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EXISTENCE OF SOLUTIONS TO NONLOCAL KIRCHHOFF
EQUATIONS OF ELLIPTIC TYPE VIA GENUS THEORY

NEMAT NYAMORADI, NGUYEN THANH CHUNG

Abstract. In this article, we study the existence and multiplicity of solutions

to the nonlocal Kirchhoff fractional equation“
a+ b

Z
R2N
|u(x)− u(y)|2K(x− y) dx dy

”
(−∆)su− λu = f(x, u(x)) in Ω,

u = 0 in RN \ Ω,

where a, b > 0 are constants, (−∆)s is the fractional Laplace operator, s ∈
(0, 1) is a fixed real number, λ is a real parameter and Ω is an open bounded

subset of RN , N > 2s, with Lipschitz boundary, f : Ω×R→ R is a continuous
function. The proofs rely essentially on the genus properties in critical point

theory.

1. Introduction

Recently, a great attention has been focused on the study of fractional and non-
local operators of elliptic type, both for the pure mathematical research and in
view of concrete real-world applications. This type of operators arises in a quite
natural way in many different contexts, such as, among the others, the thin obstacle
problem, optimization, finance, phase transitions, stratified materials, conservation
laws. The literature on non-local operators and on their applications is, therefore,
very interesting and, up to now, quite large, we refer the interested readers to
[7, 8, 9, 11, 15, 16, 17, 21, 22, 25].

In this article, we are concerned with a class of nonlocal Kirchhoff fractional
equations of the type

−
(
a+ b

∫
R2N
|u(x)− u(y)|2K(x− y) dx dy

)
LKu− λu = f(x, u(x)) in Ω,

u = 0 in RN \ Ω,
(1.1) e1.1

where Ω is an open bounded subset of RN with Lipschitz boundary, N > 2s with
s ∈ (0, 1), a, b > 0 are constants, f : Ω × R → R is a continuous function, λ is a
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parameter and

LKu(x) :=
∫

RN

(
u(x+ y) + u(x− y)− 2u(x)

)
K(y) dy, x ∈ RN , (1.2) e1.2

where K : RN \ {0} → (0,+∞) is a kernel function satisfying the following proper-
ties:

(K1) mK ∈ L1(RN ), where m(x) = min{|x|2, 1};
(K2) there exists θ > 0 such that K(x) ≥ θ|x|−(N+2s) for any x ∈ RN \ {0};
(K3) K(x) = K(−x) for any x ∈ RN \ {0}.

The homogeneous Dirichlet datum in (1.1) is given in RN \Ω and not simply on the
boundary ∂Ω, consistent with the nonlocal character of the kernel operator LK .

A typical model for K is given by the singular kernel K(x) = |x|−(N+2s) which
gives rise to the fractional Laplace operator −(−∆)s where s ∈ (0, 1) (N > 2s) is
fixed, which, up to normalization factors, may be defined as

− (−∆)su(x) :=
∫

RN

u(x+ y) + u(x− y)− 2u(x)
|y|N+2s

dy, x ∈ RN . (1.3) e1.3

The problem (1.1) in the model case LK = −(−∆)s becomes(
a+ b

∫
RN×RN

|u(x)− u(y)|2|x− y|−(N+2s) dx dy
)

(−∆)su− λu = f(x, u(x)),

u = 0 in RN \ Ω,
(1.4) e1.4

which is related to Kirchhoff type problems. These problems model several physical
and biological systems, where u describes a process which depends on the average
of itself, such as the population density, see [3, 10]. Problem (1.4) with the p-
Laplacian operator −∆pu has been studied in many papers, see [1, 2, 4, 5, 6, 13,
19, 24]. Motivated by [2, 17, 21, 22, 23], in this paper, we study the existence and
multiplicity of solutions for Kirchhoff type problem (1.1) driven by the nonlocal
operator LK .

