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MULTIPLE POSITIVE SOLUTIONS FOR A CRITICAL ELLIPTIC
PROBLEM WITH CONCAVE AND CONVEX NONLINEARITIES

HAINING FAN

Abstract. In this article, we study the multiplicity of positive solutions for a
semi-linear elliptic problem involving critical Sobolev exponent and concave-

convex nonlinearities. With the help of Nehari manifold and Ljusternik-

Schnirelmann category, we prove that problem admits at least cat(Ω) + 1
positive solutions.

1. Introduction and main result

Let us consider the semi-linear problem

−∆u = λ|u|q−2u+ |u|2
∗−2u, x ∈ Ω,

u > 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.1)

where Ω is an open bounded domain in RN with smooth boundary, 1 < q < 2,
2∗ = 2N

N−2 (N ≥ 3) and λ is a positive real parameter.
Under the assumption λ 6≡ 0, (1.1) can be regarded as a perturbation problem

of the equation
−∆u = |u|2

∗−2u, x ∈ Ω,
u > 0, x ∈ Ω,
u = 0, x ∈ ∂Ω.

(1.2)

It is well known that the existence of solutions of (1.2) is affected by the shape of
the domain Ω. This has been the focus of a great deal of research by several authors.
In particular, the first striking result is due to Pohozaev [13] who proved that if Ω
is star-shaped with respect to some point, (1.2) has no solution. However, if Ω is an
annulus, Kazdan and Warner [11] pointed out that (1.2) has at least one solution.
For a non-contractible domain Ω, Coron [8] proved that (1.2) has a solution. Further
existence results for “rich topology” domain, we refer to [2, 10, 11, 12, 13, 14, 15, 16].

The fact that the number of solutions of (1.1) is affected by the concave-convex
nonlinearities and the domain Ω has been the focus of a great deal of research in
recent years. In particular, Ambrosetti, Brezis and Cerami [3] showed that there
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exists λ0 > 0 such that (1.1) admits at least two solutions for λ ∈ (0, λ0), one
solution for λ = λ0 and no solution for λ > λ0. Actually, Adimurthi et al. [5],
Ouyang and Shi [12] and Tang [16] proved that there exists λ0 > 0 such that
(1.1) in unit ball BN (0; 1) has exactly two solutions for all λ ∈ (0, λ0), exactly
one solution for λ = λ0 and no solution for all λ > λ0. Recently, when Ω is a
non-contractible domain, Wu [18] showed that (1.1) admits at least three solutions
if λ is small enough.

In this work we aim to get a better information on the number of solutions
of (1.1), for small value of parameter λ, via the Nehari manifold and Ljusternik-
Schnirelmann category. Our main result is as follows.

Theorem 1.1. There exists λ0 > 0 such that, for each λ ∈ (0, λ0), problem (1.1)
has at least cat(Ω) + 1 solutions.

Here cat means the Ljusternik-Schnirelmann category and for properties of it we
refer to Struwe [14].

Remark 1.2. If Ω is a general domain, cat(Ω) ≥ 1 and Theorem 1.1 is the result
of [3]. If Ω is non-contractible, cat(Ω) ≥ 2 and Theorem 1.1 is the result of Wu
[18].

Associated with (1.1), we consider the energy functional Jλ for each H1
0 (Ω),

Jλ(u) =
1
2

∫
Ω

|∇u|2dx− λ

q

∫
Ω

(u+)qdx− 1
p∗

∫
Ω

(u+)2∗dx,

where u+ = max{u, 0}. From the assumption, it is easy to prove that Jλ is well
defined in H1

0 (Ω) and Jλ ∈ C2(H1
0 (Ω),R). Furthermore, the critical points of Jλ

are weak solutions of (1.1). We consider the behaviors of Jλ on the Nehari manifold

Sλ = {u ∈ H1
0 (Ω) \ {0};u+ 6≡ 0 and 〈J ′λ(u), u〉 = 0},

where 〈, 〉 denotes the usual duality between H1
0 (Ω) and H−1(Ω). This enables us

to construct homotopies between Ω and certain levels of Jλ. Clearly, u ∈ Sλ if and
only if ∫

Ω

|∇u|2dx− λ
∫

Ω

(u+)qdx−
∫

Ω

(u+)2∗dx = 0.

