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EXISTENCE OF TWO POSITIVE SOLUTIONS FOR A
SINGULAR NEUMANN PROBLEM

JIA-FENG LIAO, JIU LIU, CHUN-LEI TANG, PENG ZHANG

Abstract. We obtain two positive solutions for Neumann boundary problems
with singularity and subcritical term, by using the Nehari method.

1. Introduction and main result

In this article, we consider the Neumann problem

−∆u+ u = λP (x)up +Q(x)u−γ , in Ω,
u > 0, in Ω,

∂u

∂ν
= 0, on ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary ∂Ω and λ is a
positive parameter. The exponent p of the superlinear satisfies 1 < p < 2∗−1, where
2∗ = 2N

N−2 is the critical Sobolev exponent for the embedding of H1(Ω) into Lq(Ω)
for every q ∈ [1, 2N

N−2 ]. The exponent γ of the singular term satisfies 0 < γ < 1.
The coefficient functions P ∈ Lr1(Ω), Q ∈ Lr2(Ω) are nonzero and nonnegative,
where r1 >

2∗

2∗−p−1 and r2 >
2∗

2∗+γ−1 are two constants.
A function u ∈ H1(Ω) is called a weak solution of problem (1.1) if u(x) > 0 in

Ω satisfies∫
Ω

(
(∇u,∇φ) + uφ− λP (x)upφ−Q(x)u−γφ

)
dx = 0, ∀φ ∈ H1(Ω), (1.2)

where H1(Ω) is a Sobolev space equipped with the norm ‖u‖ = [
∫

Ω
(|∇u|2 +

u2)dx]1/2. This is the space we work on in this paper.
The Dirichlet boundary value problem

−∆u = up + λu−γ , in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,

(1.3)

have been extensively studied in [2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 19, 20].
In particular, in [3] it has been shown that problem (1.3) possesses at least one
solution for λ > 0 small enough, and has no solution when λ is large. This result
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has been extended in [4, 8, 11, 12, 13, 14, 15, 17, 18, 19, 20]. When the exponent
satisfies 0 < p < 1, similar results of [3] have been obtained in [7, 10, 18, 19, 20].
Especially, Shi and Yao in [10] studied the case where the coefficient of the singular
term changes sign. Using sub-supersolution method, they proved that problem
(1.3) has at least one solution for λ large enough and has no solution for λ small
enough. When the exponent satisfies 1 < p < 2∗ − 1, the multiplicity of positive
solutions has been considered in [14] and [12]. They obtained two positive solutions
for problem (1.3) when λ > 0 is small enough by the Nehari manifold. When the
exponent is the critical exponent, the existence and the multiplicity of solutions
have been studied in [8, 11, 13, 15, 17].

Recently, Chabrowski in [1] studied the Neumann problems with singular super-
linear nonlinearities; that is,

−∆u = P (x)up + λQ(x)u−γ , in Ω,
u > 0, in Ω,

∂u

∂ν
= 0, on ∂Ω,

where P ∈ C(Ω) changes sign on Ω and satisfies∫
Ω

P (x)dx < 0,

and Q ∈ C(Ω) with Q > 0. When 1 < p < 2∗ − 1 and 0 < γ < min{p − 1, 1}, he
has obtained two positive solutions for λ > 0 small enough by approximation and
variational methods.

Inspired by [14] and [1], we study problem (1.1) with 1 < p < 2∗ − 1 and
0 < γ < 1, and obtain two positive solutions when λ > 0 is small by the Nehari
method. Moreover, we obtain uniform lower bounds for λ, namely Tp,γ .

We denote by | · |q the usual Lq-norm. Let S be the best Sobolev constant and
Tp,γ be a constant, respectively

S := inf
{∫

Ω
(|∇u|2 + u2)dx

(
∫

Ω
|u|2∗dx)

2
2∗

: u ∈ H1(Ω), u 6= 0
}
, (1.4)

Tp,γ =
1 + γ

p− 1
( p− 1
p+ γ

) p+γ
1+γ

S
p+γ
1+γ

|P |r1 |Q|
p−1
1+γ
r2

|Ω|−
r1r2(p+γ)(2∗−2)−2∗[r1(p−1)+r2(1−γ)]

2∗r1r2(1+γ) .

For all u ∈ H1(Ω), we define

Iλ(u) =
1
2

∫
Ω

(|∇u|2 + |u|2)dx− λ

p+ 1

∫
Ω

P (x)|u|p+1dx− 1
1− γ

∫
Ω

Q(x)|u|1−γdx.

It is well known that the singular term leads to the functional Iλ 6∈ C1(H1(Ω), R).
However, we may obtain the multiplicity of solutions for problem (1.1) by inves-
tigating suitable minimization problems for the functional Iλ. Notice that u is a
weak solution of problem (1.1), then u > 0 in Ω and satisfies the equation∫

Ω

(|∇u|2 + u2)dx− λ
∫

Ω

P (x)up+1dx−
∫

Ω

Q(x)u1−γdx = 0.
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So if such a solution exists then it must lie in Nehari manifold Λ, which is defined
by

Λ =
{
u ∈ H1(Ω) :

∫
Ω

(|∇u|2 + u2 − λP (x)|u|p+1 −Q(x)|u|1−γ)dx = 0
}
.

To obtain the multiplicity of positive solutions, we split Λ = Λ+ ∪ Λ0 ∪ Λ− where

Λ+ =
{
u ∈ Λ : (1 + γ)

∫
Ω

(|∇u|2 + u2)dx− λ(p+ γ)
∫

Ω

P (x)|u|p+1dx > 0
}
,

Λ0 =
{
u ∈ Λ : (1 + γ)

∫
Ω

(|∇u|2 + u2)dx− λ(p+ γ)
∫

Ω

P (x)|u|p+1dx = 0
}
,

Λ− =
{
u ∈ Λ : (1 + γ)

∫
Ω

(|∇u|2 + u2)dx− λ(p+ γ)
∫

Ω

P (x)|u|p+1dx < 0
}
.

