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EXISTENCE AND UPPER SEMICONTINUITY OF RANDOM
ATTRACTORS FOR STOCHASTIC p-LAPLACIAN EQUATIONS

ON UNBOUNDED DOMAINS

JIA LI, YANGRONG LI, HONGYONG CUI

Abstract. The existence of a pullback attractor is established for a stochastic

p-Laplacian equation on Rn. Furthermore, the limiting behavior of random

attractors of the random dynamical systems as stochastic perturbations ap-
proach zero is studied and the upper semicontinuity is proved.

1. Introduction

It is known that p-Laplacian equation is always used to model a variety of phys-
ical phenomena. In this paper, we investigate the asymptotic behavior of solutions
to the following stochastic p-Laplacian equation with multiplicative noise defined
on the entire space Rn:

du+ (− div(|∇u|p−2∇u) + λu)dt = (f(x, u) + g(x))dt+ εu ◦ dW (t), (1.1)

where ε > 0 is a small positive parameter, λ > 0, p ≥ 2 are fixed constants. g is
a given function defined on Rn, f is a smooth nonlinear function satisfying certain
conditions, and W is a two-sided real-valued Wiener processes on a probability
space which will be specified later.

The long-term behavior of random systems is captured by a pullback random
attractor, which was introduced by [8, 9] as an extension of the attractors theory
of deterministic systems in [2, 11, 20, 22, 23]. In the case of bounded domains, the
existence of random attractors for stochastic PDEs has been studied extensively by
many authors (see [1, 8, 9, 17, 18, 19, 26, 29, 32]) and the reference therein. Since
sobolev embeddings are not compact on unbounded domains, it is more difficult
to discuss the existence of random attractors for PDEs defined on unbounded do-
mains. Nevertheless, the existence of such attractors for some stochastic PDEs on
unbounded domains has been proved in [3, 10, 24, 25, 27, 28, 31].

The first aim of this paper is to investigate the existence of random attractors
for the stochastic p-Laplacian equation (1.1) defined on Rn. We mention that
the existence of global attractors for the p-Laplacian equation in the deterministic
case has been discussed by many authors, for examples, in [30, 6] for bounded
domains and in [15, 16] for unbounded domains. Recently [29] investigate the
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existence of random attractors for the p-Laplacian equation with multiplicative
noise. However, in the paper [29], the p-Laplace equation is defined in a bounded
domain where compactness of Sobolev embeddings is available. To overcome the
difficulty caused by the non-compactness of Sobolev embedding on Rn, we use the
tail-estimate method which is always used to deal with the problem caused by the
unboundedness of domains (see [3, 24, 25, 27, 28]). So far as we know, there were no
results on random attractors for stochastic p-Laplacian equation with multiplicative
noise on unbounded domains.

The second aim of this paper is to examine the limiting behavior of random
attractors when ε → 0 and prove the upper semicontinuity of these perturbed
random attractors. It is worth mentioning that such continuity of attractors has
been investigated, for examples, in [12, 13, 14, 23] for deterministic equations, in
[4, 5, 21, 29] for stochastic PDEs in bounded domains and in [10, 28] for stochastic
PDEs on unbounded domains.

The paper is arranged as follows. In the next section, we review the pullback
random attractors theory for random dynamical systems. In section 3, we define
a continuous random dynamical system for the stochastic p-Laplacian equation on
Rn. Section 4 is devoted to obtaining uniform estimates of solutions as t → ∞.
These estimate are necessary for proving the existence of bounded absorbing sets
and the asymptotic compactness of the solution operator. Finally, we prove the
upper semicontinuity of random attractors for (1.1) in the last section.

We denote by ‖·‖ and (·, ·) the norm and the inner product in L2(Rn) respectively
and ‖ · ‖p to denote the norm in Lp(Rn). Otherwise, the norm of a general Banach
space X is written as ‖ · ‖X .

The letters c and C(ω) are generic positive constants and positive random vari-
able respectively, which don’t depend on ε and may change their values from line
to line or even in the same line.

2. Preliminaries

In this section, we recall some basic concepts related to RDS (see [1, 7, 8, 9, 28]
for details).

Let (X, ‖ · ‖X) be a Banach space with Borel σ-algebra.

Definition 2.1. Let (Ω,F ,P) be a probability space and {θt : Ω → Ω, t ∈ R} a
family of measure preserving transformations such that (t, ω) 7→ θtω is measurable,
θ0 = id and θt+s = θtθs for all s, t ∈ R. The flow θt together with the corresponding
probability space (Ω,F ,P, θt) is called a measurable dynamical system.

Definition 2.2. A continuous random dynamical system(RDS) on X over θ on
(Ω,F ,P) is a measurable map

ϕ : R+ × Ω×X 7→ X, (t, ω, x) 7→ ϕ(t, ω)x

such that P-a.s.
(i) ϕ(0, ω) = id on X;

(ii) ϕ(t+ s, ω) = ϕ(t, θsω)ϕ(s, ω) for all s, t ∈ R+ (cocycle property);
(iii) ϕ(t, ω) : X 7→ X is continuous.

Definition 2.3. A random compact set {K(ω)}ω∈Ω is a family of compact sets
indexed by ω such that for every x ∈ X the mapping ω 7→ d(x,K(ω)) is measurable
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with respect to F . A random set {K(ω)}ω∈Ω is said to be bounded if there exist
u0 ∈ X and a random variable R(ω) > 0 such that

K(ω) ⊂ {u ∈ X, ‖u− u0‖X ≤ R(ω)} for all ω ∈ Ω.

Definition 2.4. A random bounded set {B(ω)}ω∈Ω of X is called tempered with
respect to (θt)t∈R if for P-a.e.ω ∈ Ω,

lim
t→∞

e−βtd(B(θ−tω)) = 0 for all β > 0,

where d(B) = supx∈B ‖x‖X .

Definition 2.5. Let D be a collection of random subsets of X and {K(ω)}ω∈Ω ∈ D.
Then {K(ω)}ω∈Ω is called a random absorbing set for ϕ in D if for every B ∈ D
and P-a.e. ω ∈ Ω, there exists tB(ω) > 0 such that

ϕ(t, θ−tω,B(θ−tω)) ⊆ K(ω) for all t ≥ tB(ω).

Definition 2.6. Let D be a collection of random subsets of X. Then ϕ is said to be
D-pullback asymptotically compact in X if for P-a.e. ω ∈ Ω, {ϕ(tn, θ−tnω, xn)}∞n=1

has a convergent subsequence in X whenever tn → ∞, and xn ∈ B(θ−tω) with
{B(ω)}ω∈Ω ∈ D.

Definition 2.7. Let D be a collection of random subsets of X. Then a random
set {A(ω)}ω∈Ω of X is called a D-random attractor(or D-pullback attractor) for ϕ
if the following conditions are satisfied, for P-a.e.ω ∈ Ω,

(i) A(ω) is a random compact set;
(ii) A(ω) is invariant, that is, ϕ(t, ω,A(ω))=A(θtω), for all t ≥ 0;

(iii) A(ω) attracts every set in D, that is, for every B = {B(ω)}ω∈Ω ∈ D,

lim
t→∞

d(ϕ(t, θ−tω,B(θ−tω)),A(ω)) = 0,

where d is the Hausdorff semi-metric.

Proposition 2.8. Let D be an inclusion-closed collection of random subsets of X
and ϕ a continuous RDS on X over (Ω,F ,P, (θt)t∈R). Suppose that {K(ω)}ω∈Ω

is a closed random absorbing set for ϕ in D and ϕ is D-pullback asymptotically
compact in X. Then ϕ has a unique D-random attractor {A(ω)}ω∈Ω which is given
by

A(ω) = ∩T≥0∪t≥Tϕ(t, θ−tω,K(θ−tω)).

Proposition 2.9. Let D be an inclusion-closed collection of random subsets of
X. Given σ > 0, suppose ϕσ is a random dynamical system over a metric system
(Ω,F ,P, (θt)t∈R) which has a D-random attractor Aσ and ϕ0 is a deterministic
dynamical system defined on X which has a global attractor A0. Assume that the
following conditions be satisfied: (i) For P-a.e. ω ∈ Ω, t ≥ 0, σn → 0, and xn,
x ∈ X with xn → x, there holds

lim
n→∞

ϕσn(t, ω, xn) = ϕ0(t)x. (2.1)

(ii) Every ϕσ has a random absorbing set Eσ = {Eσ(ω)}ω∈Ω ∈ D such that for
some deterministic positive constant c and for P-a.e. ω ∈ Ω,

lim sup
σ→0

‖Eσ(ω)‖X ≤ c, (2.2)

where ‖Eσ(ω)‖X = supx∈Eσ(ω) ‖x‖X .
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(iii) There exists σ0 > 0 such that for P-a.e. ω ∈ Ω,

∪0<σ≤σ0 Aσ(ω) is precompact in X. (2.3)

Then for P-a.e. ω ∈ Ω,

dist(Aσ(ω),A0)→ 0, as σ → 0. (2.4)

3. Stochastic p-Laplacian equation with multiplicative noise

Here we show that there is a continuous random dynamical system generated by
the stochastic p-Laplacian equation defined on Rn with multiplicative noise:

du+ (−div(|∇u|p−2∇u) + λu)dt = (f(x, u) + g(x))dt+ εu ◦ dW (t), (3.1)

for x ∈ Rn, t > 0, with the initial condition

u(x, 0) = u0(x), x ∈ Rn. (3.2)

where ε > 0, λ > 0, p ≥ 2 are constants, g ∈ L2(Rn), W is a two-sided real-valued
Wiener processes on a probability space which will be specified below, and f is a
smooth nonlinear function satisfying the following conditions: For all x ∈ Rn and
s ∈ Rn,

f(x, s)s ≤ −α1|s|p + ψ1(x), (3.3)

|f(x, s)| ≤ α2|s|p−1 + ψ2(x), (3.4)

where α1, α2 are positive constants, ψ1 ∈ L1(Rn)∩L
p
2 (Rn), ψ2 ∈ L2(Rn)∩Lq(Rn)

with 1
p + 1

q = 1.
In the sequel, we consider the probability space (Ω,F ,P) where

Ω = {ω ∈ C(R,R) : ω(0) = 0},
F is the Borel σ-algebra induced by the compact-open topology of Ω, and P the
corresponding Wiener measure on (Ω,F). Define the time shift by

θtω(·) = ω(·+ t)− ω(t), ω ∈ Ω, t ∈ R.
Then (Ω,F ,P, (θt)t∈R) is a metric dynamical system.