Before proving the main results, some preliminary material on function spaces
and norms is needed. In the following, we briefly recall the definition of the func-
tional space X0, firstly introduce in [21], and we give some notations. We denote
Q = R2N \ O, where O = RN \ Ω× RN \ Ω. We denote the set X by

X =
{
u : RN → R : u|Ω ∈ L2(Ω), (u(x)− u(y))

√
K(x− y) ∈ L2(R2N \ O)

}
,

where u|Ω represents the restriction to Ω of function u(x). Also, we denote by X0

the following linear subspace of X

X0 = {g ∈ X : g = 0 a.e. in RN \ Ω}.
We know that X and X0 are nonempty, since C2

0 (Ω) ⊆ X0 by Lemma 11 of [21].
Moreover, the linear space X is endowed with the norm defined as

‖u‖X := ‖u‖L2(Ω) +
(∫

Q

|u(x)− u(y)|2K(x− y) dx dy
)1/2

.

It is easy seen that ‖ · ‖X is a norm on X (see, for instance, [22] for a proof). By
Lemmas 6 and 7 of [22], in the sequel we can take the function

X0 3 v 7→ ‖v‖X0 =
(∫

Q

|v(x)− v(y)|2K(x− y) dx dy
)1/2

(1.5) e1.5
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as norm on X0. Also (X0, ‖ · ‖X0) is a Hilbert space, with scalar product

〈u, v〉X0 :=
∫

Q

(u(x)− u(y))(v(x)− v(y))K(x− y) dxdy. (1.6) e1.6

Note that in (1.5) the integral can be extended to all RN × RN , since v ∈ X0 and
so v = 0 a.e. in RN \ Ω.

In what follows, we denote by λ1 the first eigenvalue of the operator LK with
homogeneous Dirichlet boundary data, namely the first eigenvalue of the problem

LKu = λu, in Ω,

u = 0, in RN \ Ω.

We refer to [23, Proposition 9 and Appendix A], for the existence and the basic
properties of this eigenvalue, where a spectral theory for general integro-differential
nonlocal operators was developed.

When λ < λ1 we can take as a norm on X0 the function

X0 3 v 7→ ‖v‖X0,λ =
(∫

Q

|v(x)− v(y)|2K(x− y) dx dy−λ
∫

Ω

|v(x)|2 dx
)1/2

, (1.7) e1.7

since for any v ∈ X0 it holds true (for this see [23, Lemma 10])

mλ‖v‖X0 ≤ ‖v‖X0,λ ≤Mλ‖v‖X0 , (1.8) e1.8

where

mλ := min
{√λ1 − λ

λ1
, 1
}
, Mλ := max

{√λ1 − λ
λ1

, 1
}
.

Let Hs(RN ) be the usual fractional Sobolev space endowed with the norm (the
so-called Gagliardo norm)

‖u‖Hs(RN ) = ‖u‖L2(RN ) +
(∫

RN×RN

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

. (1.9) e1.9

Also, we recall the embedding properties of X0 into the usual Lebesgue spaces (see
[22, Lemma 8]). The embedding j : X0 ↪→ Lv(RN ) is continuous for any v ∈ [1, 2∗]
(2∗ = 2N

N−2s ), while it is compact whenever v ∈ [1, 2∗). Hence, for any v ∈ [1, 2∗]
there exists a positive constant cv such that

‖v‖Lv(RN ) ≤ cv‖v‖X0 ≤ cvm−1
λ ‖v‖X0,λ, (1.10) e1.10

for any v ∈ X0.
We are now in the position to state the notation of solution and to state the

main results of this article.

def1.1 Definition 1.1. We say that u ∈ X0 is a weak solution of problem (1.1), if it
satisfies (

a+ b

∫
Q

|u(x)− u(y)|2K(x− y) dx dy
)

∫
Q

(u(x)− u(y))(v(x)− v(y))K(x− y) dx dy − λ
∫

Ω

u(x)v(x) dx

−
∫

Ω

f(x, u(x))v(x) dx = 0, ∀v ∈ X0.

the1.2 Theorem 1.2. Assume that f satisfies the following conditions:
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(F1) f ∈ C(Ω×R,R) and there exist constants 1 < γ1 < γ2 < · · · < γm < 2 and
functions ai ∈ L

2
2−γi (Ω, [0,+∞)), i = 1, 2, . . . ,m such that

|f(x, z)| ≤
m∑
i=1

ai(x)|z|γi−1, ∀(x, z) ∈ Ω× R.