When λ ∈ (0, Tp,γ), we can prove that Λ± 6= ∅ and Λ0 = {0}. Then we can find two
minimizers of Iλ on Λ+ and Λ− respectively, which are local minimizers of Iλ on
Λ. Finally, we prove that a local minimizer of Iλ on Λ is indeed a positive solution
of (1.1).

The main result can be described as follows.

Theorem 1.1. Suppose P ∈ Lr1(Ω), Q ∈ Lr2(Ω) are nonzero and nonnegative,
1 < p < 2∗−1 and 0 < γ < 1, then problem (1.1) has at least two positive solutions
for all λ ∈ (0, Tp,γ), where r1 >

2∗

2∗−p−1 and r2 >
2∗

2∗+γ−1 are two constants.

To the best knowledge, up to now there is no study of the exact estimate of λ such
that problem (1.1) has at least two positive solutions. For the case 1 < p < 2∗ − 1,
Chabrowski obtained two positive solutions restricting the exponent of singular
term with 0 < γ < min{p− 1, 1} in [1]. Moreover, we overcome the difficulty of the
singular term by Nehari manifold, while [1] used perturbation method to conquer
this difficulty.

This article is organized as follow: in Section 2, we give some preliminaries
which will be used to prove out main result, and the proof of Theorem 1.1 is given
in Section 3.

2. Preliminaries

In this section, we give some lemmas in preparation for the proof of our main
result.

Lemma 2.1. Suppose λ ∈ (0, Tp,γ), then Λ± 6= ∅ and Λ0 = {0}. Moreover, Λ− is
closed for all 0 < λ < Tp,γ .

Proof. According to the assumptions on P and Q, there exists u ∈ H1(Ω) such that∫
Ω
P (x)|u|p+1dx > 0 and

∫
Ω
Q(x)|u|1−γdx > 0. Let Φ ∈ C(R+, R) satisfy

Φ(t) = t1−p‖u‖2 − t−γ−p
∫

Ω

Q(x)|u|1−γdx,

then
Φ′(t) = (1− p)t−p‖u‖2 + (p+ γ)t−γ−p−1

∫
Ω

Q(x)|u|1−γdx.

Let Φ′(t) = 0, we can verify

tmax =
[ (p+ γ)

∫
Ω
Q(x)|u|1−γdx

(p− 1)‖u‖2
]1/(1+γ)

.
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Easy computations show that Φ′(t) > 0 for all 0 < t < tmax and Φ′(t) < 0 for all
t > tmax. Thus Φ(t) attains its maximum at tmax, that is,

Φ(tmax) =
1 + γ

p− 1
( p− 1
p+ γ

) p+γ
1+γ

‖u‖
2(p+γ)
1+γ( ∫

Ω
Q(x)|u|1−γdx

) p−1
1+γ

.

From (1.4), we have
S|u|22∗ < ‖u‖2, (2.1)

and by Hölder’s inequality, one has∫
Ω

P (x)|u|p+1dx ≤ |P |r1 |u|
p+1
2∗ |Ω|

r1(2∗−p−1)−2∗
r12∗ , (2.2)∫

Ω

Q(x)|u|1−γdx ≤ |Q|r2 |u|
1−γ
2∗ |Ω|

r2(2∗+γ−1)−2∗
r22∗ . (2.3)

Then from (2.1)-(2.3), one gets

Φ(tmax)− λ
∫

Ω

P (x)|u|p+1dx

>
1 + γ

p− 1
( p− 1
p+ γ

) p+γ
1+γ

(S|u|22∗)
p+γ
1+γ

(|Q|r2 |u|
1−γ
2∗ |Ω|

r2(2∗+γ−1)−2∗
r22∗ )

p−1
1+γ

− λ|P |r1 |u|
p+1
2∗ |Ω|

r1(2∗−p−1)−2∗
r12∗

=
[1 + γ

p− 1
( p− 1
p+ γ

) p+γ
1+γ

S
p+γ
1+γ(

|Q|r2 |Ω|
r2(2∗+γ−1)−2∗

r22∗
) p−1

1+γ

− λ|P |r1 |Ω|
r1(2∗−p−1)−2∗

r12∗
]
|u|p+1

2∗

= |P |r1 |Ω|
r1(2∗−p−1)−2∗

r12∗ (Tp,γ − λ)|u|p+1
2∗ > 0,

(2.4)

for all λ ∈ (0, Tp,γ). Consequently, there exist t+0 and t−0 satisfying 0 < t+0 < tmax <
t−0 such that

Φ(t+0 ) = λ

∫
Ω

P (x)|u|p+1dx = Φ(t−0 )

and
Φ′(t+0 ) < 0 < Φ′(t−0 );

that is, t+0 u ∈ Λ+ and t−0 u ∈ Λ−. Thus Λ± are non-empty whenever λ ∈ (0, Tp,γ).
Next, we prove that Λ0 = {0} for all λ ∈ (0, Tp,γ). By contradiction, suppose

that there exists u0 ∈ Λ0 and u0 6= 0. Then it follows that

(1 + γ)‖u0‖2 − λ(p+ γ)
∫

Ω

P (x)|u0|p+1dx = 0,

and consequently

0 = ‖u0‖2 − λ
∫

Ω

P (x)|u0|p+1dx−
∫

Ω

Q(x)|u0|1−γdx

=
p− 1
p+ γ

‖u0‖2 −
∫

Ω

Q(x)|u0|1−γdx.
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From (2.4), we have