We now associate a continuous random dynamical system with the equation over
(Ω,F ,P, (θt)t∈R). To this end, we need to convert the stochastic equation with a
random multiplicative term into a deterministic equation with a random parameter.

Consider the stationary solutions of the one-dimensional Ornstein-Uhlenbeck
equation:

dz + zdt = dW (t). (3.5)
The solution to (3.5) is given by

z(θtω) = −
∫ 0

−∞
eτ (θtω)(τ)dτ, t ∈ Rn. (3.6)

From [1, 3, 24, 25], the random variable |z(ω)| is tempered, and there is a θt-
invariant set Ω̃ ⊂ Ω of full P measure such that z(θtω) is continuous in t for every
ω ∈ Ω̃ and

lim
t→±∞

|z(θtω)|
|t|

= 0; (3.7)

lim
t→±∞

1
t

∫ t

0

z(θsω)ds = 0. (3.8)
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Following the properties of the O-U process and (3.7),(3.8), it is easy to show for
for all 0 < ε ≤ 1,

0 ≤Mε(ω) :=
∫ 0

−∞
e−2εz(θsω)+2ε

R 0
s
z(θτω)dτ+λsds

≤
∫ 0

−∞
e2|z(θsω)|+2|

R 0
s
z(θτω)dτ |+λsds < +∞,

(3.9)

and

0 ≤ K(ω) := max
−2≤τ≤0

|z(θτ (ω))| < +∞, (3.10)

which will be used frequently in the following paper. And it is easy to see that
Mε(ω) and K(ω) are both tempered.

To show that problem (3.1)-(3.2) generates a random dynamical system, let

v(t) = e−εz(θtω)u(t), (3.11)

where u is a solution of problem (3.1)-(3.2). Then v satisfies

dv

dt
= eε(p−2)z(θtω) div(|∇v|p−2∇v)− λv + e−εz(θtω)(f(x, u) + g(x)) + εvz(θtω),

(3.12)
and the initial condition

v(x, 0) = v0(x) = e−εz(ω)u0(x), x ∈ Rn. (3.13)

Using the standard Galerkin method, one may show that for all v0 ∈ L2(Rn),
problem (3.12)-(3.13) has a unique solution

v(·, ω, v0) ∈ C([0,∞), L2(Rn)) ∩ L2((0, T ),W 1,p(Rn)).

Furthermore, the solution is continuous with respect to v0 in L2(Rn) for all t ≥ 0.
Let

u(t, ω, u0) = eεz(θtω)v(t, ω, v0), (3.14)

where

v0 = e−εz(ω)u0. (3.15)

We can associate a random dynamical system Φε with problem (3.1)-(3.2) via u for
each ε > 0, where Φε : R+ × Ω× L2(Rn) 7→ L2(Rn) is given by

Φε(t, ω)u0 = u(t, ω, u0), for every (t, ω, u0) ∈ R+ × Ω× L2(Rn). (3.16)

Then Φε is a continuous random dynamical system over (Ω,F ,P, (θt)t∈R) in L2(Rn).
In the sequel, we always assume that D is the collection of all tempered random
subsets of L2(Rn).

In the following, we will first prove that Φε has a unique D-pullback random
attractor {Aε(ω)}ω∈Ω. When ε = 0, problem (3.1)-(3.2) defines a continuous de-
terministic dynamical system Φ in L2(Rn). We useA0 to denote the global attractor
for the deterministic dynamical system. At last, we will establish the relationship
of {Aε(ω)}ω∈Ω and A0 when ε→ 0.
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4. Uniform estimates of solutions

In this section, we derive uniform estimates on the solution of the stochastic
p-Laplacian equation on Rn when t→∞ with the purpose of proving the existence
of a bounded random absorbing set and the asymptotic compactness of the random
dynamical system associated with the equation. In particular, we will show that
the tails of the solutions, i.e.,solutions evaluated at large values of |x|, are uniformly
small when time is sufficiently large.

Lemma 4.1. Let 0 < ε ≤ 1, g ∈ L2(Rn) and (3.3)-(3.4) hold. Then for every
B = {B(ω)}ω∈Ω ∈ D and P-a.e.ω ∈ Ω, there is T (B,ω) > 0, independent of ε,
such that for all u0(θ−tω) ∈ B(θ−tω) and t ≥ T (B,ω),

‖u(t, θ−tω, u0(θ−tω))‖2 ≤ ρ2
1(ω) := 1 + ce2εz(ω)Mε(ω). (4.1)

Furthermore ρ1(ω) is a tempered function.

Proof. Multiplying (3.12) by v and then integrating over Rn, we find that

1
2
d

dt
‖v‖2 = −eε(p−2)z(θtω)

∫
Rn
|∇v|pdx− λ‖v‖2 + e−εz(θtω)

∫
Rn
f(x, u)vdx

+ e−εz(θtω)

∫
Rn
g(x)vdx+ εz(θtω)‖v‖2

. (4.2)

For the nonlinear term, by (3.3), we have

e−εz(θtω)

∫
Rn
f(x, u)vdx = e−2εz(θtω)

∫
Rn
f(x, u)udx

≤ −α1e
−2εz(θtω)

∫
Rn
|u|pdx+ e−2εz(θtω)

∫
Rn
|ψ1(x)|dx

= −α1e
−2εz(θtω)‖u‖pp + e−2εz(θtω)‖ψ1‖L1 ,

(4.3)
And

e−εz(θtω)

∫
Rn
g(x)vdx ≤ e−εz(θtω)‖g‖ · ‖v‖ ≤ 1

2λ
e−2εz(θtω)‖g‖2 +

λ

2
‖v‖2. (4.4)

Then it from (4.2)-(4.4) it follows that

d

dt
‖v‖2 ≤ −2eε(p−2)z(θtω)

∫
Rn
|∇v|pdx+ (2εz(θtω)− λ)‖v‖2

− 2α1e
−2εz(θtω)‖u‖pp + (

1
λ
‖g‖2 + 2‖ψ1‖L1)e−2εz(θtω).

(4.5)

Thus,
d

dt
‖v‖2 ≤ (2εz(θtω)− λ)‖v‖2 + ce−2εz(θtω). (4.6)

By the Gronwall Lemma,

‖v(t, ω, v0(ω)‖2

≤ ‖v0(ω)‖2e2ε
R t
0 z(θsω)ds−λt + c

∫ t

0

e−2εz(θsω)+2ε
R t
s
z(θτω)dτ−λ(t−s)ds.

(4.7)
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Replace ω by θ−tω in (4.7), we have

‖v(t, θ−tω, v0(θ−tω)‖2 ≤ ‖v0(θ−tω)‖2e2ε
R t
0 z(θs−tω)ds−λt

+ c

∫ t

0

e−2εz(θs−tω)+2ε
R t
s
z(θτ−tω)dτ−λ(t−s)ds

= ‖v0(θ−tω)‖2e2ε
R 0
−t z(θsω)ds−λt

+ c

∫ 0

−t
e−2εz(θsω)+2ε

R 0
s
z(θτω)dτ+λsds

≤ ‖v0(θ−tω)‖2e2ε
R 0
−t z(θsω)ds−λt + cMε(ω),

(4.8)

where Mε(ω) is defined in (3.9).
It follows from (4.8) and (3.11) that

‖u(t, θ−tω, u0(θ−tω)‖2

= ‖eεz(ω)v(t, θ−tω, v0(θ−tω)‖2

= e2εz(ω)‖v(t, θ−tω, v0(θ−tω)‖2

≤ e2εz(ω)(‖v0(θ−tω)‖2e2ε
R 0
−t z(θsω)ds−λt + cMε(ω))

= e2εz(ω)(e−2εz(θ−tω)‖u0(θ−tω)‖2e2ε
R 0
−t z(θsω)ds−λt + cMε(ω)).

