 0 for all t ∈ R+ (redefining E(u) :=
E(u)− E(ϕ,ψ)).

Since ‖u1(tn) − ϕ‖V1 → 0, we have u1(tn) ∈ B for all n ≥ n0. Let us denote
sn := infs≥tn{u1(s) 6∈ B} and assume for contradiction that sn < +∞ for all n.
From continuity of u we have sn > tn and ‖u1(sn)− ϕ‖V1 = ρ.

For t ∈ (tn, sn) inequality (2.1) holds, so

E(u(tn))− E(u(t)) ≥
∫ t

tn

‖u̇1(s)‖H1 ds.

So, we can estimate

‖u1(t)− ϕ‖H1 ≤ ‖u1(t)− u1(tn)‖H1 + ‖u1(tn)− ϕ‖H1

≤
∫ t

tn

‖u̇1(s)‖H1 ds+ ‖u1(tn)− ϕ‖H1

≤ E(u(tn))− E(u(t)) + ‖u1(tn)− ϕ‖H1

≤ E(u(tn)) + ‖u1(tn)− ϕ‖H1

and by continuity of u this inequality holds for t = sn. Hence, ‖u1(sn) − ϕ‖H1 ≤
E(u(tn)) + ‖u1(tn)− ϕ‖H1 → 0 as n→∞ (since V1 ↪→ H1).

On the other hand, by continuity of u we have ‖u1(sn)−ϕ‖V1 = ρ for all n ∈ N.
So, there is a subsequence of u1(sn) converging to some ϕ̃ ∈ V1 (by precompactness
of the range), ϕ̃ 6= ϕ, which is a contradiction with ‖u1(sn)− ϕ‖H1 → 0.

Hence, sn = +∞ for some n. Hence, u̇1 ∈ L1(R+, H1), it has finite length in H1

and converges to φ in the norm of V1 by Lemma 2.2. �

In case of second order equations, if a solution has a limit then its derivative
usually tends to zero. However, convergence of the derivative often needs much
weaker assumptions (or different assumptions) and it is helpful to know the conver-
gence of the derivative a-priori, before one shows convergence of the function itself.
Therefore, we formulate the following theorem.

Theorem 2.8. Let V ↪→ H ↪→ V ′ be Hilbert spaces, F ∈ C(V × H,V ′), E ∈
C1(V,R) and M = E′ : V → V ′. Assume that there exists a nondecreasing function
g : (0,+∞)→ (0,+∞) such that

〈F (u, v), v〉V ′,V ≥ g(‖v‖∗)
for all u, v ∈ V . If u ∈ C1(R+, V ) ∩ C2(R+, H) is a classical solution of

ü(t) + F (u(t), u̇(t)) +M(u(t)) = 0,

u(0) = u0 ∈ V, u̇(0) = u1 ∈ H
(2.2)

such that (u, u̇) is precompact in V ×H, then limt→+∞ ‖u̇(t)‖ = 0.

Proof. Since range of (u, u̇) is precompact in V × H, range of F (u, u̇) + M(u) is
bounded in V ′. Hence, range of ü is bounded in V ′ and u̇ is Lipschitz continuous
in V ′. Moreover, we have

− d

dt

1
2
‖u̇(t)‖2 = −〈ü(t), u̇〉V ′,V

= 〈F (u(t), u̇(t)), u̇〉V ′,V +
d

dt
E(u(t))
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≥ g(‖u̇(t)‖∗) +
d

dt
E(u(t)).

Since |E(u(s))| ≤ K for some K > 0 and all s ≥ 0, integrating on [t0, t],∫ t

t0

g(‖u̇(s)‖∗) ds ≤ 1
2

(−‖u̇(t)‖+ ‖u̇(t0)‖)− E(u(t)) + E(u(t0))

≤ 1
2
‖u̇(t0)‖+ 2K.

(2.3)

Hence, s 7→ g(‖u̇(s)‖∗) ∈ L1((0,+∞)) and due to Lipschitz continuity we have
limt→+∞ ‖u̇(t)‖∗ = 0. Since range of u̇ is precompact in H, limt→+∞ ‖u̇(t)‖ =
0. �

Corollary 2.9. Let the assumptions of Theorem 2.8 be satisfied and let there exist
ρ > 0 and E ∈ C(V ×H,R) such that t 7→ E(u(t), u̇(t)) is nonincreasing on (0,+∞)
and

− d

dt
E(u(t), u̇(t)) ≥ c‖u̇(t)‖∗ (2.4)

for almost every t ∈ {s ∈ R+ : u(s) ∈ BV (ϕ, ρ) × BH(0, ε)} where ε > 0 is
arbitrary. Then limt→+∞ ‖u(t)− ϕ‖V + ‖u̇(t)‖ = 0.