(F2) There exist and open set Ω0 ⊂ Ω and three constants δ > 0, γ0 ∈ (1, 2) and
η > 0 such that

F (x, z) ≥ η|z|γ0 , ∀(x, z) ∈ Ω0 × [−δ, δ],

where F (x, z) :=
∫ z

0
f(x, s) ds, x ∈ Ω, z ∈ R.

Then for any λ < λ1.min{a, 1}, problem (1.1) has at least one nontrivial solutions.

the1.3 Theorem 1.3. Assume that f and F satisfy the conditions (F1), (F2) and
(F3) F (x,−z) = F (x, z) for all (x, z) ∈ Ω× R.

Then for any λ < λ1.min{a, 1}, problem (1.1) has infinitely many nontrivial solu-
tions.

2. Proofs of main results

Our idea is to obtain the existence and multiplicity of solutions for problem (1.1)
by using critical point theory. Consider the functional J : X0 → R defined by

J(u) =
a

2

∫
Q

|u(x)− u(y)|2K(x− y) dx dy +
b

4

(∫
Q

|u(x)− u(y)|2K(x− y) dx dy
)2

− λ

2

∫
Ω

|u(x)|2 dx−
∫

Ω

F (x, u(x)) dx

(2.1) e2.1

and set

Ψ(u) =
∫

Ω

F (x, u(x)) dx.

Let us recall the following definitions and results which are used to prove our main
results, see for instance [14, 18].

def2.1 Definition 2.1. We say that J satisfies the Palais-Smale (PS) condition if any
sequence (un) ∈ X for which J(un) is bounded and J ′(un)→ 0 as n→∞ possesses
a convergent subsequence.

lem2.2 Lemma 2.2 ([14]). Let X be a real Banach space and J ∈ C1(X,R) satisfy the
(PS) condition. If J is bounded from below, then c = infX J is a critical value of
J .

Let X be a Banach space, g ∈ C1(X ,R) and c ∈ R. We set

Σ = {A ⊂ X \ {0} : A is closed in X and symmetric with respect to 0)},
Kc = {x ∈ X : g(x) = c, g′(x) = 0},

gc = {x ∈ X : g(x) ≤ c}.

def2.3 Definition 2.3 ([14]). For A ∈ Σ, we say genus of A is j (denoted by γ(A) = j)
if there is an odd map ψ ∈ C(A,Rj \ {0}), and j is the smallest integer with this
property.
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lem2.4 Lemma 2.4 ([18]). Let g be an even C1 functional on X which satisfies the Palais-
Smale condition. If j ∈ N, j > 0, let

Σj = {A ∈ Σ : γ(A) ≥ j}, cj = inf
A∈Σj

sup
u∈A

g(u).

(i) If Σj 6= ∅ and cj ∈ R, then cj is a critical value of g.
(ii) If there exists r ∈ N such that cj = cj+1 = · · · = cj+r = c ∈ R and c 6= g(0)

, then γ(Kc) ≥ r + 1.

Remark 2.5. From [18, Remark 7.3], we know that if Kc ⊂ Σ and γ(Kc) > 1,
then Kc contains infinitely many distinct points, i.e., J has infinitely many distinct
critical points in X .

lem2.5 Lemma 2.6. Assume that (F1) and (F2) hold. Then the functional J : X0 → R
is well-defined and is of class C1(X0,R) and

J ′(u)(v) =
(
a+ b

∫
Q

|u(x)− u(y)|2K(x− y) dx dy
)

×
∫
Q

(u(x)− u(y))(v(x)− v(y))K(x− y) dx dy

− λ
∫

Ω

u(x)v(x) dx−Ψ′(u)(v), for all v ∈ X0,

(2.2) e2.2

where Ψ′(u)(v) =
∫

Ω
f(x, u(x))v(x) dx. Moreover, the critical points of J are the

solutions of problem (1.1).