0 <
[1 + γ

p− 1
( p− 1
p+ γ

) p+γ
1+γ

S
p+γ
1+γ(

|Q|r2 |Ω|
r2(2∗+γ−1)−2∗

r22∗
) p−1

1+γ

− λ|P |r1 |Ω|
r1(2∗−p−1)−2∗

r12∗
]
|u0|p+1

2∗

<
1 + γ

p− 1
( p− 1
p+ γ

) p+γ
1+γ

‖u0‖
2(p+γ)
1+γ( ∫

Ω
Q(x)|u0|1−γdx

) p−1
1+γ

− λ
∫

Ω

P (x)|u0|p+1dx

=
1 + γ

p− 1
( p− 1
p+ γ

) p+γ
1+γ

‖u0‖
2(p+γ)
1+γ(

p−1
p+γ ‖u0‖2

) p−1
1+γ

− 1 + γ

p+ γ
‖u0‖2 = 0,

for all λ ∈ (0, Tp,γ), which is impossible. Thus Λ0 = {0} for λ ∈ (0, Tp,γ).
Finally, we prove that Λ− is closed for all 0 < λ < Tp,γ . That is, suppose

{un} ⊂ Λ− such that un → u in H1(Ω) as n→∞, then u ∈ Λ−. Since {un} ⊂ Λ−,
from the definition of Λ−, one has

‖un‖2 − λ
∫

Ω

P (x)|un|p+1dx−
∫

Ω

Q(x)|un|1−γdx = 0,

(1 + γ)‖un‖2 − λ(p+ γ)
∫

Ω

P (x)|un|p+1dx < 0, (2.5)

and consequently

‖u‖2 − λ
∫

Ω

P (x)|u|p+1dx−
∫

Ω

Q(x)|u|1−γdx = 0,

(1 + γ)‖u‖2 − λ(p+ γ)
∫

Ω

P (x)|u|p+1dx ≤ 0,

thus u ∈ Λ0 ∪ Λ−. If u ∈ Λ0, combining Λ0 = {0} it follows that u = 0. However,
from (2.1), (2.2) and (2.5), one gets

|un|2∗ ≥
[ S(1 + γ)
λ(p+ γ)|P |r1

|Ω|
r1(2∗−p−1)−2∗

r12∗
]1/(p−1)

, ∀un ∈ Λ−, (2.6)

which contradicts u = 0. Thus u ∈ Λ− for λ ∈ (0, Tp,γ). Hence the proof is
complete. �

Lemma 2.2. Given u ∈ Λ− (respectively Λ+) with u > 0, for all ϕ ∈ H1(Ω),
ϕ > 0, there exist ε > 0 and a continuous function t = t(s) > 0, s ∈ R, |s| < ε
satisfying

t(0) = 1, t(s)(u+ sϕ) ∈ Λ− (respectively Λ+), ∀s ∈ R, |s| < ε.

Proof. We define f : R× R→ R by:

f(t, s) = tγ+1

∫
Ω

[
|∇(u+ sϕ)|2 + (u+ sϕ)2

]
dx− λtp+γ

∫
Ω

P (x)(u+ sϕ)p+1dx

−
∫

Ω

Q(x)(u+ sϕ)1−γdx.

Then

ft(t, s) = (γ + 1)tγ
∫

Ω

[
|∇(u+ sϕ)|2 + (u+ sϕ)2

]
dx
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− λ(p+ γ)tp+γ−1

∫
Ω

P (x)(u+ sϕ)p+1dx,

is continuous in R× R. Since u ∈ Λ− ⊂ Λ, we have f(1, 0) = 0, and moreover

ft(1, 0) = (1 + γ)
∫

Ω

(|∇u|2 + u2)dx− λ(p+ γ)
∫

Ω

P (x)up+1dx < 0.

Then by applying the implicit function theorem to f at the point (1, 0), we obtain
ε > 0 and a continuous function t = t(s) > 0, s ∈ R, |s| < ε satisfying that

t(0) = 1, t(s)(u+ sϕ) ∈ Λ, ∀s ∈ R, |s| < ε.

Moreover, taking ε > 0 possibly smaller (ε < ε), we obtain

t(s)(u+ sϕ) ∈ Λ−, ∀s ∈ R, |s| < ε.

The case u ∈ Λ+ may be obtained in the same way. Thus the proof is complete. �

3. Proof of main theorem

For all u ∈ Λ, we have

Iλ(u) =
1
2
‖u‖2 − λ

p+ 1

∫
Ω

P (x)|u|p+1dx− 1
1− γ

∫
Ω

Q(x)|u|1−γdx

=
(1

2
− 1
p+ 1

)
‖u‖2 −

( 1
1− γ

− 1
p+ 1

) ∫
Ω

Q(x)|u|1−γdx.

Since 1 < p < 2∗ − 1 and 0 < γ < 1, from (2.3) and (2.1), we obtain that Iλ is
coercive and bounded below on Λ. According to Lemma 2.1 for all λ ∈ (0, Tp,γ)

m+ = inf
u∈Λ+

Iλ(u), m− = inf
u∈Λ−

Iλ(u)

are well defined. Moreover, for all u ∈ Λ+, it follows that

(1 + γ)‖u‖2 − λ(p+ γ)
∫

Ω

P (x)|u|p+1dx > 0,

and consequently, since 2 < p+ 1 < 2∗, 0 < γ < 1 and u 6≡ 0, we have

Iλ(u) =
1
2
‖u‖2 − λ

p+ 1

∫
Ω

P (x)|u|p+1dx− 1
1− γ

∫
Ω

Q(x)|u|1−γdx

=
(1

2
− 1

1− γ
)
‖u‖2 + λ

( 1
1− γ

− 1
p+ 1

) ∫
Ω

P (x)|u|p+1dx

< − 1 + γ

2(1− γ)
‖u‖2 +

1 + γ

(1− γ)(p+ 1)
‖u‖2

= −1 + γ

1− γ
(1

2
− 1
p+ 1

)
‖u‖2 < 0.