(4.9)

Since B = {B(ω)}ω∈Ω ∈ D and u0(θ−tω) ∈ B(θ−tω), due to (3.7)(3.8), there exists
T (B,ω) > 0, independent of ε, such that for all t ≥ T (B,ω)

‖u0(θ−tω)‖2e2εz(ω)−2εz(θ−tω)+2ε
R 0
−t z(θsω)ds−λt

≤ ‖u0(θ−tω)‖2e2|z(ω)|+2|z(θ−tω)|+2|
R 0
−t z(θsω)ds|−λt

≤ ‖u0(θ−tω)‖2e−λ2 t ≤ 1,

(4.10)

which along with (4.9) implies that for all t ≥ T (B,ω)

‖u(t, θ−tω, u0(θ−tω))‖2 ≤ ρ2
1(ω) := 1 + ce2εz(ω)Mε(ω). (4.11)

It is easy to prove that ρ1(ω) is a tempered function. �

Lemma 4.2. Let 0 < ε ≤ 1, g ∈ L2(Rn) and (3.3)-(3.4) hold. Then for every
B = {B(ω)}ω∈Ω ∈ D and P-a.e. ω ∈ Ω, there is T (B,ω) > 0, independent of ε,
such that for all u0(θ−tω) ∈ B(θ−tω) and t ≥ T (B,ω)∫ t+1

t

‖∇u(s, θ−t−1ω, u0(θ−t−1ω))‖pp ≤ 1 + ce2pεK(ω)Mε(ω), (4.12)∫ t+1

t−1

‖u(s, θ−t−1ω, u0(θ−t−1ω))‖pp ≤ 1 + ce6εK(ω)Mε(ω). (4.13)

Proof. From (4.5), we have

d

dt
‖v‖2 ≤ −2eε(p−2)z(θtω)‖∇v‖ppdx+ (2εz(θtω)− λ)‖v‖2

− 2α1e
−2εz(θtω)‖u‖pp + ce−2εz(θtω).

(4.14)
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Using Gronwall Lemma, for all t ≥ T ≥ 0, we have

‖v(t, ω, v0(ω))‖2

≤ e2ε
R t
T
z(θsω)ds−λ(t−T )‖v(T, ω, v0(ω))‖2

+ c

∫ t

T

e−2εz(θsω)+2ε
R t
s
z(θτω)dτ+λ(s−t)

− 2α1

∫ t

T

e−2εz(θsω)+2ε
R t
s
z(θτω)dτ+λ(s−t)‖u(s, ω, u0(ω))‖ppds

− 2
∫ t

T

eε(p−2)z(θsω)+2ε
R t
s
z(θτω)dτ+λ(s−t)‖∇v(s, ω, v0(ω))‖ppds.

(4.15)

Replace ω by θ−tω and t by T in (4.7), we have

‖v(T, θ−tω, v0(θ−tω)‖2 ≤ ‖v0(θ−tω)‖2e2ε
R T
0 z(θs−tω)ds−λT

+ c

∫ T

0

e−2εz(θs−tω)+2ε
R T
s
z(θτ−tω)dτ−λ(T−s)ds.

(4.16)

Multiplying the two sides of (4.16) by e2ε
R t
T
z(θs−tω)ds−λ(t−T ), then for all t ≥ T ,

e2ε
R t
T
z(θs−tω)ds−λ(t−T )‖v(T, θ−tω, v0(θ−tω)‖2

≤ ‖v0(θ−tω)‖2e2ε
R t
0 z(θs−tω)ds−λt + c

∫ T

0

e−2εz(θs−tω)+2ε
R t
s
z(θτ−tω)dτ−λ(t−s)ds.

(4.17)
Thus, replace ω by θ−tω in (4.15) and together with (4.17), it follows that

2α1

∫ t

T

e−2εz(θs−tω)+2ε
R t
s
z(θτ−tω)dτ+λ(s−t)‖u(s, θ−tω, u0(θ−tω))‖ppds

+ 2
∫ t

T

eε(p−2)z(θs−tω)+2ε
R t
s
z(θτ−tω)dτ+λ(s−t)‖∇v(s, θ−tω, v0(θ−tω))‖ppds

≤ ‖v0(θ−tω)‖2e2ε
R t
0 z(θs−tω)ds−λt + c

∫ t

0

e−2εz(θs−tω)+2ε
R t
s
z(θτ−tω)dτ−λ(t−s)ds

= ‖v0(θ−tω)‖2e2ε
R 0
−t z(θsω)ds−λt + c

∫ 0

−t
e−2εz(θsω)+2ε

R 0
s
z(θτω)dτ+λsds.

(4.18)
Replace t by t+ 1 and T by t in (4.18), we have

2
∫ t+1

t

eε(p−2)z(θs−t−1ω)+2ε
R t+1
s

z(θτ−t−1ω)dτ+λ(s−t−1)

× ‖∇v(s, θ−t−1ω, v0(θ−t−1ω))‖ppds

≤ ‖v0(θ−t−1ω)‖2e2ε
R 0
−t−1 z(θsω)ds−λ(t+1) + c

∫ 0

−t−1

e−2εz(θsω)+2ε
R 0
s
z(θτω)dτ+λsds.

Using (3.10), we have∫ t+1

t

eε(p−2)z(θs−t−1ω)+2ε
R t+1
s

z(θτ−t−1ω)dτ+λ(s−t−1)

× ‖∇v(s, θ−t−1ω, v0(θ−t−1ω))‖ppds
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≥
∫ t+1

t

e−ε(p−2)K(ω)−2εK(ω)−λ‖∇v(s, θ−t−1ω, v0(θ−t−1ω))‖ppds

= e−pεK(ω)−λ
∫ t+1

t

‖∇v(s, θ−t−1ω, v0(θ−t−1ω))‖ppds.

Thus ∫ t+1

t

‖∇v(s, θ−t−1ω, v0(θ−t−1ω))‖ppds

≤ 1
2
‖v0(θ−t−1ω)‖2epεK(ω)+2ε

R 0
−t−1 z(θsω)ds−λt

+ cepεK(ω)+λ

∫ 0

−t−1

e−2εz(θsω)+2ε
R 0
s
z(θτω)dτ+λsds

≤ 1
2
‖v0(θ−t−1ω)‖2epεK(ω)+2ε

R 0
−t−1 z(θsω)ds−λt + cepεK(ω)+λMε(ω).

(4.19)

It follows from (4.19) that∫ t+1

t

‖∇u(s, θ−t−1ω, u0(θ−t−1ω))‖ppds

=
∫ t+1

t

epεz(θs−t−1ω)‖∇v(s, θ−t−1ω, v0(θ−t−1ω))‖ppds

≤ epεK(ω)

∫ t+1

t

‖∇v(s, θ−t−1ω, v0(θ−t−1ω))‖ppds

≤ 1
2
‖v0(θ−t−1ω)‖2e2pεK(ω)+2ε

R 0
−t−1 z(θsω)ds−λt + ce2pεK(ω)+λMε(ω)

≤ c‖u0(θ−t−1ω)‖2e−2εz(θ−t−1ω)+2pεK(ω)+2ε
R 0
−t−1 z(θsω)ds−λt

+ ce2pεK(ω)+λMε(ω).

(4.20)

On the other hand, since∫ t+1

t−1

e−2εz(θs−t−1ω)+2ε
R t+1
s

z(θτ−t−1ω)dτ+λ(s−t−1)‖u(s, θ−t−1ω, u0(θ−t−1ω))‖ppds

≥ e−6εK(ω)−2λ

∫ t+1

t−1

‖u(s, θ−t−1ω, u0(θ−t−1ω))‖ppds.

(4.21)
Replace t by t+ 1 and T by t− 1 in (4.18) and using (4.21), we obtain∫ t+1

t−1

‖u(s, θ−t−1ω, u0(θ−t−1ω))‖ppds

≤ c‖v0(θ−t−1ω)‖2e6εK(ω)+2ε
R 0
−t−1 z(θsω)ds−λt+λ

+ ce6εK(ω)+2λ

∫ 0

−t−1

e−2εz(θsω)+2ε
R 0
s
z(θτω)dτ+λsds

≤ c‖v0(θ−t−1ω)‖2e6εK(ω)+2ε
R 0
−t−1 z(θsω)ds−λt+λ + ce6εK(ω)+2λMε(ω)

≤ c‖u0(θ−t−1ω)‖2e−2εz(θ−t−1ω)+6εK(ω)+2ε
R 0
−t−1 z(θsω)ds−λt+λ

+ ce6εK(ω)+2λMε(ω).

(4.22)



10 J. LI, Y. LI, H. CUI EJDE-2014/87

Since B = {B(ω)}ω∈Ω ∈ D and u0(θ−t(ω)) ∈ B(θ−t(ω)), similar to (4.10), there
exists T (B,ω) > 0, independent of ε, such that for all t ≥ T (B,ω)

c‖u0(θ−t−1ω)‖2e−2εz(θ−t−1ω)+2pεK(ω)+2ε
R 0
−t−1 z(θsω)ds−λt ≤ 1, (4.23)

c‖u0(θ−t−1ω)‖2e−2εz(θ−t−1ω)+6εK(ω)+2ε
R 0
−t−1 z(θsω)ds−λt+λ ≤ 1. (4.24)

From (4.20), (4.22) and using (4.23), (4.24), we obtain that for all t ≥ T (B,ω),∫ t+1

t

‖∇u(s, θ−t−1ω, u0(θ−t−1ω))‖pp ≤ 1 + ce2pεK(ω)Mε(ω), (4.25)∫ t+1

t−1

‖u(s, θ−t−1ω, u0(θ−t−1ω))‖pp ≤ 1 + ce6εK(ω)Mε(ω). (4.26)

�

Lemma 4.3. Let 0 < ε ≤ 1, g ∈ L2(Rn) and (3.3)-(3.4) hold. Then for every
B = {B(ω)}ω∈Ω ∈ D and P-a.e. ω ∈ Ω, there is T (B,ω) > 0, independent of ε,
such that for all u0(θ−tω) ∈ B(θ−tω) and t ≥ T (B,ω),∀τ ∈ [t, t+ 1]

‖v(τ, θ−t−1ω, v0(θ−t−1ω))‖pp ≤ cepεK(ω)(εK(ω) + 1)(e6εK(ω)Mε(ω) + 1). (4.27)

Proof. Multiplying (3.12) with |v|p−2v and then integrating over Rn, it yields that

1
p

d

dt
‖v‖pp = eε(p−2)z(θtω)(div(|∇v|p−2∇v), |v|p−2v)− λ‖v‖pp

+ e−εz(θtω)(f(x, u), |v|p−2v) + e−εz(θtω)(g(x), |v|p−2v)

+ εz(θtω)‖v‖pp.