Proof. For any u ∈ X0, by (F1) and the Hölder inequality, one have∫
Ω

|F (x, u)| dx ≤
m∑
i=1

1
γi

∫
Ω

ai(x)|u|γi dx

≤
m∑
i=1

1
γi

(∫
Ω

|ai(x)|
2

2−γi dx
) 2−γi

2
(∫

Ω

|u|2 dx
) γi

2

≤ C1

m∑
i=1

1
γi
‖ai‖ 2−γi

2
‖u‖γiX0

,

(2.3) e2.3

and so J is defined by (2.1) is well-defined on X0 by (F1).
Next, we prove that (2.2) holds. For any u, v ∈ X0, any function θ : Ω → (0, 1)

and any number h ∈ (0, 1), by (F1) and the Hölder inequality, we have∫
Ω

max
h∈(0,1)

|f(x, u(x) + θ(x)hv(x))v(x)| dx

≤
∫

Ω

max
h∈(0,1)

|f(x, u(x) + θ(x)hv(x))‖v(x)| dx

≤
m∑
i=1

∫
Ω

ai(x)|u(x) + θ(x)v(x)|γi−1|v(x)| dx

≤
m∑
i=1

∫
Ω

ai(x)(|u(x)|γi−1 + |v(x)|γi−1)|v(x)| dx

≤ C2

m∑
i=1

‖ai‖ 2−γi
2

(‖u‖γi−1
X0

+ ‖v‖γi−1
X0

)‖v‖X0 < +∞.

(2.4) e2.4
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Then by (2.4) and the Lebesgue dominated convergence theorem, we have

Ψ′(u)(v) = lim
h→0+

Ψ(u+ hv)−Ψ(u)
h

= lim
h→0+

1
h

∫
Ω

[F (x, u(x) + hv(x))− F (x, u(x))] dx

= lim
h→0+

∫
Ω

f(x, u(x) + θ(x)v(x))v(x) dx

=
∫

Ω

f(x, u(x))v(x) dx.

(2.5) e2.5

By (2.5), relation (2.2) holds. Furthermore, by a standard argument, it is easy to
show that the critical points of the functional J in X0 are the solutions of problem
(1.1).

Let us prove now that J ′ is continuous. It is sufficient to verify that Ψ′ is
continuous. Let un → u in X0, then un → u in L2(Ω) and

un → u, strongly in L2(Ω),
un → u, a.e. in Ω.

(2.6) e2.6

Then there exists h ∈ L2(Ω) such that |un(x)| ≤ h(x) a.e. x ∈ Ω and for any n ∈ N.
By (F1), we have

|f(x, un(x))− f(x, u(x))|2

≤ 2(|f(x, un(x))|2 + |f(x, u(x))|2)

≤ C2

m∑
i=1

|ai(x)|2
(
|un(x)|2(γi−1) + |u(x)|2(γi−1)

)
≤ C2

m∑
i=1

|ai(x)|2
(
|h(x)|2(γi−1) + |u(x)|2(γi−1)

)
:= g(x), ∀n ∈ N, x ∈ Ω

(2.7) e2.9

and ∫
Ω

g(x) dx = C2

m∑
i=1

∫
Ω

|ai(x)|2
(
|h(x)|2(γi−1) + |u(x)|2(γi−1)

)
dx

≤ C2

m∑
i=1

‖ai‖22−γi
2

(
‖h‖2(γi−1)

L2 + ‖u‖2(γi−1
L2

)
< +∞.

(2.8) e2.10

By (2.6), (2.7), (2.8), and the Lebesgue dominated convergence theorem, we have

lim
n→∞

∫
Ω

|f(x, un(x))− f(x, u(x))|2 dx = 0. (2.9) e2.7

From (1.10), (2.2), (F1) and the Hölder inequality, we have

|(Ψ′(un)−Ψ′(u), v)| =
∣∣∣∣∫

Ω

[f(x, un(x))− f(x, u(x))]v(x) dx
∣∣∣∣

≤
∫

Ω

|f(x, un(x))− f(x, u(x))‖v(x)| dx

≤
(∫

Ω

|f(x, un(x))− f(x, u(x))|2 dx
)1/2

‖v‖L2
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≤ C3

(∫
Ω

|f(x, un(x))− f(x, u(x))|2 dx
)1/2

‖v‖X0 ,

which converges to 0 as n → ∞. This implies that Ψ′ is continuous and the proof
of Lemma 2.6 is complete. �

Proof of Theorem 1.2. In view of Lemma 2.6, J ∈ C1(X0,R). In what follows,
we first show that J is bounded from below. Since λ < λ1.min{a, 1} we have
a− 1 +m2

λ > 0, where mλ is defined by (1.8). By (F1), (1.5), (1.7), (1.8) and the
Hölder inequality, we have

J(u)

=
a

2

∫
Q

|u(x)− u(y)|2K(x− y) dx dy +
b

4

(∫
Q

|u(x)− u(y)|2K(x− y) dx dy
)2

− λ

2

∫
Ω

|u(x)|2 dx−
∫

Ω

F (x, u(x)) dx

≥ 1
2

(a− 1 +m2
λ)‖u‖2X0

−
m∑
i=1

1
γi

∫
Ω

ai(x)|u|γi dx

≥ 1
2

(a− 1 +m2
λ)‖u‖2X0

− C1

m∑
i=1

1
γi
‖ai‖ 2−γi

2
‖u‖γiX0

.

(2.10) e2.11

As γi ∈ (1, 2), i = 1, 2, . . . ,m, it follows from (2.10) that J(u)→ +∞ as ‖u‖X0 →
+∞ and J is bounded from below.

Next, we prove that J satisfies the (PS)-condition. Assume that {un} ⊂ X0 is a
sequence such that {J(un)} is bounded and J ′(un) → 0 as n → ∞. Since {un} is
a (PS)-sequence and using the definition of J , there exists a constant C4 > 0 such
that

‖un‖X0 ≤ C4, ∀n ∈ N. (2.11) e2.12

So passing to a subsequence it necessary, it can be assumed that {un} converges
weakly to u0 in X0 and thus {un} converges strongly to u0 in L2(Ω). By (2.11)
and (F1), we have∣∣ ∫

Ω

(f(x, un(x))− f(x, u(x)))(un(x)− u0(x)) dx
∣∣

≤
∫

Ω

|f(x, un(x))− f(x, u(x))‖un(x)− u0(x)| dx

≤
(∫

Ω

|f(x, un(x))− f(x, u0(x))|2 dx
)1/2(∫

Ω

|un(x)− u0(x)|2 dx
)1/2

≤
(∫

Ω

2(|f(x, un(x))|2 + |f(x, u0(x))|2) dx
)1/2(∫

Ω

|un(x)− u0(x)|2 dx
)1/2

≤ C5

( m∑
i=1

‖ai‖2 2
2−γi

(‖un‖2(γi−1)
X0

+ ‖u0‖2(γi−1)
X0

) dx
)1/2

‖un − u0‖L2(Ω),

(2.12) e2.13

which approaches 0 as n→∞.
Since λ < λ1 min{a, 1}, by (1.7) and (1.8), we have

(J ′(un)− J ′(u0))(un − u0)
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=
(
a+ b

∫
Q

|un(x)− un(y)|2K(x− y) dx dy
)

×
∫
Q

(un(x)− un(y))
(

(un(x)− u0(x))− (un(y)− u0(y))
)
K(x− y) dx dy

−
(
a+ b

∫
Q

|u0(x)− u0(y)|2K(x− y) dx dy
)

×
∫
Q

(u0(x)− u0(y))
(

(un(x)− u0(x))− (un(y)− u0(y))
)
K(x− y) dx dy

− λ
∫

Ω

|un(x)− u0(x)|2 dx−
∫

Ω

[f(x, un(x))− f(x, u0(x))](un − u0) dx

=
(
a+ b

∫
Q

|un(x)− un(y)|2K(x− y) dx dy
)

×
∫
Q

|(un(x)− u0(x))− (un(y)− u0(y)|2K(x− y) dx dy

− b
(∫

Q

|u0(x)− u0(y)|2K(x− y) dx dy −
∫
Q

|un(x)− un(y)|2K(x− y) dx dy
)