On the Nehari manifold Sλ, from the Sobolev embedding theorem and the Young
inequality, we have

Jλ(u) =
(1

2
− 1

2∗
) ∫

Ω

|∇u|2dx− λ
(1
q
− 1

2∗
) ∫

Ω

(u+)qdx

≥
(1

2
− 1

2∗
) ∫

Ω

|∇u|2dx− λ
(1
q
− 1

2∗
)
S−qq

(∫
Ω

|∇u|2dx
)q/2

≥
(1

2
− 1

2∗
) ∫

Ω

|∇u|2dx−
(1

2
− 1

2∗
) ∫

Ω

|∇u|2dx−Dλ
2

2−q ,

(1.3)

where Sq is the best Sobolev constant for the embedding of H1
0 (Ω) into Lq(Ω) and

D is a positive constant depending on q and Sq.
Thus Jλ is coercive and bounded below on Sλ. It is useful to understand Sλ in

terms of the fibrering maps φu(t) = Jλ(tu)(t > 0). It is clear that, if u ∈ Sλ, then
φu has a critical point at t = 1. Furthermore, we will discuss the essential nature
of φu in Section 2.
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This article is organized as follows: In Section 2, we give some notations and
preliminary results. In Section 3, we discuss some concentration behavior. In
Section 4, we give the proof of the main theorem.

2. Preliminaries

Throughout the paper by | · |r we denote the Lr-norm. On the space H1
0 (Ω) we

consider the norm

‖u‖ =
(∫

Ω

|∇u|2dx
)1/2

.

Set also

D1,2(RN ) :=
{
u ∈ L2∗(RN );

∂u

∂xi
∈ L2(RN ) for i = 1, . . . , N

}
equipped with the norm

‖u‖∗ =
(∫

RN
|∇u|2dx

)1/2

.

We will denote by S the best Sobolev constant of the embedding H1
0 (Ω) ↪→ L2∗(Ω)

given by

S := inf
{∫

Ω

|∇u|2dx;u ∈ H1
0 (Ω), |u|2∗ = 1

}
.

It is known that S is independent of Ω and is never achieved except when Ω = RN
(see [15]).

We then define the Palais-Smale(simply by (PS)) sequences, (PS)-values, and
(PS)-conditions in H1

0 (Ω) for Jλ as follows.

Definition 2.1. (i) For β ∈ R, a sequence {uk} is a (PS)β-sequence in H1
0 (Ω)

for Jλ if Jλ(uk) = β+o(1) and J ′λ(uk) = o(1) strongly in H−1(Ω) as k →∞.
(ii) Jλ satisfies the (PS)β-condition in H1

0 (Ω) if every (PS)β-sequence in H1
0 (Ω)

for Jλ contains a convergent subsequence.

We now define

ψλ(u) := 〈J ′λ(u), u〉 =
∫

Ω

|∇u|2dx− λ
∫

Ω

(u+)qdx−
∫

Ω

(u+)2∗dx. (2.1)

Then for u ∈ Sλ,

〈ψ′λ(u), u〉 = (2− q)
∫

Ω

|∇u|2dx− (2∗ − q)
∫

Ω

(u+)2∗dx (2.2)

= (2− 2∗)
∫

Ω

|∇u|2dx+ λ(2∗ − q)
∫

Ω

(u+)qdx. (2.3)

Similarly to the method used in [6], we split Sλ into three parts:

S+
λ = {u ∈ Sλ; 〈ψ′λ(u), u〉 > 0},
S0
λ = {u ∈ Sλ; 〈ψ′λ(u), u〉 = 0},

S−λ = {u ∈ Sλ; 〈ψ′λ(u), u〉 < 0}.

Then we have the following results.

Lemma 2.2. Suppose that u0 is a local minimum for Jλ on Sλ. Then, if u0 6∈ S0
λ,

u0 is a critical point of Jλ.
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Proof. Since u0 is a local minimum for Jλ on Sλ, then u0 is a solution of the
optimization problem

minimize Jλ(u) subject to ψλ(u) = 0.

Hence, by the theory of Lagrange multipliers, there exists µ ∈ R such that J ′λ(u0) =
µψ′λ(u0) in H−1(Ω). Thus,

〈J ′λ(u0), u0〉 = µ〈ψ′λ(u0), u0〉. (2.4)

Since u0 ∈ Sλ, we obtain 〈J ′λ(u0), u0〉 = 0. However, u0 6∈ S0
λ and so by (2.4) µ = 0

and J ′λ(u0) = 0. This completes the proof. �

Lemma 2.3. There exists λ1 > 0 such that for each λ ∈ (0, λ1), we have S0
λ = ∅.