(4.28)

We now estimate every term of (4.28). First by our assumption p ≥ 2, we have

eε(p−2)z(θtω)(div(|∇v|p−2∇v), |v|p−2v)

= eε(p−2)z(θtω)

∫
Rn

n∑
i=1

∂

∂xi
(|∇v|p−2 ∂v

∂xi
)|v|p−2vdx

= −eε(p−2)z(θtω)
n∑
i=1

[
∫

Rn
(|∇v|p−2 ∂v

∂xi
)(p− 2)|v|p−2 ∂v

∂xi
dx

+
∫

Rn
(|∇v|p−2 ∂v

∂xi
)|v|p−2 ∂v

∂xi
dx]

= −eε(p−2)z(θtω)(p− 1)
∫

Rn
|∇v|p|v|p−2dx ≤ 0.

(4.29)

To estimate the nonlinear term, from (3.3), we have

f(x, u)v = e−εz(θtω)f(x, u)u ≤ −α1e
−εz(θtω)|u|p + e−εz(θtω)ψ1(x)

= −α1e
(p−1)εz(θtω)|v|p + e−εz(θtω)ψ1(x).

(4.30)
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From which it follows by Young’s inequality that

e−εz(θtω)(f(x, u), |v|p−2v)

= e−εz(θtω)

∫
Rn
f(x, u)|v|p−2v

≤ −α1e
(p−2)εz(θtω)‖v‖2p−2

2p−2 + e−2εz(θtω)

∫
Rn
ψ1(x)|v|p−2dx

≤ −α1e
(p−2)εz(θtω)‖v‖2p−2

2p−2 + ce−pεz(θtω)‖ψ1‖
p
2
p
2

+
(p− 1)λ

p
‖v‖pp.

(4.31)

On the other hand, the fourth term on the right-hand side of (4.28) is bounded by

|e−εz(θtω)(g(x), |v|p−2v)| ≤ α1

2
e(p−2)εz(θtω)‖v‖2p−2

2p−2 + ce−pεz(θtω)‖g‖2. (4.32)

Then it follows from (4.28)(4.29), (4.31),(4.32) that

d

dt
‖v‖pp ≤ (pεz(θtω)− λ)‖v‖pp + ce−pεz(θtω). (4.33)

Integrating (4.33) from s(t− 1 ≤ s ≤ t) to τ(t ≤ τ ≤ t+ 1), we obtain

‖v(τ, ω, v0(ω))‖pp

≤ ‖v(s, ω, v0(ω))‖pp +
∫ τ

s

|pεz(θs′ω)− λ|‖v(s′, ω, v0(ω))‖ppds′

+ c

∫ τ

s

e−pεz(θs′ω)ds′.

(4.34)

Replace ω by θ−t−1ω in (4.34), we have

‖v(τ, θ−t−1ω, v0(θ−t−1ω))‖pp

≤ ‖v(s, θ−t−1ω, v0(θ−t−1ω))‖pp + c

∫ t+1

t−1

e−pεz(θs′−t−1ω)ds′

+
∫ t+1

t−1

|pεz(θs′−t−1ω)− λ|‖v(s′, θ−t−1ω, v0(θ−t−1ω))‖ppds′.

(4.35)

Integrating (4.35) with respect to s from t−1 to t, we obtain that for all τ ∈ [t, t+1],

‖v(τ, θ−t−1ω, v0(θ−t−1ω))‖pp

≤
∫ t

t−1

‖v(s, θ−t−1ω, v0(θ−t−1ω))‖ppds+ c

∫ 0

−2

e−pεz(θsω)ds

+ c(εK(ω) + 1)
∫ t+1

t−1

‖v(s′, θ−t−1ω, v0(θ−t−1ω))‖ppds′

≤
∫ t+1

t−1

‖v(s, θ−t−1ω, v0(θ−t−1ω))‖ppds+ cepεK(ω) (4.36)

+ c(εK(ω) + 1)
∫ t+1

t−1

‖v(s′, θ−t−1ω, v0(θ−t−1ω))‖ppds′

≤
∫ t+1

t−1

e−pεz(θs−t−1ω)‖u(s, θ−t−1ω, u0(θ−t−1ω))‖ppds+ cepεK(ω)

+ c(εK(ω) + 1)
∫ t+1

t−1

e−pεz(θs′−t−1ω)‖u(s′, θ−t−1ω, u0(θ−t−1ω))‖ppds′
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≤ c(εK(ω) + 1)epεK(ω)

∫ t+1

t−1

‖u(s′, θ−t−1ω, u0(θ−t−1ω))‖ppds′ + cepεK(ω). (4.37)

Let T (B,ω) be the positive constant in Lemma 4.2 and t ≥ T (B,ω), together with
(4.13) and (4.37), we have for t ≤ τ ≤ t+ 1

‖v(τ, θ−t−1ω, v0(θ−t−1ω))‖pp ≤ cepεK(ω)(εK(ω) + 1)(e6εK(ω)Mε(ω) + 1). (4.38)

�

Lemma 4.4. Let 0 < ε ≤ 1, g ∈ L2(Rn) and (3.3)-(3.4) hold. Then for every
B = {B(ω)}ω∈Ω ∈ D and P-a.e.ω ∈ Ω, there is T (B,ω) > 0, independent of ε,
such that for all u0(θ−tω) ∈ B(θ−tω) and t ≥ T (B,ω)∫ t+1

t

‖u(s, θ−t−1ω, u0(θ−t−1ω))‖2p−2
2p−2ds ≤ cecεK(ω)(εK(ω) + 1)(ecεK(ω)Mε(ω) + 1).

(4.39)

Proof. Using (4.28) together with (4.29) (4.31)and (4.32), we have

d

dt
‖v‖pp ≤ −ceε(p−2)z(θtω)‖v‖2p−2

2p−2 + (pεz(θtω)− λ)‖v‖pp + ce−pεz(θtω). (4.40)

Using Gronwall’s Lemma, for all t ≥ T ≥ 0

‖v(t, ω, v0(ω))‖pp
≤ ‖v(T, ω, v0(ω))‖ppepε

R t
T
z(θsω)ds−λ(t−T )

+ c

∫ t

T

e−pεz(θsω)+pε
R t
s
z(θτω)dτ−λ(t−s)ds

− c
∫ t

T

eε(p−2)z(θsω)+pε
R t
s
z(θτω)dτ−λ(t−s)‖v(s, ω, v0(ω))‖2p−2

2p−2ds.

(4.41)

Replace ω by θ−tω in (4.41). It follows that

c

∫ t

T

eε(p−2)z(θs−tω)+pε
R t
s
z(θτ−tω)dτ−λ(t−s)‖v(s, θ−tω, v0(θ−tω))‖2p−2

2p−2ds

≤ ‖v(T, θ−tω, v0(θ−tω))‖ppepε
R t
T
z(θs−tω)ds−λ(t−T )

+ c

∫ t

T

e−pεz(θs−tω)+pε
R t
s
z(θτ−tω)dτ−λ(t−s)ds.

(4.42)

Replacing t by t+ 1 and T by t, we have

c

∫ t+1

t

eε(p−2)z(θs−t−1ω)+pε
R t+1
s

z(θτ−t−1ω)dτ−λ(t+1−s)

× ‖v(s, θ−t−1ω, v0(θ−t−1ω))‖2p−2
2p−2ds

≤ ‖v(t, θ−t−1ω, v0(θ−t−1ω))‖ppepε
R t+1
t

z(θs−t−1ω)ds−λ

+ c

∫ t+1

t

e−pεz(θs−t−1ω)+pε
R t+1
s

z(θτ−t−1ω)dτ−λ(t+1−s)ds

≤ ‖v(t, θ−t−1ω, v0(θ−t−1ω))‖ppepεK(ω)−λ + ce2pεK(ω).

(4.43)
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Note that∫ t+1

t

eε(p−2)z(θs−t−1ω)+pε
R t+1
s

z(θτ−t−1ω)dτ−λ(t+1−s)

× ‖v(s, θ−t−1ω, v0(θ−t−1ω))‖2p−2
2p−2ds

≥ e−2pεK(ω)+2εK(ω)−λ
∫ t+1

t

‖v(s, θ−t−1ω, v0(θ−t−1ω))‖2p−2
2p−2ds.

(4.44)

Thus together with (4.43)-(4.44), we obtain∫ t+1

t

‖u(s, θ−t−1ω, u0(θ−t−1ω))‖2p−2
2p−2ds

=
∫ t+1

t

eεz(θs−t−1ω)(2p−2)‖v(s, θ−t−1ω, v0(θ−t−1ω))‖2p−2
2p−2ds

≤ e(2p−2)εK(ω)

∫ t+1

t

‖v(s, θ−t−1ω, v0(θ−t−1ω))‖2p−2
2p−2ds

≤ ce5pεK(ω)−4εK(ω)‖v(t, θ−t−1ω, v0(θ−t−1ω))‖pp + ce6pεK(ω)−4εK(ω)+λ.