×
∫
Q

(u0(x)− u0(y))
(

(un(x)− u0(x))− (un(y)− u0(y))
)
K(x− y) dx dy

− λ
∫

Ω

|un(x)− u0(x)|2 dx−
∫

Ω

[f(x, un(x))− f(x, u0(x))](un − u0) dx

≥ (a− 1 +m2
λ)‖un − u0‖2X0

−
∫

Ω

[f(x, un(x))− f(x, u0(x))](un − u0) dx

− b
(
‖u0‖2X0

− ‖un‖2X0

)∫
Q

(u0(x)− u0(y))

×
(

(un(x)− u0(x))− (un(y)− u0(y))
)
K(x− y) dx dy .

Then
(a− 1 +m2

λ)‖un − u0‖2X0

≤ (J ′(un)− J ′(u0))(un − u0) +
∫

Ω

[f(x, un(x))− f(x, u0(x))](un − u0) dx

+ b
(
‖u0‖2X0

− ‖un‖2X0

)
×
∫
Q

(u0(x)− u0(y))
(

(un(x)− u0(x))− (un(y)− u0(y))
)
K(x− y) dx dy.

(2.13) e2.14

As {un} converges weakly u0 in X0, {‖un‖X0} is bounded and we have

lim
n→∞

b
(
‖u0‖2X0

− ‖un‖2X0

) ∫
Q

(u0(x)− u0(y))

×
(

(un(x)− u0(x))− (un(y)− u0(y))
)
K(x− y) dx dy = 0.

(2.14) e2.15

It follows from (2.12), (2.13) and (2.14) that {un} converges strongly to u0 in X0

and the functional J satisfies the (PS) condition.
Then d = infX0 J(u) is a critical value of J , that is, there exists a critical point

u∗ ∈ X0 such that J(u∗) = d.
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Finally, we show that u∗ 6= 0. Let u0 ∈ X0 ∩C∞0 (Ω0) and ‖u0‖∞ ≤ 1, where Ω0

is given by (F2). By (F2), for t ∈ (0, δ), we have

J(tu0) =
at2

2

∫
Q

|u0(x)− u0(y)|2K(x− y) dx dy

+
bt4

4

(∫
Q

|u0(x)− u0(y)|2K(x− y) dx dy
)2

− λt2

2

∫
Ω

|u0(x)|2 dx−
∫

Ω

F (x, tu0(x)) dx

≤ t2

2
(a− 1 +M2

λ)‖u0‖2X0
+
bt4

4
‖u0‖4X0

−
∫

Ω0

F (x, tu0(x)) dx

≤ t2

2
(a− 1 +M2

λ)‖u0‖2X0
+
bt4

4
‖u0‖4X0

− ηtγ0
∫

Ω0

|u0(x)|γ0 dx .

(2.15) e2.16

As γ0 ∈ (1, 2), it follows from (2.15) that J(tu0) < 0 for t > 0 small enough. Hence,
J(u∗) = d < 0 and therefore, u∗ is a nontrivial critical point of J , and so u∗ is a
nontrivial solution of problem (1.1). �

Proof of Theorem 1.3. In view of Lemma 2.6, J ∈ C1(X0,R) is bounded from below
and satisfies the (PS) condition. It follows from (F3) that J is even and J(0) = 0.
In order to apply Lemma 2.4, we prove now that

for any n ∈ N, there exists ε > 0 such that γ(J−ε) ≥ n. (2.16) e2.17

For any n ∈ N, we take n disjoint open sets Ki such that

∪ni=1Ki ⊂ Ω0.