Proof. Suppose otherwise, that is S0
λ 6= ∅ for all λ > 0. Then for u ∈ S0

λ, we from
(2.2), (2.3) and the Sobolev embedding theorem obtain that there are two positive
numbers c1, c2 independent of u and λ such that∫

Ω

|∇u|2dx ≤ c1
(∫

Ω

|∇u|2dx
)2∗/2

,

∫
Ω

|∇u|2dx ≤ λc2
(∫

Ω

|∇u|2dx
)q/2

or ∫
Ω

|∇u|2dx ≥ c
− 2

2∗−2
1 ,

∫
Ω

|∇u|2dx ≤ (λc2)
2

2−q .

If λ is sufficiently small, this is impossible. Thus we can conclude that there exists
λ1 > 0 such that for each λ ∈ (0, λ1), we have S0

λ = ∅. �

By Lemma 2.3, for λ ∈ (0, λ1), we write Sλ = S+
λ ∪ S

−
λ and define

α+
λ = inf

u∈S+
λ

Jλ(u), α−λ = inf
u∈S−λ

Jλ(u).

We now discuss the nature of the fibrering maps φu(t). It is useful to consider
the function

Mu(t) = t2−q
∫

Ω

|∇u|2dx− t2
∗−q

∫
Ω

(u+)2∗dx. (2.5)

Clearly, for t > 0, tu ∈ Sλ if and only if t is a solution of

Mu(t) = λ

∫
Ω

(u+)qdx. (2.6)

Moreover, we have from M ′u(t) = 0 know that there is a unique critical point tmax:

tmax =
(

(2− q)
∫

Ω
|∇u|2dx

(2∗ − q)
∫

Ω
(u+)2∗dx

)1/(2∗−2)

.

Furthermore, the direct computation gives that

M ′′u (tmax) = (2∗ − q)(2− p∗)t2
∗−q−2

max

∫
Ω

(u+)2∗dx < 0.

This shows that Mu(t) is increasing in (0, tmax) and decreasing for t ≥ tmax.
Suppose tu ∈ Sλ. It follows from (2.2) and (2.5) that if M ′u(t) > 0, then tu ∈ S+

λ ,
and if M ′u(t) < 0, then tu ∈ S−λ . If λ > 0 is sufficiently large, (2.6) has no solution
and so φu(t) has no critical point, in this case φu(t) is a decreasing function. Hence
no multiple of u lies in Sλ. If, on the other hand, λ > 0 is sufficiently small,
there are exactly two solutions t1(u) < t2(u) of (2.6) with M ′u(t1(u)) > 0 and
M ′u(t2(u)) < 0. Thus there are exactly two multiples of u ∈ Sλ, that is, t1(u)u ∈ S+

λ

and t2(u)u ∈ S−λ . It follows that φu(t) has exactly two critical points, a local
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minimum at t1(u) and a local maximum at t2(u). Moreover, φu(t) is decreasing in
(0, t1(u)), increasing in (t1(u), t2(u)) and decreasing in (t2(u),∞). Then we have
the following result.

Lemma 2.4. (i) α+
λ < 0.

(ii) There exist λ2, δ > 0 such that α−λ ≥ δ for all λ ∈ (0, λ2).

Proof. (i) Given u ∈ S+
λ , from (2.3) and the definition of S+

λ , we obtain

Jλ(u) =
(1

2
− 1

2∗
) ∫

Ω

|∇u|2dx− λ
(1
q
− 1

2∗
) ∫

Ω

(u+)qdx

≤
[(1

2
− 1

2∗
)
−
(1
q
− 1

2∗
)2∗ − 2

2∗ − q
] ∫

Ω

|∇u|2dx

=
2∗ − 2

2∗
(1

2
− 1
q

) ∫
Ω

|∇u|2dx < 0.

This yields α+
λ < 0.

(ii) For u ∈ S−λ , by (2.2) and the Sobolev embedding theorem, we obtain

(2− q)
∫

Ω

|∇u|2dx < (2∗ − q)
∫

Ω

(u+)2∗dx

≤ (2∗ − q)S− 2∗
2

(∫
Ω

|∇u|2dx
)2∗/2

.

Thus there exists c > 0 such that∫
Ω

|∇u|2dx ≥ c.

Moreover,

Jλ(u) =
(1

2
− 1

2∗
) ∫

Ω

|∇u|2dx− λ
(1
q
− 1

2∗
) ∫

Ω

(u+)qdx

≥
(1

2
− 1

2∗
) ∫

Ω

|∇u|2dx− λ
(1
q
− 1

2∗
)
S−qq

(∫
Ω

|∇u|2dx
)q/2

=
(∫

Ω

|∇u|2dx
)q/2[(1

2
− 1

2∗
)( ∫

Ω

|∇u|2dx
)1− q2 − λ

(1
q
− 1

2∗
)
S−qq

]
.