Thus m+ = infu∈Λ+ Iλ(u) < 0 for all λ ∈ (0, Tp,γ).

Proof of Theorem 1.1. Let λ ∈ (0, Tp,γ). The following two steps complete the
proof of Theorem 1.1.
Step 1. We prove that there exists a positive solution of (1.1) in Λ+. Applying
Ekeland’s variational principle to the minimization problem m+ = infu∈Λ+ Iλ(u),
there exists a sequence {un} ⊂ Λ+ with the following properties:

(i) Iλ(un) < m+ + 1
n ,

(ii) Iλ(u) ≥ Iλ(un)− 1
n‖u− un‖, for all u ∈ Λ+
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Since Iλ(u) = Iλ(|u|), we can assume from the beginning that un(x) ≥ 0 for all
x ∈ Ω. Obviously, {un} is bounded in H1(Ω), going if necessary to a subsequence,
still denoted by {un}, there exists u∗ ≥ 0 such that

un ⇀ u∗, weakly in H1(Ω),

un → u∗, strongly in Ls(Ω), 1 ≤ s < 2∗,

un(x)→ u∗(x), a.e. in Ω,

as n→∞. Now we will prove that u∗ is a positive solution of problem (1.1).
Firstly, we prove that u∗(x) 6≡ 0 in Ω. By Vitali’s theorem (see [9, pp. 133]), we

claim that

lim
n→∞

∫
Ω

Q(x)|un|1−γdx =
∫

Ω

Q(x)|u∗|1−γdx. (3.1)

Indeed, we only need to prove that {
∫

Ω
Q(x)|un|1−γdx, n ∈ N} is equi-absolutely-

continuous. Note that {un} is bounded, by the Sobolev embedding theorem, so
exists a constant C > 0 such that |un|2∗ ≤ C < ∞. From (2.3), for every ε > 0,
setting

δ =
( ε

|Q|r2C1−γ

) r22∗
r2(2∗+γ−1)−2∗

,

when E ⊂ Ω with mesE < δ, we have∫
E

Q(x)|un|1−γdx ≤ |Q|r2 |u|
1−γ
2∗

(
measE

) r2(2∗+γ−1)−2∗
r22∗

≤ |Q|r2C1−γδ
r2(2∗+γ−1)−2∗

r22∗ < ε.

Thus, our claim is true. Similarly,

lim
n→∞

∫
Ω

P (x)|un|p+1dx =
∫

Ω

P (x)|u∗|p+1dx. (3.2)

By the weakly lower semicontinuity of the norm, combining (3.1) and (3.2), we have

Iλ(u∗) =
1
2
‖u∗‖2 −

λ

p+ 1

∫
Ω

P (x)|u∗|p+1dx− 1
1− γ

∫
Ω

Q(x)|u∗|1−γdx

≤ lim inf
n→∞

[1
2
‖un‖2 −

λ

p+ 1

∫
Ω

P (x)|un|p+1dx

− 1
1− γ

∫
Ω

Q(x)|un|1−γdx
]

= lim inf
n→∞

Iλ(un) = m+ < 0,

which implies that u∗(x) 6≡ 0 in Ω.
Secondly, we prove that u∗(x) > 0 a.e. in Ω. From un ∈ Λ+, we can claim that

there exists a constant C1 > 0 such that

(1 + γ)‖un‖2 − λ(p+ γ)
∫

Ω

P (x)|un|p+1dx ≥ C1. (3.3)

In fact, (3.3) is equivalent to

(1 + γ)
∫

Ω

Q(x)|un|1−γdx− λ(p− 1)
∫

Ω

P (x)|un|p+1dx ≥ C1. (3.4)
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Since un ∈ Λ+, one has

(1 + γ)
∫

Ω

Q(x)|un|1−γdx− λ(p− 1)
∫

Ω

P (x)|un|p+1dx > 0,

and consequently, from (3.1) and (3.2) it follows that

lim
n→∞

[
(1 + γ)

∫
Ω

Q(x)|un|1−γdx− λ(p− 1)
∫

Ω

P (x)|un|p+1dx
]

= (1 + γ)
∫

Ω

Q(x)|u∗|1−γdx− λ(p− 1)
∫

Ω

P (x)|u∗|p+1dx ≥ 0.

Thus we only need to prove that

(1 + γ)
∫

Ω

Q(x)|u∗|1−γdx− λ(p− 1)
∫

Ω

P (x)|u∗|p+1dx > 0. (3.5)

By contradiction, we assume that

(1 + γ)
∫

Ω

Q(x)|u∗|1−γdx− λ(p− 1)
∫

Ω

P (x)|u∗|p+1dx = 0. (3.6)

Since

‖un‖2 − λ
∫

Ω

P (x)|un|p+1dx−
∫

Ω

Q(x)|un|1−γdx = 0, (3.7)

by the weakly lower semicontinuity of the norm, and combining (3.1)-(3.2) and
(3.6), we have

0 ≥ ‖u∗‖2 − λ
∫

Ω

P (x)|u∗|p+1dx−
∫

Ω

Q(x)|u∗|1−γdx

= ‖u∗‖2 −
p+ γ

p− 1

∫
Ω

Q(x)|u∗|1−γdx

= ‖u∗‖2 −
λ(p+ γ)