For i = 1, 2, . . . , n, let ui ∈
(
X0 ∩ C∞0 (Ki)

)
\{0} and ‖ui‖X0 = 1, and

En = span{u1, u2, . . . , un}, Sn = {u ∈ En : ‖u‖X0 = 1}.
For each u ∈ En, there exist µi ∈ R, i = 1, 2, . . . , n such that

u(x) =
n∑
i=1

µiui(x) for x ∈ Ω. (2.17) e2.18

Then

‖u‖γ0 =
(∫

Ω

|u(x)|γ0 dx
)1/γ0

=
( n∑
i=1

|µi|γ0
∫
Ki

|ui(x)|γ0 dx
)1/γ0

(2.18) e2.19

and

‖u‖2X0
=
∫

Q

|u(x)− u(y)|2K(x− y) dx dy

=
n∑
i=1

µ2
i

∫
Q

|ui(x)− ui(y)|2K(x− y) dx dy

=
n∑
i=1

µ2
i ‖ui‖2X0

=
n∑
i=1

µ2
i .

(2.19) san

As all norms of a finite dimensional normed space are equivalent, there is a
constant C6 > 0 such that

C6‖u‖X0 ≤ ‖u‖γ0 for all u ∈ En. (2.20) e2.20
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By (2.17), (2.18), (2.20), we have

J(tu) =
at2

2

∫
Q

|u(x)− u(y)|2K(x− y) dx dy

+
bt4

4

(∫
Q

|u(x)− u(y)|2K(x− y) dx dy
)2

− λt2

2

∫
Ω

|u(x)|2 dx−
∫

Ω

F (x, tu(x)) dx

≤ t2

2
(a− 1 +M2

λ)‖u‖2X0
+
bt4

4
‖u‖4X0

−
n∑
i=1

∫
Ki

F (x, tµiui(x)) dx

≤ t2

2
(a− 1 +M2

λ)‖u‖2X0
+
bt4

4
‖u‖4X0

− ηtγ0
n∑
i=1

|µi|γ0
∫
Ki

|ui(x)|γ0 dx

≤ t2

2
(a− 1 +M2

λ)‖u‖2X0
+
bt4

4
‖u‖4X0

− ηtγ0‖u‖γ0γ0

≤ t2

2
(a− 1 +M2

λ)‖u‖2X0
+
bt4

4
‖u‖4X0

− η(C6t)γ0‖u‖γ0X0

≤ t2

2
(a− 1 +M2

λ)‖u‖2X0
+
bt4

4
‖u‖4X0

− η(C6t)γ0

=
t2

2
(a− 1 +M2

λ) +
bt4

4
− η(C6t)γ0

(2.21) e2.21

for all u ∈ Sn and and sufficient small t > 0. In this case (F2) is applicable, since
u is continuous on Ω0 and so |tµiui(x)| ≤ δ, ∀ x ∈ Ω0, i = 1, 2, . . . , n can be true
for sufficiently small t. Then, there exist ε > 0 and σ > 0 such that

J(σu) < −ε for u ∈ Sn. (2.22) e2.22

Let

Sσn = {σu : u ∈ Sn}, Λ =
{

(µ1, µ2, . . . , µn) ∈ Rn :
n∑
i=1

µ2
i < σ2

}
.

Then it follows from (2.22) that

J(u) < −ε for all u ∈ Sσn ,
which, together with the fact that J ∈ C1(X0,R) and is even, implies that

Sσn ⊂ J−ε ∈ Σ. (2.23) e2.23

On the other hand, it follows from (2.17) and (2.19), that

Sσn =
{ n∑
i=1

µiui :
n∑
i=1

µ2
i = σ2

}
.

So, we define a map ψ : Sσn → ∂Λ as follows:

ψ(u) = (µ1, µ2, . . . , µn), ∀ u ∈ Sσn .
It is easy to verify that ψ : Sσn → ∂Λ is an odd homeomorphic map. By Proposition
7.7 in [18], we get γ(Sσn) = n and so by some properties of the genus (see 3◦ of [18,
Proposition 7.5]), we have

γ(J−ε) ≥ γ(Sσn) = n, (2.24) e2.24
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so the proof of (2.16) follows. Set

cn = inf
A∈Σn

sup
u∈A

J(u).

It follows from (2.24) and the fact that J is bounded from below on X0 that
−∞ < cn ≤ −ε < 0, that is, for any n ∈ N, cn is a real negative number. By
Lemma 2.4, the functional J has infinitely many nontrivial critical points, and so
problem (1.1) possesses infinitely many nontrivial solutions. �
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