(4.45)

Let T (B,ω) be the positive constant in Lemma 4.3. Then for t ≥ T (B,ω), from
(4.27), we have∫ t+1

t

‖u(s, θ−t−1ω, u0(θ−t−1ω))‖2p−2
2p−2ds

≤ ce6pεK(ω)−4εK(ω)(εK(ω) + 1)(e6εK(ω)Mε(ω) + 1) + ce6pεK(ω)−4εK(ω)+λ

= cecεK(ω)(εK(ω) + 1)(ecεK(ω)Mε(ω) + 1).

(4.46)

�

Lemma 4.5. Let 0 < ε ≤ 1, g ∈ L2(Rn) and (3.3)-(3.4) hold. Then for every
B = {B(ω)}ω∈Ω ∈ D and P-a.e. ω ∈ Ω, there is T (B,ω) > 0, independent of ε,
such that for all u0(θ−tω) ∈ B(θ−tω) and t ≥ T (B,ω)

‖∇u(t, θ−tω, u0(θ−tω))‖pp ≤ cecεK(ω)(εK(ω) + 1)(Mε(ω) + 1). (4.47)

Proof. Take the inner product of (3.12) with vt in L2(Rn), we obtain

‖vt‖2 = −eε(p−2)z(θtω) 1
p

d

dt
‖∇v‖pp − λ(v, vt) + e−εz(θtω)(f(x, u), vt)

+ e−εz(θtω)(g(x), vt) + εz(θtω)(v, vt).
(4.48)

By (3.4), the Cauchy-Schwartz inequality and the Young inequality, we find that

|e−εz(θtω)(f(x, u), vt)|

≤ e−2εz(θtω)‖f(x, u)‖2 +
1
4
‖vt‖2

≤ 2α2
2e
−2εz(θtω)‖u‖2p−2

2p−2 + 2e−2εz(θtω)‖ψ2‖2 +
1
4
‖vt‖2,

(4.49)

|e−εz(θtω)(g(x), vt)| ≤ e−2εz(θtω)‖g‖2 +
1
4
‖vt‖2, (4.50)

|(εz(θtω)− λ)(v, vt)| ≤ |εz(θtω)− λ|2‖v‖2 +
1
4
‖vt‖2. (4.51)
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It follows from (4.48)-(4.51) that

d

dt
‖∇v‖pp

≤ 2pα2
2e
−pεz(θtω)‖u‖2p−2

2p−2 + 2pe−pεz(θtω)‖ψ2‖2

+ pe−pεz(θtω)‖g‖2 + pe−ε(p−2)z(θtω)|εz(θtω)− λ|2‖v‖2

= ce−pεz(θtω)‖u‖2p−2
2p−2 + ce−pεz(θtω) + ceε(2−p)z(θtω)|εz(θtω)− λ|2‖v‖2.

(4.52)

Let T0(B,ω) be the positive constant in Lemma 4.2, take t ≥ T0(B,ω) and s ∈
(t, t+ 1). Integrate (4.52) over (s, t+ 1) to get

‖∇v(t+ 1, ω, v0(ω))‖pp

≤ ‖∇v(s, ω, v0(ω))‖pp + c

∫ t+1

s

e−pεz(θτω)‖u(τ, ω, u0(ω))‖2p−2
2p−2dτ

+ c

∫ t+1

s

e−pεz(θτω)dτ + c

∫ t+1

s

eε(2−p)z(θτω)|εz(θτω)− λ|2‖v(τ, ω, v0(ω))‖2dτ.

(4.53)
Integrating with respect to s over (t, t+ 1), it follows that

‖∇v(t+ 1, ω, v0(ω))‖pp

≤
∫ t+1

t

‖∇v(s, ω, v0(ω))‖ppds+ c

∫ t+1

t

e−pεz(θτω)‖u(τ, ω, u0(ω))‖2p−2
2p−2dτ

+ c

∫ t+1

t

e−pεz(θτω)dτ + c

∫ t+1

t

eε(2−p)z(θτω)|εz(θτω)− λ|2‖v(τ, ω, v0(ω))‖2dτ.

(4.54)
Replace ω by θ−t−1ω in the above inequality, we have

‖∇v(t+ 1, θ−t−1ω, v0(θ−t−1ω))‖pp

≤
∫ t+1

t

‖∇v(s, θ−t−1ω, v0(θ−t−1ω))‖ppds

+ c

∫ t+1

t

e−pεz(θτ−t−1ω)‖u(τ, θ−t−1ω, u0(θ−t−1ω))‖2p−2
2p−2dτ

+ c

∫ t+1

t

e−pεz(θτ−t−1ω)dτ

+ c

∫ t+1

t

eε(2−p)z(θτ−t−1ω)|εz(θτ−t−1ω)− λ|2‖v(τ, θ−t−1ω, v0(θ−t−1ω))‖2dτ

≤
∫ t+1

t

‖∇v(s, θ−t−1ω, v0(θ−t−1ω))‖ppds

+ cepεK(ω) + cepεK(ω)

∫ t+1

t

‖u(τ, θ−t−1ω, u0(θ−t−1ω))‖2p−2
2p−2dτ

+ c(K2(ω) + 1)
∫ t+1

t

eε(2−p)z(θτ−t−1ω)‖v(τ, θ−t−1ω, v0(θ−t−1ω))‖2dτ,

(4.55)
where we used 0 < ε ≤ 1.
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We now estimate each part on the right. Firstly, by the Lemma 4.2, for t ≥
T0(B,ω), ∫ t+1

t

‖∇v(s, θ−t−1ω, v0(θ−t−1ω))‖ppds

=
∫ t+1

t

e−pεz(θs−t−1ω)‖∇u(s, θ−t−1ω, u0(θ−t−1ω))‖ppds

≤ epεK(ω)

∫ t+1

t

‖∇u(s, θ−t−1ω, u0(θ−t−1ω))‖ppds

≤ epεK(ω)(1 + ce2pεK(ω)Mε(ω)).

(4.56)

To estimate the last part, firstly, replace t by τ + t + 1 and ω by θ−t−1ω in (4.7),
we obtain

‖v(τ + t+ 1, θ−t−1ω, v0(θ−t−1ω)‖2

≤ ‖v0(θ−t−1ω)‖2e2ε
R τ+t+1
0 z(θs−t−1ω)ds−λ(τ+t+1)

+ c

∫ τ+t+1

0

e−2εz(θs−t−1ω)+2ε
R τ+t+1
s

z(θs′−t−1ω)ds′−λ(τ+t+1−s)ds.

(4.57)

Thus∫ t+1

t

eε(2−p)z(θτ−t−1ω)‖v(τ, θ−t−1ω, v0(θ−t−1ω))‖2dτ

≤
∫ 0

−1

eε(2−p)z(θτω)‖v(τ + t+ 1, θ−t−1ω, v0(θ−t−1ω))‖2dτ

≤
∫ 0

−1

‖v0(θ−t−1ω)‖2e2ε
R τ+t+1
0 z(θs−t−1ω)ds−λ(τ+t+1)+ε(2−p)z(θτω)dτ

+ c

∫ 0

−1

∫ τ+t+1

0

eε(2−p)z(θτω)−2εz(θs−t−1ω)+2ε
R τ+t+1
s

z(θs′−t−1ω)ds′−λ(τ+t+1−s)dsdτ.

(4.58)
Since ∫ 0

−1

‖v0(θ−t−1ω)‖2e2ε
R τ+t+1
0 z(θs−t−1ω)ds−λ(τ+t+1)+ε(2−p)z(θτω)dτ

≤ ‖u0(θ−t−1ω)‖2e−2εz(θ−t−1ω)−λ(t+1)+2ε
R 0
−t−1 z(θsω)ds

×
∫ 0

−1

e2ε
R τ
0 z(θsω)ds−λτ+ε(2−p)z(θτω)dτ.

(4.59)

For B = {B(ω)}ω∈Ω ∈ D and u0(θ−t(ω)) ∈ B(θ−t(ω)), similar to (4.10), there
exists T1(B,ω) > 0, independent of ε, such that for all t ≥ T1(B,ω),

‖u0(θ−t−1ω)‖2e−2εz(θ−t−1ω)−λ(t+1)+2ε
R 0
−t−1 z(θsω)ds

×
∫ 0

−1

e2ε
R τ
0 z(θsω)ds−λτ+ε(2−p)z(θτω)dτ

≤ ‖u0(θ−t−1ω)‖2e−λ2 (t+1) ≤ 1.