1 + γ

∫
Ω

P (x)|u∗|p+1dx,

(3.8)

and consequently, from (2.4) one has

0 <
[1 + γ

p− 1
( p− 1
p+ γ

) p+γ
1+γ

S
p+γ
1+γ

(|Q|r2 |Ω|
r2(2∗+γ−1)−2∗

r22∗ )
p−1
1+γ

− λ|P |r1 |Ω|
r1(2∗−p−1)−2∗

r12∗
]
|u∗|p+1

2∗

<
1 + γ

p− 1
( p− 1
p+ γ

) p+γ
1+γ

‖u∗‖
2(p+γ)
1+γ( ∫

Ω
Q(x)|u∗|1−γdx

) p−1
1+γ

− λ
∫

Ω

P (x)|u∗|p+1dx

=
1 + γ

p− 1
( p− 1
p+ γ

) p+γ
1+γ

‖u∗‖
2(p+γ)
1+γ(

p−1
p+γ ‖u∗‖2

) p−1
1+γ

− 1 + γ

p+ γ
‖u∗‖2 = 0

for all λ ∈ (0, Tp,γ), which is impossible. So (3.5) is obtained and our claim is true.
Applying Lemma 2.2 with u = un, and ϕ ∈ H1(Ω), ϕ ≥ 0, t > 0 small enough,
we find a sequence of continuous functions tn = tn(s) such that tn(0) = 1 and
tn(s)(un + sϕ) ∈ Λ+. Noting that tn(s)(un + sϕ) ∈ Λ+ and un ∈ Λ+, one has

t2n(s)‖un + sϕ‖2 − λtp+1
n (s)

∫
Ω

P (x)|un + sϕ|p+1dx
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− t1−γn (s)
∫

Ω

Q(x)(un + sϕ)1−γdx = 0,

consequently, from (3.7) it follows that

0 = [t2n(s)− 1]‖un + sϕ‖2 + (‖un + sϕ‖2 − ‖un‖2)

− λ[tp+1
n (s)− 1]

∫
Ω

P (x)|un + sϕ|p+1dx

− λ
∫

Ω

P (x)(|un + sϕ|p+1 − |un|p+1)dx

− [t1−γn (s)− 1]
∫

Ω

Q(x)(un + sϕ)1−γdx

−
∫

Ω

Q(x)[(un + sϕ)1−γ − |un|1−γ ]dx

≤ [t2n(s)− 1]‖un + sϕ‖2 + (‖un + sϕ‖2 − ‖un‖2)

− λ[tp+1
n (s)− 1]

∫
Ω

P (x)|un + sϕ|p+1dx

− λ
∫

Ω

P (x)(|un + sϕ|p+1 − |un|p+1)dx

− [t1−γn (s)− 1]
∫

Ω

Q(x)(un + sϕ)1−γdx,

then dividing by s > 0, we have

0 ≤
[
(tn(s) + 1)‖un + sϕ‖2 − λt

p+1
n (s)− 1
tn(s)− 1

∫
Ω

P (x)|un + sϕ|p+1dx

− t1−γn (s)− 1
tn(s)− 1

∫
Ω

Q(x)(un + sϕ)1−γdx
] tn(s)− 1

s
+ s‖ϕ‖2

+ 2
∫

Ω

((∇un,∇ϕ) + unϕ)dx− λ
∫

Ω

P (x)
|un + sϕ|p+1 − |un|p+1

s
dx.

(3.9)

Let

An(s) =
tn(s)− 1

s
, (3.10)

K1,n(s) = (tn(s) + 1)‖un + sϕ‖2 − λt
p+1
n (s)− 1
tn(s)− 1

∫
Ω

P (x)|un + sϕ|p+1dx

− t1−γn (s)− 1
tn(s)− 1

∫
Ω

Q(x)(un + sϕ)1−γdx,

and

K2,n(s) = s‖ϕ‖2 + 2
∫

Ω

((∇un,∇ϕ) + unϕ)dx

− λ
∫

Ω

P (x)
|un + sϕ|p+1 − |un|p+1

s
dx.

Then, according to (3.7) and (3.3) we have

lim
s→0+

K1,n(s) = 2‖un‖2 − λ(p+ 1)
∫

Ω

P (x)up+1
n dx− (1− γ)

∫
Ω

Q(x)u1−γ
n dx
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= (1 + γ)‖un‖2 − λ(p+ γ)
∫

Ω

P (x)up+1
n dx

=: K1,n ≥ C1 > 0,

and

lim
s→0+

K2,n(s) = 2
∫

Ω

((∇un,∇ϕ) + unϕ)dx− λ(p+ 1)
∫

Ω

P (x)upnϕdx =: K2,n.

Thus, from (3.9) and the continuity of K1,n(s), one obtains

An(s) ≥ −K2,n(s)
K1,n(s)

,

for s > 0 small. Since {un} is bounded in H1(Ω) there exists a positive constant
C2 such that |K2,n| < C2 for all n ∈ N+. Therefore,

lim inf
s→0+

An(s) ≥ −K2,n

K1,n
≥ −|K2,n|

K1,n
≥ −C2

C1
(3.11)

By the subadditivity of norm we have

‖tn(s)(un + sϕ)− un‖ ≤ |tn(s)− 1| · ‖un‖+ stn(s)‖ϕ‖.