Hence, there exist λ2, δ > 0 such that α−λ ≥ δ for all λ ∈ (0, λ2). �

We establish that Jλ satisfies the (PS)β-condition under some condition on the
level of (PS)β-sequences in the following.

Lemma 2.5. For each λ ∈ (0, λ2), Jλ satisfies the (PS)β-condition with β in
(−∞, α+

λ + 1
N S

N/2).

Proof. Let {uk} ⊂ H1
0 (Ω) be a (PS)β-sequence for Jλ and β ∈ (−∞, α+

λ + 1
N S

N/2).
After a standard argument(see [19]), we know that {uk} is bounded in H1

0 (Ω).
Thus, there exists a subsequence still denoted by {uk} and u ∈ H1

0 (Ω) such that
uk ⇀ u weakly in H1

0 (Ω). By the compactness of Sobolev embedding and the
Brezis-Lieb Lemma [19], we obtain

λ

∫
Ω

(uk)q+dx = λ

∫
Ω

(u+)qdx+ o(1),∫
Ω

|∇uk −∇u|2dx =
∫

Ω

|∇uk|2dx−
∫

Ω

|∇u|2dx+ o(1),
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Ω

(uk − u)2∗

+ dx =
∫

Ω

(uk)2∗

+ dx−
∫

Ω

(u+)2∗dx+ o(1).

Moreover, we can obtain J ′λ(u) = 0 in H−1(Ω). Since Jλ(uk) = β + o(1) and
J ′λ(uk) = o(1) in H−1(Ω), we deduce that

1
2

∫
Ω

|∇uk −∇u|2dx−
1
2∗

∫
Ω

(uk − u)2∗

+ dx = β − Jλ(u) + o(1) (2.7)

and ∫
Ω

|∇uk −∇u|2dx−
∫

Ω

(uk − u)2∗

+ dx = o(1).

Now we may assume that∫
Ω

|∇uk −∇u|2dx→ l,

∫
Ω

(uk − u)2∗

+ dx→ l as k →∞,

for some l ∈ [0,+∞).
Suppose l 6= 0. Using the Sobolev embedding theorem and passing to the limit

as k →∞, we have l ≥ Sl2/2∗ ; that is,

l ≥ SN/2. (2.8)

Then by (2.7), (2.8) and u ∈ Sλ, we have

β = Jλ(u) +
1
N
l ≥ 1

N
SN/2 + α+

λ ,

which contradicts the definition of β. Hence l = 0, that is, uk → u strongly in
H1

0 (Ω). �

Then we obtain the following result.

Lemma 2.6. For each 0 < λ < min{λ1, λ2}, the functional Jλ has a minimizer
u+
λ in S+

λ and it satisfies:

(i) Jλ(u+
λ ) = α+

λ = infu∈S+
λ
Jλ(u);

(ii) u+
λ is a solution of (1.1);

(iii) Jλ(u+
λ )→ 0 as λ→ 0.

(iv) limλ→0 ‖u+
λ ‖ = 0.

Proof. (i)–(iii) are consequences in [10, Theorem 1.1]. Now we show (iv). By
(i)–(iii), we have

0 = lim
λ→0

Jλ(u+
λ ) = lim

λ→0

( 1
N

∫
Ω

|∇u+
λ |

2dx−
(1
q
− 1

2∗
)
λ

∫
Ω

(u+
λ )qdx

)
. (2.9)

Since Jλ is coercive and bounded below on Sλ,
∫

Ω
|∇u+

λ |2dx is bounded and so that

lim
λ→0

λ

∫
Ω

(u+
λ )qdx = 0. (2.10)

Hence, from (2.9) and (2.10) we complete the proof. �
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3. Concentration behavior

In this Section, we will recall and prove some Lemmas which are crucial in the
proof of the main theorem. Firstly, we denote cλ := 1

N S
N/2 + α+

λ and consider the
filtration of the manifold S−λ as follows:

S−λ (cλ) := {u ∈ S−λ ; Jλ(u) ≤ cλ}.
In Section 4, we will prove that (1.1) admits at least cat(Ω) solutions in this set.
Then we need the following Lemmas.