Proof. The derivative converges to 0 by Theorem 2.8. Then u̇(t) ∈ BH(0, ε) for
all t ≥ T . Then (2.1) is satisfied for t ∈ [T,+∞) and applying Theorem 2.6 with
H1 = V ′ (see Remark 2.7) we obtain convergence of u(t). �

Remark 2.10. We can see that the ∗-norm on the right-hand side of (2.4) can be
replaced by any other norm weaker than H-norm.

3. Applications to first order equations

In this section, we show several known results that are covered by Theorem 2.4.

3.1.  Lojasiewicz convergence result. We start with the classical convergence
result by  Lojasiewicz. Let us remark that the following Proposition speaks about
ordinary differential equations (then u has values in a finite-dimensional space H =
V and E ∈ C1(H)) and also about partial differential equations (then V ↪→ H are
Hilbert spaces, u ∈ C(R+, V ) ∩ C1(R+, H) and E ∈ C1(V )).

Proposition 3.1. Let u be a solution to the gradient system u̇+∇E(u) = 0, ϕ ∈
ωV (u) and let E satisfy the  Lojasiewicz or Kurdyka- Lojasiewicz-Simon inequality
on a neighborhood of ϕ. Then there exists a function E such that t 7→ E(u(t)) is
nonincreasing and (1.1) holds on a neighborhood of ϕ.

Proof. It is sufficient to define E(u) := E(u)θ in case of  Lojasiewicz inequality and
E(u) := ΦΘ(E(u)) in case of Kurdyka- Lojasiewicz-Simon inequality. �

3.2. Convergence result by Chill, Haraux, Jendoubi and its corollaries.
Theorem 1 in [5] is another corollary of Theorem 2.4. If we replace  Lojasiewicz
inequality by the more general Kurdyka- Lojasiewicz-Simon inequality, then the
theorem in [5] reads as follows.



6 T. BÁRTA EJDE-2014/81

Theorem 3.2 ([5, Theorem 1]). Let u ∈ C(R+, V )∩C1(R+, H) with V -precompact
range and ϕ ∈ ωV (u). Let ρ > 0, c > 0 and E ∈ C2(V,R) be such that t 7→ E(u(t))
is differentiable almost everywhere and

− d

dt
E(u(t)) ≥ c‖E′(u(t))‖∗‖u̇(t)‖∗

for almost every t ∈ R+ with u(t) ∈ BV (ϕ, ρ). Assume in addition that

if E(u(·)) is constant for t ≥ t0, then u is constant for t ≥ t0
and that E satisfies the Kurdyka- Lojasiewicz-Simon gradient inequality with a Kur-
dyka function Θ. Then limt→+∞ ‖u(t)− ϕ‖V = 0.

Proof. We can assume that E(ϕ) = 0. If E(u(t)) = 0 for some t0, then u is constant
for all t > t0 and the assertion holds. Otherwise, E(u(t)) > 0 for all t ∈ R+. In
this case, let us define E(u) := ΦΘ(E(u)). Then

− d

dt
E(u(t)) ≥ 1

Θ(E(u(t)))
· c‖E′(u(t))‖∗‖u̇(t)‖∗ ≥ c‖u̇(t)‖∗.

So, assumptions of Theorem 2.4 hold and ‖u(t)− ϕ‖V → 0. �

For many applications and corollaries of Theorem 3.2 see [5].

3.3. Convergence result by Bárta, Chill, Fašangová. In [2], Bárta, Chill and
Fašangová proved a convergence theorem formulated on manifolds. If we reformu-
late it for RN , it becomes a corollary of Theorem 2.4.

Theorem 3.3 ([2, Theorem 3]). Let F ∈ C(RN ,RN ), u : R+ → RN be a global
solution of the ordinary differential equation

u̇(t) + F (u(t)) = 0 (3.1)

and let E : RN → R be a continuously differentiable, strict Lyapunov function for
(3.1). Assume that there exist a Kurdyka function Θ, ϕ ∈ ω(u) and a neighbourhood
U of ϕ such that for every v ∈ U we have F (v) 6= 0 and

Θ(|E(v)− E(ϕ)|) ≤ 〈E′(v),
F (v)
‖F (v)‖

〉. (3.2)

Then u has finite length and, in particular, limt→+∞ u(t) = ϕ.

Proof. Let us recall that E is a strict Lyapunov function for (3.1), if 〈E′(u), F (u)〉 >
0, whenever u ∈ RN , F (u) 6= 0. Since E(u(·)) is nonincreasing and continuous,
it has a limit which is equal to E(ϕ). We can assume that E(ϕ) = 0, so that
E(u(t)) ≥ 0 for all t ∈ R+. If E(u(t0)) = 0 for some t0 ≥ 0, then E(u(t)) = 0 for
every t ≥ t0, and therefore, since E is a strict Lyapunov function, the function u is
constant for t ≥ t0. In this case, there remains nothing to prove.