Thus from condition (ii) it follows that

|tn(s)− 1| ‖un‖
n

+ stn(s)
‖ϕ‖
n

≥ Iλ(un)− Iλ[tn(s)(un + sϕ)]

= − 1 + γ

2(1− γ)
‖un‖2 + λ

p+ γ

(p+ 1)(1− γ)

∫
Ω

P (x)up+1
n dx

+
1 + γ

2(1− γ)
t2n(s)‖un + sϕ‖2 − λ p+ γ

(p+ 1)(1− γ)
tp+1
n (s)

∫
Ω

P (x)|un + sϕ|p+1dx

=
1 + γ

2(1− γ)
(‖un + sϕ‖2 − ‖un‖2) +

1 + γ

2(1− γ)
[tn(s)− 1]‖un + sϕ‖2

− λ p+ γ

(p+ 1)(1− γ)
tp+1
n (s)

∫
Ω

P (x)(|un + sϕ|p+1 − |un|p+1)dx

− λ p+ γ

(p+ 1)(1− γ)
[tp+1
n (s)− 1]

∫
Ω

P (x)up+1
n dx.

Then dividing by s > 0, it follows that

|tn(s)− 1|
s

‖un‖
n

+ tn(s)
‖ϕ‖
n

≥ 1
1− γ

[1 + γ

2
‖un + sϕ‖2

− λp+ γ

p+ 1
tp+1
n (s)− 1
tn(s)− 1

∫
Ω

P (x)up+1
n dx

] tn(s)− 1
s

+
1 + γ

2(1− γ)
‖un + sϕ‖2 − ‖un‖2

s

− λ p+ γ

(p+ 1)(1− γ)
tp+1
n (s)

∫
Ω

P (x)
|un + sϕ|p+1 − |un|p+1

s
dx.

(3.12)
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Let

K3,n(s) =
1 + γ

2
‖un + sϕ‖2 − λp+ γ

p+ 1
tp+1
n (s)− 1
tn(s)− 1

∫
Ω

P (x)up+1
n dx,

and

K4,n(s) =
1 + γ

2(1− γ)
‖un + sϕ‖2 − ‖un‖2

s

− λ p+ γ

(p+ 1)(1− γ)
tp+1
n (s)

∫
Ω

P (x)
|un + sϕ|p+1 − |un|p+1

s
dx.

Then from (3.7) and (3.3), one has

lim
s→0+

K3,n(s) = (1 + γ)‖un‖2 − λ(p+ γ)
∫

Ω

P (x)up+1
n dx = K1,n ≥ C1 > 0,

and

lim
s→0+

K4,n(s) =
1 + γ

1− γ

∫
Ω

((∇un,∇ϕ) + unϕ)dx− λp+ γ

1− γ

∫
Ω

P (x)upnϕdx =: K4,n.

From (3.12) we have

|An(s)| ‖un‖
n

+ tn(s)
‖ϕ‖
n
≥ K3,n(s)An(s) +K4,n(s).

If An(s) ≥ 0, then

An(s) ≤
tn(s)‖ϕ‖n −K4,n(s)

K3,n(s)− ‖un‖n
≤
tn(s)‖ϕ‖n + |K4,n(s)|
K3,n(s)− ‖un‖n

.

If An(s) < 0, then

An(s) ≤
tn(s)‖ϕ‖n −K4,n(s)

K3,n(s) + ‖un‖
n

≤
tn(s)‖ϕ‖n + |K4,n(s)|
K3,n(s) + ‖un‖

n

.

Hence

An(s) ≤
tn(s)‖ϕ‖n + |K4,n(s)|
K3,n(s)− ‖un‖n

,

and consequently, for n large enough we have

lim sup
s→0+

An(s) ≤
‖ϕ‖
n + |K4,n|
K1,n − ‖un‖n

≤ 2
1 + |K4,n|
K1,n

≤ 2
1 + C3

C1
, (3.13)

where C3 > 0 is a constant such that |K4,n| < C3 by the boundedness of {un}.
Thus, according to (3.11) and (3.13), there exists a positive constant C4 such that

lim sup
s→0+

|An(s)| ≤ C4 (3.14)

for n large enough.
By the subadditivity of norm, from (ii), we obtain

1
n

[|tn(s)− 1| · ‖un‖+ stn(s)‖ϕ‖]

≥ 1
n
‖tn(s)(un + sϕ)− un‖

≥ Iλ(un)− Iλ[tn(s)(un + sϕ)]
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= − t
2
n(s)− 1

2
‖un‖2 + λ

tp+1
n (s)− 1
p+ 1

∫
Ω

P (x)(un + sϕ)p+1dx

+
t1−γn (s)− 1

1− γ

∫
Ω

Q(x)(un + sϕ)1−γdx+
t2n(s)

2
(
‖un‖2 − ‖un + sϕ‖2

)
+

λ

p+ 1

∫
Ω

P (x)
[
(un + sϕ)p+1 − up+1

n

]
dx

+
1

1− γ

∫
Ω

Q(x)
[
(un + sϕ)1−γ − u1−γ

n

]
dx,

and dividing by s > 0, we have
1
n

(|An(s)| · ‖un‖+ ‖ϕ‖)

≥ −
[ tn(s) + 1

2
‖un‖2 − λ

tp+1
n (s)− 1

(p+ 1)(tn(s)− 1)

∫
Ω

P (x)(un + sϕ)p+1dx

− t1−γn (s)− 1
(1− γ)(tn(s)− 1)

∫
Ω

Q(x)(un + sϕ)1−γdx
]
An(s)

+
t2n(s)

2
‖un‖2 − ‖un + sϕ‖2

s

+
λ

p+ 1

∫
Ω

P (x)
(un + sϕ)p+1 − up+1

n

s
dx

+
1

1− γ

∫
Ω

Q(x)
(un + sϕ)1−γ − u1−γ

n

s
dx.