Lemma 3.1. Let {uk} ⊂ H1
0 (Ω) be a nonnegative function sequence with |uk|2∗ = 1

and
∫

Ω
|∇uk|2dx→ S. Then there exists a sequence (yk, λk) ∈ RN × R+ such that

υk(x) := λ
N−2

2
k uk(λkx+ yk)

contains a convergent subsequence denoted again by {υk} such that υk → υ in
D1,2(RN ) with υ(x) > 0 in RN . Moreover, we have λk → 0 and yk → y ∈ Ω.

For a proof of the above lemma, see Willem [19].

Lemma 3.2. Suppose that X is a Hilbert manifold and F ∈ C1(X,R). Assume
that for c0 ∈ R and k ∈ N:

(i) F (x) satisfies the (PS)c condition for c ≤ c0,
(ii) cat({x ∈ X;F (x) ≤ c0}) ≥ k.

Then F (x) has at least k critical points in {x ∈ X;F (x) ≤ c0}.

For a proof of the above lemma, see See [1, Theorem 2.3].
Up to translations, we may assume that 0 ∈ Ω. Moreover, in what follows, we

fix r > 0 such that Br = {x ∈ RN ; |x| < r} ⊂ Ω and the sets

Ω+
r := {x ∈ RN ; dist(x,Ω) < r}, Ω−r := {x ∈ Ω; dist(x,Ω) > r}

are both homotopically equivalent to Ω. Now we define the continuous map Φ :
S−λ → RN by setting

Φ(u) :=

∫
Ω
x(u+)2∗dx∫

Ω
(u+)2∗dx

.

Lemma 3.3. There exists λ3 > 0 such that if λ ∈ (0, λ3) and u ∈ S−λ (cλ), then
Φ(u) ∈ Ω+

r .

Proof. By way of contradiction, let {λk} and {uk} be such that λk → 0, uk ∈
S−λk(cλk) and Φ(uk) 6∈ Ω+

r . From (1.3), we have that {uk} is bounded in H1
0 (Ω) and

λk
∫

Ω
(uk)q+dx→ 0. Thus, by Lemma 2.6 (iii) we have

lim
k→∞

Jλk(uk) = lim
k→∞

1
N

∫
Ω

|∇uk|2dx = lim
k→∞

1
N

∫
Ω

(uk)2∗

+ dx ≤
1
N
SN/2. (3.1)

Defining ωk = uk/|(uk)+|2∗ , we see that |(ωk)+|2∗ = 1. By (3.1) and the definition
of S, we obtain

lim
k→∞

∫
Ω

|∇ωk|2dx = lim
k→∞

∫
Ω

|∇(ωk)+|2dx = S.

Furthermore, the functions ω̃k = (ωk)+ satisfy

|ω̃k|2∗ = 1,
∫

Ω

|∇ω̃k|2dx→ S. (3.2)
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By Lemma 3.1, there is {εk} in R+ and {yk} in RN , such that εk → 0, yk → y ∈ Ω

and υk(x) = ε
N−2
N

k ω̃k(εkx+ yk)→ υ in D1,2(RN ) with υ(x) > 0 in RN .
Considering ϕ ∈ C∞0 (RN ) such that ϕ(x) = x in Ω, we infer

Φ(uk) =

∫
Ω
x(uk)2∗

+ dx∫
Ω

(uk)2∗
+ dx

=
∫

RN
ϕ(x)(ω̃k)2∗dx =

∫
RN

ϕ(εkx+ yk)(υk(x))2∗dx. (3.3)

Moreover, by Lebesgue Theorem,∫
RN

ϕ(εkx+ yk)(υk(x))2∗dx→ y ∈ Ω,

so that limk→∞Φ(uk) = y ∈ Ω, in contradiction with Φ(uk) 6∈ Ω+
r . �

It is well known that S is attained when Ω = RN by the functions

yε(x) =
[N(N − 2)ε2](N−2)/4

(ε2 + |x|2)(N−2)/2
.

for any ε > 0. Moreover, the functions yε(x) are the only positive radial solutions
of

−∆u = |u|2
∗−2u

in RN . Hence,

S
(∫

RN
|yε|2

∗
dx
)2/2∗

=
∫

RN
|∇yε|2dx =

∫
RN
|yε|2

∗
dx = SN/2.

Let 0 ≤ φ(x) ≤ 1 be a function in C∞0 (Ω) defined as

φ(x) =

{
1, if |x| ≤ r/4,
0, if |x| ≥ r/2.

Assume
υε(x) = φ(x)yε(x).

The argument in [14] gives∫
Ω

|∇υε|2dx = SN/2 +O(εN−2),
∫

Ω

|υε|2
∗
dx = SN/2 +O(εN ). (3.4)

Moreover, we have the following result.