Hence, we may assume that E(u(t)) > 0 for every t ≥ 0 and define E(u) :=
ΦΘ(E(u)). Then

− d

dt
E(u(t)) =

1
Θ(E(u(t))

(
− d

dt
E(u(t))

)
=

1
Θ(E(u(t))

〈E′(u(t)), F (u(t))〉

≥ ‖F (u(t))‖ = ‖u̇(t))‖
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in a neighborhood of ϕ. Hence the assumptions of Theorem 2.4 are satisfied and
limt→∞ u(t) = ϕ. �

4. Applications to second order equations

4.1. Second order ODE with weak nonlinear damping. The equation

ü(t) + |u̇(t)|αu̇(t) +∇E((u(t))) = 0

with α > 0 was studied by Chergui in [3] and the convergence result was then
extended to more general dampings

ü(t) +G(u(t), u̇(t)) +∇E((u(t))) = 0 (4.1)

by Bárta, Chill and Fašangová [2], where G ∈ C2(RN×RN ) and for every u, v ∈ RN
it holds that

〈G(u, v), v〉 ≥ g(‖v‖) ‖v‖2,
‖G(u, v)‖ ≤ cg(‖v‖) ‖v‖,
‖∇G(u, v)‖ ≤ c g(‖v‖),

(4.2)

where c ≥ 0 is a constant and g : R+ → R+ is a nonnegative, concave, nondecreasing
function, g(s) > 0 for s > 0.

Under these assumptions we have

〈G(u, v), v〉 ≥ g(‖v‖) ‖v‖2 = g(‖v‖∗) ‖v‖2∗ =: g̃(‖v‖∗),

so assumptions of Theorem 2.8 hold with g̃. By Corollary 2.9, it is sufficient to
prove that

E((u, v)) := ΦΘ

(
1
2
‖v‖2 + E(u) + ε〈G(u,∇E(u)), v〉

)
satisfies the key estimate (2.4), which needs some work (see [2] for details).

4.2. A semilinear wave equation with nonlinear damping. The following
problem was studied by Chergui in [4]. Consider the equation

utt + |ut|αut = ∆u+ f(x, u) (4.3)

in R+ × Ω with Dirichlet boundary conditions and initial values

u(0, ·) = u0 ∈ H1
0 (Ω), ut(0, ·) = u1 ∈ L2(Ω).

Function f : Ω× R→ R satisfies
• If N = 1: f , ∂2f are bounded in Ω× [−r, r] for all r > 0,
• If N ≥ 2: f(·, 0) ∈ L∞(Ω) and |∂2f(x, s)| ≤ c(1 + |s|γ) on Ω× R,

where c ≥ 0, γ ≥ 0 and (N − 2)γ < 2.
Then the main part of the proof of [4, Theorem 1.4] can be interpreted as proving

that (for appropriate α and θ and small ε > 0)

E((u(t), u̇(t)))

:=
(1

2
‖u̇(t)‖22 + E(u(t))− ε‖u̇(t)‖α∗ 〈∆u(t) + f(x, u(t)), u̇(t)〉∗

)θ−(1−θ)α

satisfies estimate (2.4), where

E(u) :=
1
2
‖∇u‖22 −

∫
Ω

F (x, u) dx, F (x, u) :=
∫ u

0

f(x, s) ds. (4.4)
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Let us mention that Corollary 2.9 can be applied in this case, if we consider classical
solutions (the result in [4] refers to weak solutions).

4.3. Abstract wave equation with linear damping. The following abstract
second-order equation is studied in [5]. We have V ↪→ H ↪→ V ′, γ 6= 0, E ∈ C2(V ),
M = E′ and consider the equation

utt + γut +M(u) = 0. (4.5)

Let us introduce the duality mapping K : V ′ → V given by 〈u, v〉∗ = 〈u,Kv〉V ′,V =
〈u,Kv〉 for u ∈ H, v ∈ V ′.

Theorem 4.1 ([5, Corollary 16]). Assume that γ > 0 and
(1) for every v ∈ V , the operator KM ′(v) extends to a bounded operator on H

and supv ‖KM ′(v)‖L(H) is finite when v ranges over a compact subset of
V , and

(2) u ∈ C1(R+, V )∩C2(R+, H) is a global solution to (4.5), (u, u̇) has precom-
pact range in V ×H and there exist ϕ ∈ ω(u), C > 0, ρ > 0 and a sublinear
Kurdyka function Θ, such that E satisfies Kurdyka- Lojasiewicz-Simon gra-
dient inequality in BV (ϕ, ρ).

Then limt→+∞ ‖u(t)− ϕ‖V = 0.

Since
〈γu̇, u̇〉 ≥ γc‖u̇‖2∗ =: g(‖u̇‖∗),

the assumptions of Theorem 2.8 are satisfied and ‖u̇‖ → 0. It is not difficult to
show that function E(u, u̇) := ΦΘ(Ψ(u, u̇)) satisfies the key estimate (2.4), where

Ψ(u, u̇) :=
1
2
‖u̇‖2 + E(u) + ε〈M(u), u̇〉∗

and ε > 0 is small enough. Then Corollary 2.9 proves the assertion.
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