(3.15)

Let

K5,n(s) =
tn(s) + 1

2
‖un‖2 − λ

tp+1
n (s)− 1

(p+ 1)(tn(s)− 1)

∫
Ω

P (x)(un + sϕ)p+1dx

− t1−γn (s)− 1
(1− γ)(tn(s)− 1)

∫
Ω

Q(x)(un + sϕ)1−γdx,

and

K6,n(s) =
t2n(s)

2
‖un‖2 − ‖un + sϕ‖2

s
+

λ

p+ 1

∫
Ω

P (x)
(un + sϕ)p+1 − up+1

n

s
dx.

Then from (3.7), we have

lim
s→0+

K5,n(s) = ‖un‖2 − λ
∫

Ω

P (x)up+1
n dx−

∫
Ω

Q(x)u1−γ
n dx = 0.

and

lim
s→0+

K6,n(s) = −
∫

Ω

((∇un,∇ϕ) + unϕ)dx+ λ

∫
Ω

P (x)upnϕdx.

Thus from (3.15) we deduce

1
1− γ

∫
Ω

Q(x)
(un + sϕ)1−γ − u1−γ

n

s
dx

≤ |K5,n(s)| · |An(s)| −K6,n(s) +
|An(s)| · ‖un‖+ ‖ϕ‖

n
.

(3.16)

Since
Q(x)[(un + sϕ)1−γ − u1−γ

n ] ≥ 0, ∀x ∈ Ω, ∀s > 0,
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then by Fatou’s Lemma we have∫
Ω

Q(x)u−γn ϕdx ≤ lim inf
s→0+

1
1− γ

∫
Ω

Q(x)
(un + sϕ)1−γ − u1−γ

n

s
dx.

Consequently, combining with (3.16) and (3.14), it follows that∫
Ω

Q(x)u−γn ϕdx ≤
∫

Ω

((∇un,∇ϕ) + unϕ)dx− λ
∫

Ω

P (x)upnϕdx

+
C4‖un‖+ ‖ϕ‖

n

for n large enough which implies that

lim inf
n→∞

∫
Ω

Q(x)u−γn ϕdx ≤
∫

Ω

((∇u∗,∇ϕ) + u∗ϕ)dx− λ
∫

Ω

P (x)up∗ϕdx.

Then applying Fatou’s Lemma again, one obtains∫
Ω

Q(x)u−γ∗ ϕdx ≤
∫

Ω

((∇u∗,∇ϕ) + u∗ϕ)dx− λ
∫

Ω

P (x)up∗ϕdx;

that is, ∫
Ω

((∇u∗,∇ϕ) + u∗ϕ− λP (x)up∗ϕ−Q(x)u−γ∗ ϕ)dx ≥ 0, (3.17)

for all ϕ ∈ H1(Ω), ϕ ≥ 0. This means u∗ satisfies in the weak sense that

−∆u∗ + u∗ ≥ 0,∀x ∈ Ω.

Since u∗ ≥ 0 and u∗ 6≡ 0 in Ω, by the strong maximum principle we have

u∗(x) > 0, a.e. x ∈ Ω. (3.18)

Thirdly, we prove that u∗ ∈ Λ+. On one hand, from (3.18), choosing ϕ = u∗ in
(3.17), one has

‖u∗‖2 ≥ λ
∫

Ω

P (x)up+1
∗ dx+

∫
Ω

Q(x)u1−γ
∗ dx.

On the other hand, it follows from (3.8) that

‖u∗‖2 ≤ λ
∫

Ω

P (x)up+1
∗ dx+

∫
Ω

Q(x)u1−γ
∗ dx.

Thus

‖u∗‖2 = λ

∫
Ω

P (x)up+1
∗ dx+

∫
Ω

Q(x)u1−γ
∗ dx, (3.19)

and this implies u∗ ∈ Λ. Moreover from (3.7), one gets

lim
n→∞

‖un‖ = λ

∫
Ω

P (x)up+1
∗ dx+

∫
Ω

Q(x)u1−γ
∗ dx.

Hence according to (3.19), we have un → u∗ in H1(Ω) as n → ∞. In particular,
combining (3.19) with (3.5), we obtain

(1 + γ)‖u∗‖2 − λ(p+ γ)
∫

Ω

P (x)|u∗|p+1dx > 0,

and therefore u∗ ∈ Λ+.
Finally, we prove that u∗ is a solution of problem (1.1); that is, u∗ satisfies (1.2).

In fact, we only need prove that (3.17) is true for all ϕ ∈ H1(Ω). Our proof is
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inspired by [14]. For the convenience of the reader, we sketch the main steps here.
Suppose φ ∈ H1(Ω) and t > 0. We define Ψ ∈ H1(Ω) by

Ψ ≡ (u∗ + tφ)+

where (u∗ + tφ)+ = max{u∗ + tφ, 0}. Obviously, Ψ ≥ 0, so we can replace ϕ with
Ψ in (3.17). Combining with (3.19) we deduce that

0 ≤
∫

Ω

(
(∇u∗,∇Ψ) + u∗Ψ− λP (x)up∗Ψ−Q(x)u−γ∗ Ψ

)
dx

=
∫
{x|u∗+tφ≥0}

[
(∇u∗,∇(u∗ + tφ)) + u∗(u∗ + tφ)− λP (x)up∗(u∗ + tφ)

]
dx

−
∫
{x|u∗+tφ≥0}

Q(x)u−γ∗ (u∗ + tφ)dx

=
(
‖u∗‖2 − λP (x)up+1

∗ −
∫

Ω

Q(x)|u∗|1−γdx
)

+ t

∫
Ω

(
(∇u∗,∇φ) + u∗φ− λP (x)up∗φ−Q(x)u−γ∗ φ

)
dx

−
∫
{x|u∗+tφ<0}

[
(∇u∗,∇(u∗ + tφ))− λP (x)up∗(u∗ + tφ)