Lemma 3.4. There exist ε0, σ(ε) > 0 such that for ε ∈ (0, ε0) and σ ∈ (0, σ(ε)),
we have

sup
t≥0

Jλ(u+
λ + tυε(x− y)) < cλ − σ uniformly in y ∈ Ω−r ,

where u+
λ is a local minimum in Lemma 2.6. Furthermore, there exists t−(λ,ε,y) > 0

such that

u+
λ + t−(λ,ε,y)υε(x− y) ∈ S−λ (cλ − σ), Φ(u+

λ + t−(λ,ε,y)υε(x− y)) ∈ Ω+
r .

Proof. From Lemma 2.6 and the definition of Ω−r , we can define

c0 := inf
Mr

u+
λ > 0, (3.5)
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where Mr := {x ∈ Ω; dist(x,Ω−r ) ≤ r
2}. Since

Jλ(u+
λ + tυε(x− y))

=
1
2

∫
Ω

|∇(u+
λ + tυε(x− y))|2dx− λ

q

∫
Ω

|u+
λ + tυε(x− y)|qdx

− 1
2∗

∫
Ω

|u+
λ + tυε(x− y)|2

∗
dx

=
1
2

∫
Ω

|∇u+
λ |

2dx+
t2

2

∫
Ω

|∇υε|2dx+ 〈u+
λ , tυε(x− y)〉

− λ

q

∫
Ω

|u+
λ + tυε(x− y)|qdx− 1

2∗

∫
Ω

|u+
λ + tυε(x− y)|2

∗
dx.

(3.6)

Note (3.5) and a useful estimate obtained by Brezis and Nirenberg (see [7, (17)
and (21)]) shows that∫

Ω

|u+
λ + tυε(x− y)|2

∗
dx

=
∫

Ω

|u+
λ |

2∗dx+ t2
∗
∫

Ω

|υε|2
∗
dx+ 2∗t

∫
Ω

(u+
λ )2∗−1υε(x− y)dx

+ 2∗t2
∗−1

∫
Ω

(υε(x− y))2∗−1u+
λ dx+ o(ε

N−2
2 ),

uniformly in y ∈ Ω−r .
Substituting in (3.6) and by Lemma 2.6, (3.4), (3.5), we obtain

Jλ(u+
λ + tυε(x− y))

=
1
2

∫
Ω

|∇u+
λ |

2dx+
t2

2
S
N
2 + t〈u+

λ , υε(x− y)〉

− 1
2∗

∫
Ω

|u+
λ |

2∗dx− t2
∗

2∗
S
N
2 − t

∫
Ω

(u+
λ )2∗−1υε(x− y)dx

− t2
∗−1

∫
Ω

(υε(x− y))2∗−1u+
λ dx−

λ

q

∫
Ω

|u+
λ + tυε(x− y)|qdx+ o(ε

N−2
2 )

= Jλ(u+
λ ) +

t2

2
S
N
2 − t2

∗

2∗
S
N
2 − t2

∗−1

∫
Ω

(υε(x− y))2∗−1u+
λ dx

− λ

q

∫
Ω

|u+
λ + tυε(x− y)|qdx+

λ

q

∫
Ω

|u+
λ |
qdx

+ tλ

∫
Ω

(u+
λ )q−1υε(x− y)dx+ o(ε

N−2
2 )

= α+
λ +

t2

2
S
N
2 − t2

∗

2∗
S
N
2 − t2

∗−1

∫
Ω

(υε(x− y))2∗−1u+
λ dx

− λ
∫

Ω

{∫ tυε(x−y)

0

[(u+
λ + s)q−1 − (u+

λ )q−1]ds
}
dx+ o(ε

N−2
2 )

≤ α+
λ +

t2

2
S
N
2 − t2

∗

2∗
S
N
2 − t2

∗−1

∫
Ω

(υε(x− y))2∗−1u+
λ dx+ o(ε

N−2
2 )

for all y ∈ Ω−r .
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Applying (3.5) and the fact that
∫

Ω
(υε(x − y))2∗−1dx = O(ε

N−2
2 ), also note

the compactness of Ω−r , we conclude that there exist ε0, σ(ε) > 0 such that for
ε ∈ (0, ε0) and σ ∈ (0, σ(ε)),

sup
t≥0

Jλ(u+
λ + tυε(x− y)) <

1
N
SN/2 + α+

λ − σ uniformly in y ∈ Ω−r . (3.7)

Next we will prove that there exists t−(λ,ε,y) > 0 such that u+
λ +t−(λ,ε,y)υε(x−y) ∈ S−λ

for each y ∈ Ω−r . Let

U1 =
{
u ∈ H1

0 (Ω)\{0}; 1
‖u‖

t−
( u

‖u‖
)
> 1
}
∪ {0};

U1 =
{
u ∈ H1

0 (Ω)\{0}; 1
‖u‖

t−
( u

‖u‖
)
< 1
}
.