(4.60)
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For the second part of (4.58),

c

∫ 0

−1

∫ τ+t+1

0

eε(2−p)z(θτω)−2εz(θs−t−1ω)+2ε
R τ+t+1
s

z(θs′−t−1ω)ds′−λ(τ+t+1−s)dsdτ

= c

∫ 0

−1

∫ τ

−t−1

eε(2−p)z(θτω)−2εz(θsω)+2ε
R τ
s
z(θs′ω)ds′−λ(τ−s)dsdτ

≤ c
∫ 0

−1

e2ε
R τ
0 z(θs′ω)ds′−λτ+ε(2−p)z(θτω)Mε(ω)dτ

≤ cepεK(ω)Mε(ω).
(4.61)

Thus (4.58)-(4.61) imply that for all t ≥ T1(B,ω)∫ t+1

t

eε(2−p)z(θτ−t−1ω)‖v(τ, θ−t−1ω, v0(θ−t−1ω))‖2dτ

≤ 1 + cepεK(ω)Mε(ω).
(4.62)

Let T (B,ω) = max{T0(B,ω), T1(B,ω)}, it follows from (3.10), (3.11), (4.39),
(4.55)-(4.56), (4.62) that for all t ≥ T (B,ω),

‖∇u(t+ 1, θ−t−1, u0(θ−t−1ω))‖pp
= epεz(ω)‖∇v(t+ 1, θ−t−1, v0(θ−t−1ω))‖pp
≤ epεz(ω)[cepεK(ω)(1 + e2pεK(ω)Mε(ω)) + cepεK(ω)

+ cecεK(ω)(εK(ω) + 1)(1 + ecεK(ω)Mε(ω)) + c(K2(ω) + 1)(1 + epεK(ω)Mε(ω))]

≤ cecεK(ω)(1 + εK(ω))(1 +Mε(ω)).
(4.63)

�

Lemma 4.6. Let 0 < ε ≤ 1, g ∈ L2(Rn) and (3.3)-(3.4) hold. Then for every η >
0, B = {B(ω)}ω∈Ω ∈ D and P-a.e. ω ∈ Ω, there is T (B,ω, η) > 0 and R(ω, η) > 0,
independent of ε, such that for all u0(θ−tω) ∈ B(θ−tω) and t ≥ T (B,ω, η)∫

|x|≥R
|u(t, θ−tω, u0(θ−tω))|2dx ≤ η. (4.64)

Proof. Choose a smooth function ξ, such that 0 ≤ ξ(s) ≤ 1 for s ∈ R+, and

ξ(s) =

{
0, 0 ≤ s ≤ 1,
1, s ≥ 2.

Then, there exists a constant M , such that |ξ′(s)| ≤ M for s ∈ R+. Taking the
inner product of (3.12) with ξ( |x|

2

r2 )v in L2(Rn), we obtain

d

dt

∫
Rn
ξ(
|x|2

r2
)|v|2dx

= 2eε(p−2)z(θtω)

∫
Rn

(div |∇v|p−2∇v)ξ(
|x|2

r2
)vdx+ 2(εz(θtω)− λ)

∫
Rn
ξ(
|x|2

r2
)|v|2dx

+ 2e−εz(θtω)

∫
Rn
f(x, u)ξ(

|x|2

r2
)vdx+ 2e−εz(θtω)

∫
Rn
g(x)ξ(

|x|2

r2
)vdx.

(4.65)
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We now estimate the terms in (4.65) as follows. First we have

2eε(p−2)z(θtω)

∫
Rn

(div |∇v|p−2∇v)ξ(
|x|2

r2
)vdx

= −2eε(p−2)z(θtω)

∫
Rn

n∑
i=1

|∇v|p−2 ∂v

∂xi
ξ(
|x|2

r2
)
∂v

∂xi
dx

− 2eε(p−2)z(θtω)

∫
Rn

n∑
i=1

|∇v|p−2 ∂v

∂xi
ξ′(
|x|2

r2
)
2xi
r2
vdx

= −2eε(p−2)z(θtω)

∫
Rn
|∇v|pξ( |x|

2

r2
)dx

− 2eε(p−2)z(θtω)

∫
r≤|x|≤

√
2r

v|∇v|p−2ξ′(
|x|2

r2
)

2
r2
x · ∇vdx

≤ −2eε(p−2)z(θtω)

∫
Rn
|∇v|pξ( |x|

2

r2
)dx

+
4
√

2M
r

eε(p−2)z(θtω)

∫
r≤|x|≤

√
2r

|v||∇v|p−1dx

≤ −2eε(p−2)z(θtω)

∫
Rn
|∇v|pξ( |x|

2

r2
)dx+

4
√

2M
r

eε(p−2)z(θtω)(‖v‖pp + ‖∇v‖pp).

(4.66)
For the third term of (4.65), using (3.3), we have

2e−εz(θtω)

∫
Rn
f(x, u)ξ(

|x|2

r2
)vdx

= 2e−2εz(θtω)

∫
Rn
f(x, u)uξ(

|x|2

r2
)dx

≤ −2e−2εz(θtω)α1

∫
Rn
|u|pξ( |x|

2

r2
)dx+ 2e−2εz(θtω)

∫
Rn
|ψ1(x)|ξ( |x|

2

r2
)dx.

(4.67)

For the last term of (4.65), we have

2e−εz(θtω)

∫
Rn
g(x)ξ(

|x|2

r2
)vdx

≤ λ
∫

Rn
ξ(
|x|2

r2
)|v|2dx+

1
λ
e−2εz(θtω)

∫
Rn
g2(x)ξ(

|x|2

r2
)dx.

(4.68)

From (4.65)-(4.68), it follows that

d

dt

∫
Rn
ξ(
|x|2

r2
)|v|2dx

≤ (2εz(θtω)− λ)
∫

Rn
ξ(
|x|2

r2
)|v|2dx+

c

r
eε(p−2)z(θtω)(‖∇v‖pp + ‖v‖pp)

+ 2e−2εz(θtω)

∫
Rn
|ψ1(x)|ξ( |x|

2

r2
)dx+

1
λ
e−2εz(θtω)

∫
Rn
g2(x)ξ(

|x|2

r2
)dx.

(4.69)
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By the Gronwall Lemma, for any t ≥ 0,∫
Rn
ξ(
|x|2

r2
)|v(t, ω, v0(ω))|2dx

≤ e2ε
R t
0 z(θτω)dτ−λt

∫
Rn
ξ(
|x|2

r2
)|v0(ω)|2dx

+
c

r

∫ t

0

eε(p−2)z(θsω)+2ε
R t
s
z(θτω)dτ−λ(t−s)(‖∇v‖pp + ‖v‖pp)ds

+ 2
∫ t

0

e−2εz(θsω)+2ε
R t
s
z(θτω)dτ−λ(t−s)

∫
Rn
ξ(
|x|2

r2
)|ψ1(x)| dx ds

+
1
λ

∫ t

0

e−2εz(θsω)+2ε
R t
s
z(θτω)dτ−λ(t−s)

∫
Rn
ξ(
|x|2

r2
)g2(x) dx ds.

(4.70)

By replacing ω by θ−tω , it follows that∫
Rn
ξ(
|x|2

r2
)|v(t, θ−tω, v0(θ−tω))|2dx

≤ e2ε
R t
0 z(θτ−tω)dτ−λt

∫
Rn
ξ(
|x|2

r2
)|v0(θ−tω)|2dx

+
c

r

∫ t

0

eε(p−2)z(θs−tω)+2ε
R t
s
z(θτ−tω)dτ−λ(t−s)(‖∇v(s, θ−tω, v0(θ−tω))‖pp

+ ‖v(s, θ−tω, v0(θ−tω))‖pp)ds

+
∫ t

0

e−2εz(θs−tω)+2ε
R t
s
z(θτ−tω)dτ−λ(t−s)

∫
Rn
ξ(
|x|2

r2
)(2|ψ1(x)|+ 1

λ
g2(x)) dx ds.

(4.71)
We then estimate each term on the right-hand side of (4.71). Firstly, Since B ∈ D
and u0(θ−tω) ∈ B(θ−tω), it follows from (3.7), (3.8) that there exists T1(B,ω, η) >
0, independent of ε, such that for all t ≥ T1(B,ω, η)

e2ε
R t
0 z(θτ−tω)dτ−λt

∫
Rn
ξ(
|x|2

r2
)|v0(θ−tω)|2dx

≤ e2ε
R t
0 z(θτ−tω)dτ−λt‖v0(θ−tω)‖2

= e2ε
R 0
−t z(θτω)dτ−λt−2εz(θ−tω)‖u0(θ−tω)‖2

≤ e−λ2 t‖u0(θ−tω)‖2 < η

3
.

(4.72)

To estimate the second term on the right-hand side of (4.71), from (4.18) with T
replaced by 0, we have∫ t

0

e−2εz(θs−tω)+2ε
R t
s
z(θτ−tω)dτ+λ(s−t)‖u(s, θ−tω, u0(θ−tω))‖pp

+
∫ t

0

eε(p−2)z(θs−tω)+2ε
R t
s
z(θτ−tω)dτ+λ(s−t)‖∇v(s, θ−tω, v0(θ−tω))‖ppds

=
∫ t

0

eε(p−2)z(θs−tω)+2ε
R t
s
z(θτ−tω)dτ+λ(s−t)(‖v(s, θ−tω, v0(θ−tω))‖pp

+ ‖∇v(s, θ−tω, v0(θ−tω))‖pp)ds
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≤ c‖v0(θ−tω)‖2e2ε
R 0
−t z(θsω)ds−λt + c

∫ 0

−t
e−2εz(θsω)+2ε

R 0
s
z(θτω)dτ+λsds.

Thus
c

r

∫ t

0

eε(p−2)z(θs−tω)+2ε
R t
s
z(θτ−tω)dτ−λ(t−s)(‖∇v(s, θ−tω, v0(θ−tω))‖pp

+ ‖v(s, θ−tω, v0(θ−tω))‖pp)ds

≤ c

r
[‖u0(θ−tω)‖2e−2εz(θ−tω)+2ε

R 0
−t z(θτω)dτ−λt +Mε(ω)].