]
dx

+
∫
{x|u∗+tφ<0}

Q(x)u−γ∗ (u∗ + tφ)dx

= t

∫
Ω

(
(∇u∗,∇φ) + u∗φ− λP (x)up∗φ−Q(x)u−γ∗ φ

)
dx

−
∫
{x|u∗+tφ<0}

[
(∇u∗,∇(u∗ + tφ))− λP (x)up∗(u∗ + tφ)

]
dx

+
∫
{x|u∗+tφ<0}

Q(x)u−γ∗ (u∗ + tφ)dx

≤ t
∫

Ω

(
(∇u∗,∇φ) + u∗φ− λP (x)up∗φ−Q(x)u−γ∗ φ

)
dx

− t
∫
{x|u∗+tφ<0}

(∇u∗,∇φ)dx.

Since the measure of the domain of integration {x : u∗ + tφ < 0} tends to zero as
t→ 0+, it follows that

∫
{x|u∗+tφ<0}(∇u∗,∇φ)dx→ 0 as t→ 0+. Dividing by t and

letting t→ 0+, we deduce that∫
Ω

(
(∇u∗,∇φ) + u∗φ− λP (x)up∗φ− u−γ∗ φ

)
dx ≥ 0.

We note that φ ∈ H1(Ω) is arbitrary, which implies that u∗ is a positive solution
of problem (1.1).
Step 2. We prove that there exists a positive solution of problem (1.1) in Λ−.
Similarly to Step 1, applying Ekeland’s variational principle to the minimization
problem m− = infu∈Λ− Iλ(u), there exists a sequence {wn} ⊂ Λ− with the following
properties:

(i) Iλ(wn) < m− + 1
n ,
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(ii) Iλ(w) ≥ Iλ(wn)− 1
n‖w − wn‖, for all w ∈ Λ−.

Since Iλ(u) = Iλ(|u|), we may assume that wn(x) ≥ 0 for all x ∈ Ω. Obviously,
{wn} is bounded in H1(Ω), going if necessary to a subsequence, still denoted by
{wn}, there exists u∗∗ ≥ 0 such that

wn ⇀ u∗∗, weakly in H1(Ω),

wn → u∗∗, strongly in Ls(Ω), 1 ≤ s < 2∗,

wn(x)→ u∗∗(x), a. e. in Ω,

as n→∞. Now we will prove that u∗∗ is a positive solution of problem (1.1).
First, we prove that u∗∗(x) 6≡ 0 in Ω. From (2.6), one gets

|wn|2∗ ≥
[ S(1 + γ)
λ(p+ γ)|P |r1

|Ω|
r1(2∗−p−1)−2∗

r12∗
]1/(p−1)

,

and we obtain u∗∗ ≥ 0 and u∗∗ 6≡ 0 in Ω.
Second, we prove that u∗∗(x) > 0 a.e. in Ω. Similarly to the arguments in Step

1, we claim that

(1 + γ)‖wn‖2 − λ(p+ γ)
∫

Ω

P (x)|wn|p+1dx ≤ −C5, n = 1, 2, · · · , (3.20)

where C5 > 0 is a constant. Since wn ∈ Λ, thus (3.20) is to

(1 + γ)
∫

Ω

Q(x)|wn|1−γdx− λ(p− 1)
∫

Ω

P (x)|wn|p+1dx ≤ −C5. (3.21)

From wn ∈ Λ−, we have

(1 + γ)
∫

Ω

Q(x)|wn|1−γdx− λ(p− 1)
∫

Ω

P (x)|wn|p+1dx < 0,

and combining with (3.1) and (3.2), it follows that

lim
n→∞

[
(1 + γ)

∫
Ω

Q(x)|wn|1−γdx− λ(p− 1)
∫

Ω

P (x)|wn|p+1dx
]

= (1 + γ)
∫

Ω

Q(x)|u∗∗|1−γdx− λ(p− 1)
∫

Ω

P (x)|u∗∗|p+1dx ≤ 0.

Thus we only need prove that

(1 + γ)
∫

Ω

Q(x)|u∗∗|1−γdx− λ(p− 1)
∫

Ω

P (x)|u∗∗|p+1dx < 0.

By repeating the proof of (3.5) in Step 1.
From Lemma 2.2, choosing u = wn, and ϕ ∈ H1(Ω), ϕ ≥ 0, t > 0 small enough,

we find a sequence of continuous functions tn = tn(s) such that tn(0) = 1 and
tn(s)(wn + sϕ) ∈ Λ−. Similarly to the arguments in Step 1, we also obtain that
there exists a constant C6 > 0, such that

lim sup
s→0+

|An(s)| ≤ C6 (3.22)

for n large enough. Here An(s) is also defined by (3.10). In the same manner in
Step 1, applying (ii) and (3.22), we have∫

Ω

(∇u∗∗∇ϕ+ u∗∗ϕ− λP (x)up∗∗ϕ−Q(x)u−γ∗∗ ϕ)dx ≥ 0, (3.23)
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for all ϕ ∈ H1(Ω), ϕ ≥ 0, which means u∗∗ satisfies in the weak sense that

−∆u∗∗ + u∗∗ ≥ 0, ∀x ∈ Ω.

Since u∗∗ ≥ 0 and u∗∗ 6≡ 0 in Ω, by the strong maximum principle, one has

u∗∗(x) > 0, a.e.x ∈ Ω. (3.24)

Finally, according to (3.23) and (3.24), we can repeat the arguments of Step 1,
and obtain that u∗∗ ∈ Λ− is a positive solution of problem (1.1). This complete
the proof of Theorem 1.1. �
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