Then S−λ disconnects H1
0 (Ω) into two connected components U1 and U2. Moreover,

H1
0 (Ω)\S−λ = U1 ∪ U2. For each u ∈ S+

λ , we have

1 < tmax < t−(u).

Since t−(u) = 1
‖u‖ t

−( u
‖u‖
)
, then S+

λ ⊂ U1. In particular, u+
λ ∈ U1. We claim that

we can find a constant c > 0 such that

0 < t−
( u+

λ + tυε(x− y)
‖u+

λ + tυε(x− y)‖
)
< c for each t ≥ 0 and y ∈ Ω−r .

Otherwise, there exists a sequence {tk} such that tk →∞ and

t−
( u+

λ + tkυε(x− y)
‖u+

λ + tkυε(x− y)‖

)
→∞ as k →∞.

Let

υk =
u+
λ + tkυε(x− y)

‖u+
λ + tkυε(x− y)‖

.

Since t−(υk)υk ∈ S−λ ⊂ Sλ and by the Lesbesgue dominated convergence theorem,∫
Ω

|υk|2
∗
dx =

1
‖u+

λ + tkυε(x− y)‖2∗
∫

Ω

|u+
λ + tkυε(x− y)|2

∗
dx

=
1

‖u
+
λ

tk
+ υε(x− y)‖2∗

∫
Ω

|
u+
λ

tk
+ υε(x− y)|2

∗
dx

→
∫

Ω
|υε|2

∗
dx

‖υε‖2∗
as k →∞,

we have

Jλ(t−(υk)υk) =
1
2

[t−(υk)]2 − λ [t−(υk)]q

q

∫
Ω

|υk|qdx

− [t−(υk)]2
∗

2∗

∫
Ω

|υk|2
∗
dx→ −∞ as k →∞.

This contradicts that Jλ is bounded below on Sλ and the claim is proved. Let

tλ =
|c2 − ‖u+

λ ‖2|
1
2

‖υε‖
+ 1,
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then

‖u+
λ + tλυε(x− y)‖2 = ‖u+

λ ‖
2 + t2λ‖υε‖2 + 2tλ〈u+

λ , υε(x− y)〉

> ‖u+
λ ‖

2 + |c2 − ‖u+
λ ‖

2|+ 2tλ
∫

Ω

u+
λ υε(x− y)dx

> c2 >
[
t−
( u+

λ + tλυε(x− y)
‖u+

λ + tλυε(x− y)‖
)]2

,

that is u+
λ + tλυε(x− y) ∈ U2.

Thus there exists 0 < t−(λ,ε,y) < tλ such that u+
λ + t−(λ,ε,y)υε(x− y) ∈ S−λ . More-

over, by (3.7) and Lemma 3.3, we obtain Φ(u+
λ + t−(λ,ε,y)υε(x − y)) ∈ Ω+

r for each
y ∈ Ω−r . �

From Lemma 3.4, we can define the map γ : Ω−r → S−λ (cλ − σ) defined by

γ(y)(x) := u+
λ (x) + t−(λ,ε,y)υε(x− y).

Furthermore, by Lemma 2.4 (ii) and Lemma 2.6 (iv), we can define the map Φλ :
S−λ → RN by setting

Φλ(u) :=

∫
Ω
x(u− u+

λ )2∗

+ dx∫
Ω

(u− u+
λ )2∗

+ dx
.

Then for each y ∈ Ω−r , note υε(x) is radial, we have

(Φλ ◦ γ)(y) = y.

Next we define the map Hλ : [0, 1]× S−λ (cλ − σ)→ RN by

Hλ(t, u) = tΦλ(u) + (1− t)Φλ(u).

Lemma 3.5. For ε ∈ (0, ε0), there exists 0 < λ0 ≤ min{λ1, λ2, λ3, σ(ε)} such that
if λ, σ ∈ (0, λ0),

Hλ([0, 1]× S−λ (cλ − σ)) ⊂ Ω+
r .

Proof. Suppose by contradiction that there exist tk ∈ [0, 1], λk, σk,→ 0, and uk ∈
S−λk(cλk − σk) such that

Hλk(tk, uk) 6∈ Ω+
r for all k.