(4.73)

Since B ∈ D, u0(θ−tω) ∈ B(θ−tω), together with (3.7)-(3.9), it follows that there
exists T2(B,ω, η) > 0 and R1(η, ω) > 0, both independent of ε, such that for
t ≥ T2(B,ω, η) and r ≥ R1(η, ω),

c

r

∫ t

0

eε(p−2)z(θs−tω)+2ε
R t
s
z(θτ−tω)dτ−λ(t−s)

× (‖∇v(s, θ−tω, v0(θ−tω))‖pp + ‖v(s, θ−tω, v0(θ−tω))‖pp)ds <
η

3
.

(4.74)

For the last term of (4.71), since g ∈ L2(Rn) and ψ1 ∈ L1(Rn), there exists
R2(ω, η) > 0, independent of ε, such that∫ t

0

e−2εz(θs−tω)+2ε
R t
s
z(θτ−tω)dτ−λ(t−s)

∫
Rn
ξ(
|x|2

r2
)(2|ψ1(x)|+ 1

λ
g2(x)) dx ds

≤
∫ t

0

e−2εz(θs−tω)+2ε
R t
s
z(θτ−tω)dτ−λ(t−s)ds(2

∫
|x|≥r

|ψ1(x)|dx+
1
λ

∫
|x|≥r

g2(x)dx)

≤Mε(ω)(2
∫
|x|≥r

|ψ1(x)|dx+
1
λ

∫
|x|≥r

g2(x))dx <
η

3
.

(4.75)
Let

T (B,ω, η) = max{T1, T2}, R(ω, η) = max{R1, R2}.
Note that T (B,ω, η), R(ω, η) are both independent of ε. And for t ≥ T (B,ω, η)
and r ≥ R(ω, η), it follows from (4.71), (4.72), (4.74) and (4.75) that∫
|x|>r

|v(t, θ−tω, v0(θ−tω))|2dx =
∫

Rn
ξ(
|x|2

r2
)|v(t, θ−tω, v0(θ−tω))|2dx < η, (4.76)

which along with (3.11) implies the Lemma. �

Lemma 4.7. Let 0 < ε ≤ 1, g ∈ L2(Rn) and (3.3)-(3.4) hold. Then the random dy-
namical system generated by (3.1) is D-pullback asymptotically compact in L2(Rn),
that is, for P-a.e. ω ∈ Ω, the sequence {Φ(tn, θ−tnω, u0,n(θ−tnω))} has a convergent
subsequence in L2(Rn) provided tn →∞, {B(ω)} ∈ D and u0,n(θ−tnω) ∈ B(θ−tnω).

Proof. Let tn → ∞, {B(ω)} ∈ D and u0,n(θ−tnω) ∈ B(θ−tnω). Then by Lemma
4.1, for P-a.e. ω ∈ Ω, we have that

{Φ(tn, θ−tnω, u0,n(θ−tnω))}∞n=1 is bounded in L2(Rn). (4.77)

Hence, there is ζ ∈ L2(Rn) such that, up to a subsequence which is still denoted
by {Φ(tn, θ−tnω, u0,n(θ−tnω))}, such that

Φ(tn, θ−tnω, u0,n(θ−tnω))→ ζ weakly in L2(Rn). (4.78)

Next, we prove the weak convergence of (4.78) is actually strong convergence.
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Given η > 0, by Lemma 4.6, there is T1(B,ω, η) > 0 and R1(η, ω) > 0, indepen-
dent of ε, such that for all t ≥ T1∫

|x|≥R1

|Φ(t, θ−tω, u0(θ−tω))|2 ≤ η. (4.79)

Since tn → ∞, there is N1 such that tn ≥ T1 for every n ≥ N1. Hence, it follows
from (4.79) that for all n ≥ N1∫

|x|≥R1

|Φ(tn, θ−tnω, u0,n(θ−tnω))|2 ≤ η. (4.80)

Note that ζ ∈ L2(Rn), therefore there exists R2(η) > 0 such that∫
|x|≥R2

|ζ(x)|2 ≤ η. (4.81)

Let R3 = max{R1, R2}, denote QR3 = {x ∈ Rn, |x| ≤ R3}, from Lemma 4.5, there
is T2 = T2(B,ω) > 0, such that for all t ≥ T2,

‖Φ(t, θ−tω, u0(θ−tω))‖pW 1,p(QR3 ) ≤ ce
cεK(ω)(1 + εK(ω))(1 +Mε(ω)). (4.82)

Then, by the compactness of the embedding W 1,p(QR3) ↪→ L2(QR3), from (4.82)
it follows that, up to a subsequence,

Φ(tn, θ−tnω, u0,n(θ−tnω))→ ζ strongly in L2(QR3), (4.83)

which implies that for the given η > 0, there exists N2 > 0 such that for all n ≥ N2,

‖Φ(tn, θ−tnω, u0,n(θ−tnω))− ζ‖2L2(QR3 ) ≤ η. (4.84)

Let N = max{N1, N2}. By (4.80) (4.81) (4.84), we find that for all n ≥ N ,

‖Φ(tn, θ−tnω, u0,n(θ−tnω))− ζ‖2L2(Rn)

=
∫
|x|≤R3

|Φ(tn, θ−tnω, u0,n(θ−tnω))− ζ|2dx

+
∫
|x|≥R3

|Φ(tn, θ−tnω, u0,n(θ−tnω))− ζ|2dx

≤ η + 2
∫
|x|≥R3

|Φ(tn, θ−tnω, u0,n(θ−tnω))|2dx+ 2
∫
|x|≥R3

|ζ(x)|2dx

≤ 5η,

(4.85)

which shows that

Φ(tn, θ−tnω, u0,n(θ−tnω))→ ζ strongly in L2(Rn) (4.86)

as desired. �

It is now sufficient to show the existence of a D-random attractor for Φ in L2(Rn).

Theorem 4.8. Let 0 < ε ≤ 1, g ∈ L2(Rn) and (3.3)-(3.4) hold. Then the random
dynamical system Φ generated by (3.1) has a unique D-random attractor in L2(Rn).

Proof. Notice that Φ has a closed random absorbing set {K(ω)}ω∈Ω in D by Lemma
4.1, and is D-pullback asymptotically compact in L2(Rn) by Lemma 4.7. Hence
the existence of a unique D-random attractor for Φ follows from Proposition 2.8
immediately. �
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5. Upper semicontinuity of random attractors for p-Laplacian
equation on Rn

In this section, we prove the upper semicontinuity of random attractors for the
p-Laplacian equation defined on Rn when the stochastic perturbations approach
zero. We may further assume that the nonlinear function f satisfies, for all x ∈ Rn
and s ∈ R

∂f

∂s
(x, s) ≤ β, (5.1)

|∂f
∂s

(x, s)| ≤ α3|s|p−2 + ψ3(x), (5.2)

where α3, β are positive constants, ψ3 ∈ L∞(Rn) if p = 2 and ψ3 ∈ L
p
p−2 (Rn) if

p > 2.
To indicate dependence of solutions on ε, in this section, we write the solution

of problem (3.1)-(3.2) as uε, and the corresponding cocycle as Φε. And we denote
the solution and the semigroup of the deterministic equation

du

dt
− div(|∇u|p−2∇u) + λu = f(x, u) + g(x), x ∈ Rn, t > 0 (5.3)

by u and Φ0 respectively.
Note that the existence of the global attractor A0 in L2(Rn) for the deterministic

system (5.3) can similarly be achieved by the discussion in section 4.

Lemma 5.1. Let 0 < ε ≤ 1, g ∈ L2(Rn) and (3.3)-(3.4) hold. Then the union
∪0<ε≤1Aε(ω) is precompact in L2(Rn).

Proof. Given η > 0, we want to show that the set ∪0<ε≤1Aε(ω) has a finite covering
of balls of radii less than η. From Lemma 4.1

Dε(ω) = {u ∈ L2(Rn) : ‖u‖2 ≤ 1 + ce2εz(ω)Mε(ω)} (5.4)

is a closed and tempered random absorbing set for Φε in L2(Rn). Let

D(ω)

=
{

u ∈ L2(Rn) : ‖u‖2 ≤ 1 + ce2|z(ω)|
∫ 0

−∞
e2|z(θsω)|+2|

R 0
s
z(θτω)dτ |+λsds < +∞

}
.