Furthermore, we can assume that tk → t0 ∈ [0, 1]. Then by Lemma 2.6 (iv) and
argue as in the proof of Lemma 3.3, we have

Hλk(tk, uk)→ y ∈ Ω, as k →∞,

which is a contradiction. �

4. Proof of Theorem 1.1

We begin with the following Lemma.

Lemma 4.1. If u is a critical point of Jλ on S−λ , then it is a critical point of Jλ
in H1

0 (Ω).
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Proof. Assume u ∈ S−λ , then 〈J ′λ(u), u〉 = 0. On the other hand,

J ′λ(u) = θψ′λ(u) (4.1)

for some θ ∈ R, where ψλ is defined in (2.1). We remark that u ∈ S−λ , and so
〈ψ′λ(u), u〉 < 0. Thus by (4.1)

0 = θ〈ψ′λ(u), u〉,
which implies that θ = 0, consequently J ′λ(u) = 0. �

Below we denote by JS−λ the restriction of Jλ on S−λ .

Lemma 4.2. Any sequence {uk} ⊂ S−λ such that JS−λ (uk) → β ∈ (−∞, 1
N S

N/2 +
α+
λ ) and J ′

S−λ
(uk)→ 0 contains a convergent subsequence for all λ ∈ (0, λ0).

Proof. By hypothesis there exists a sequence {θk} ⊂ R such that

J ′λ(uk) = θkψ
′
λ(uk) + o(1).

Recall that uk ∈ S−λ and so
〈ψ′λ(uk), uk〉 < 0.

If 〈ψ′λ(uk), uk〉 → 0, we from (2.2) and (2.3) obtain that there are two positive
numbers c1, c2 independent of uk and λ such that∫

Ω

|∇uk|2dx ≤ c1
(∫

Ω

|∇uk|2dx
)2∗/2

+ o(1),∫
Ω

|∇uk|2dx ≤ λc2
(∫

Ω

|∇uk|2dx
)q/2

+ o(1)

or ∫
Ω

|∇uk|2dx ≥ c
− 2

2∗−2
1 + o(1),

∫
Ω

|∇uk|2dx ≤ (λc2)
2

2−q + o(1).

If λ is sufficiently small, this is impossible. Thus we may assume that 〈ψ′λ(uk), uk〉 →
l < 0. Since 〈J ′λ(uk), uk〉 = 0, we conclude that θk → 0 and, consequently,
J ′λ(uk)→ 0. Using this information we have

Jλ(uk)→ β ∈ (−∞, 1
N
SN/2 + α+

λ ), J ′λ(uk)→ 0,

so by Lemma 2.5 the proof is complete. �

Lemma 4.3. If λ, σ ∈ (0, λ0), then

cat(S−λ (cλ − σ)) ≥ cat(Ω).

Proof. Suppose that
S−λ (cλ − σ) = A1 ∪ · · · ∪An,

where Aj , j = 1, . . . , n, is closed and contractible in S−λ (cλ − σ), i.e., there exists
hj ∈ C([0, 1]×Aj , S−λ (cλ − σ)) such that

hj(0, u) = u, hj(1, u) = ω for all u ∈ Aj ,
where ω ∈ Aj is fixed. Consider Bj := γ−1(Aj), 1 ≤ j ≤ n. The sets Bj are closed
and

Ω−r = B1 ∪ · · · ∪Bn.
Note Lemma 3.5, we define the deformation gj : [0, 1]×Bj → Ω+

r by setting

gj(t, y) := Hλ(t, hj(t, γ(y))).
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for λ ∈ (0, λ0). Note that

gj(0, y) := Hλ(0, hj(0, γ(y))) = y for all y ∈ Bj
and

gj(1, y) := Hλ(1, hj(1, γ(y))) = Φ(ω) ∈ Ω+
r .

Thus the sets Bj are contractible in Ω+
r . It follows that

cat(Ω) = catΩ+
r

(Ω−r ) ≤ n.
�

Proof of Theorem 1.1. Applying Lemmas 2.5 and 4.2, JS−λ satisfies the (PS)β con-

dition for all β ∈ (−∞, 1
N S

N/2 +α+
λ ). Then, by Lemmas 3.2 and 4.3, JS−λ contains

at least cat(Ω) critical points in S−λ (cλ − σ). Hence, from Lemma 4.1, Jλ has at
least cat(Ω) critical points in S−λ . Moreover, by Lemma 2.6 and S+

λ ∩ S
−
λ = ∅ we

complete the proof. �
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