It is easy to show that D(ω) is also a tempered set, that is, {D(ω)}ω∈Ω ∈ D.
By Lemma 4.6, we find that, given η > 0 and P-a.e.ω ∈ Ω, there is T (B,ω, η) > 0

and R(ω, η) > 0, independent of ε, such that for all u0(θ−t(ω)) ∈ D(θ−t(ω)) and
t ≥ T (B,ω, η) ∫

|x|≥R
|u(t, θ−tω, u0(θ−tω))|2dx ≤ η2

16
. (5.5)

For ∀u0(θ−t(ω)) ∈ Aε(θ−t(ω)), note that

∪0<ε≤1 Aε(ω) ⊂ ∪0<ε≤1Dε(ω) ⊂ D(ω), (5.6)

which implies that u0(θ−t(ω)) ∈ D(θ−tω). It follows that for every 0 < ε ≤ 1,
P-a.e. ω ∈ Ω, t ≥ T and for all u0(θ−t(ω)) ∈ Aε(θ−t(ω))∫

|x|≥R
|u(t, θ−tω, u0(θ−tω))|2dx ≤ η2

16
, (5.7)
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which along with the invariance of {Aε(ω)}ω∈Ω shows that for P-a.e. ω ∈ Ω∫
|x|≥R

|ũ(x)|2dx ≤ η2

16
, ∀ ũ ∈ ∪0<ε≤1Aε(ω). (5.8)

Let
QR = {x ∈ Rn : |x| < R}, QcR = Rn −QR. (5.9)

Then (5.8) implies that for P-a.e. ω ∈ Ω,

‖ũ(x)‖L2(QcR) ≤
η

4
, ∀ ũ ∈ ∪0<ε≤1Aε(ω). (5.10)

On the other hand, by Lemma 4.5, we find that, for every 0 < ε ≤ 1 and P-a.e.
ω ∈ Ω, there exists T (D,ω) > 0, independent of ε, such that for all t ≥ T (D,ω),

‖Φε(t, θ−tω,D(θ−tω))‖pW 1,p(QR3 ) ≤ ce
cεK(ω)(1 + εK(ω))(1 +Mε(ω)), (5.11)

which together with (5.6) implies that the set ∪0<ε≤1Aε(ω) is bounded in W 1,p(QR)
for P-a.e. ω ∈ Ω. By the compactness of embedding W 1,p(QR) ↪→ L2(QR), we find
that, for the given η, the set ∪0<ε≤1Aε(ω) has a finite covering of balls of radii less
than η

4 in L2(QR). This along with (5.10) shows that ∪0<ε≤1Aε(ω) has a finite
covering of balls of radii less than η in L2(Rn). �

Lemma 5.2. Let g ∈ L2(Rn), (3.3)-(3.4) and (5.1)-(5.2) hold. Given 0 < ε ≤ 1,
let uε and u be the solutions of equation (3.1) and (5.3) with initial conditions uε0
and u0, respectively. Then for P-a.e. ω ∈ Ω, uε0 → u0 (ε ↓ 0) and t ≥ 0, we have

lim
ε↓0

uε(t, ω, uε0) = u(t, ω, u0). (5.12)

Proof. Let

vε(t, ω, vε0) = e−εz(θtω)uε(t, ω, uε0), W = vε(t, ω, vε0)− u(t, ω, u0).

Then together with (3.12) and (5.3), we obtain

∂W

∂t
+ eε(p−2)z(θtω)Avε −Au+ λW

= e−εz(θtω)f(x, uε)− f(x, u) + (e−εz(θtω) − 1)g(x) + εvεz(θtω),
(5.13)

where Aζ = −div(|∇ζ|p−2∇ζ).
Taking the inner product of (5.13) with W in L2(Rn), we have

1
2
d

dt
‖W‖2

= −(eε(p−2)z(θtω)Avε −Au,W )− λ‖W‖2 + (e−εz(θtω)f(x, uε)− f(x, u),W )

+ ((e−εz(θtω) − 1)g(x),W ) + εz(θtω)(vε,W ).
(5.14)

By the property of p-Laplacian operator for p ≥ 2 and the Young inequality, we
obtain

− (eε(p−2)z(θtω)Avε −Au,W )

= −eε(p−2)z(θtω)(Avε −Au, vε − u)− (eε(p−2)z(θtω) − 1)(Au,W )

≤ |eε(p−2)z(θtω) − 1||(Au, vε − u)|

≤ c|eε(p−2)z(θtω) − 1|(‖∇u‖pp + ‖∇vε‖pp).

(5.15)
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For the nonlinear term on the right-hand side of (5.14), by (3.4), (5.1) and (5.2),

(e−εz(θtω)f(x, uε)− f(x, u),W )

= e−εz(θtω)

∫
Rn

(f(x, uε)− f(x, u))Wdx+ (e−εz(θtω) − 1)
∫

Rn
f(x, u)Wdx

= e−εz(θtω)

∫
Rn

∂f

∂s
(x, s)(uε − u)Wdx+ (e−εz(θtω) − 1)

∫
Rn
f(x, u)Wdx

= e−εz(θtω)

∫
Rn

∂f

∂s
(x, s)[eεz(θtω)vε − eεz(θtω)u+ (eεz(θtω) − 1)u]Wdx

+ (e−εz(θtω) − 1)
∫

Rn
f(x, u)Wdx

=
∫

Rn

∂f

∂s
(x, s)W 2dx+ (1− e−εz(θtω))

∫
Rn

∂f

∂s
(x, s)uWdx

+ (e−εz(θtω) − 1)
∫

Rn
f(x, u)Wdx

≤ β‖W‖2 + |1− e−εz(θtω)|
∫

Rn
[α3(|uε|+ |u|)p−2|u||W |+ |ψ3(x)||u||W |

+ |f(x, u)||W |]dx

≤ β‖W‖2 + c|1− e−εz(θtω)|
∫

Rn
[|uε|p−2|u||W |+ |u|p−1|W |+ |ψ3(x)||u||W |

+ |u|p−1|W |+ |ψ2(x)||W |]dx

≤ β‖W‖2 + c|1− e−εz(θtω)|(‖uε‖pp + ‖u‖pp + ‖W‖pp + ‖ψ3‖
p
p−2
p
p−2

+ ‖ψ2‖2 + ‖W‖2)

≤ β‖W‖2 + c|1− e−εz(θtω)|(‖uε‖pp + ‖u‖pp + ‖W‖pp + ‖W‖2 + 1)

By the Young inequality, the last two terms on the right-hand side of (5.14) is
bounded by

|e−εz(θtω) − 1||(g(x),W )|+ ε|z(θtω)||(W + u,W )|

≤ |e−εz(θtω) − 1|(‖g‖2 + ‖W‖2) + cε|z(θtω)|(‖W‖2 + ‖u‖2).
(5.16)

It follows from (5.14)-(5.16) that

d

dt
‖W‖2

≤ c|eε(p−2)z(θtω) − 1|(‖∇u‖pp + ‖∇vε‖pp) + c‖W‖2

+ c|1− e−εz(θtω)|(‖uε‖pp + ‖u‖pp + ‖W‖pp + ‖W‖2 + 1)

+ |e−εz(θtω) − 1|(‖g‖2 + ‖W‖2) + cε|z(θtω)|(‖W‖2 + ‖u‖2)

≤ c|eε(p−2)z(θtω) − 1|(‖∇u‖pp + ‖∇vε‖pp) + c‖W‖2

+ c|1− e−εz(θtω)|(‖uε‖pp + e−pεz(θtω)‖uε‖pp + ‖u‖pp + ‖W‖2 + 1)

+ cε|z(θtω)|(‖W‖2 + ‖u‖2)

= c(1 + |1− e−εz(θtω)|+ ε|z(θtω)|)‖W‖2 + c|eε(p−2)z(θtω) − 1|(‖∇u‖pp
+ ‖∇vε‖pp) + c|1− e−εz(θtω)|[(e−pεz(θtω) + 1)‖uε‖pp + ‖u‖pp + 1]

+ cε|z(θtω)|‖u‖2
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≤ c(e|z(θtω)| + 1 + |z(θtω)|)‖W‖2 + c|eε(p−2)z(θtω) − 1|(‖∇u‖pp + ‖∇vε‖pp)

+ c|1− e−εz(θtω)|[(e−pεz(θtω) + 1)‖uε‖pp + ‖u‖pp + 1] + cε|z(θtω)|‖u‖2,

where we used 0 < ε ≤ 1. Then by the Gronwall Lemma, we have for ∀ fixed t ≥ 0,

‖W (t)‖2 ≤ ec
R t
0 e

(|z(θsω)|+1+|z(θsω)|)ds‖W (0)‖2 + c

∫ t

0

{
|eε(p−2)z(θsω) − 1|(‖∇u‖pp

+ ‖∇vε‖pp) + |1− e−εz(θsω)|[(e−pεz(θsω) + 1)‖uε(s)‖pp + ‖u(s)‖pp + 1]

+ cε|z(θsω)|‖u(s)‖2
}
ec

R t
s
e(|z(θτω)|+1+|z(θτω)|)dτds

≤ ec
R t
0 e

(|z(θsω)|+1+|z(θsω)|)ds[‖W (0)‖2

+ c

∫ t

0

|eε(p−2)z(θsω) − 1|(‖∇u‖pp + ‖∇vε‖pp)ds

+ c

∫ t

0

|1− e−εz(θsω)|(e−pεz(θsω) + 1)‖uε(s)‖ppds

+ c

∫ t

0

|1− e−εz(θsω)|(‖u(s)‖pp + 1)ds+ cε

∫ t

0

|z(θsω)|‖u(s)‖2ds].

(5.17)
Since uε0 → u0 (as ε ↓ 0), we have

‖W (0)‖2 = ‖vε0 − u0‖2 = ‖e−εz(ω)uε0 − e−εz(ω)u0 + (e−εz(ω) − 1)u0‖2

≤ c(|e−εz(ω)|2‖uε0 − u0‖2 + |e−εz(ω) − 1|2‖u0‖2)→ 0 as ε ↓ 0.
(5.18)

According to (4.15) with T replaced by 0, we have∫ t

0

e−2εz(θsω)+2ε
R t
s
z(θτω)dτ+λ(s−t)‖uε(s, ω, uε0(ω))‖ppds

+
∫ t

0

e(p−2)εz(θsω)+2ε
R t
s
z(θτω)dτ+λ(s−t)‖∇vε(s, ω, vε0(ω))‖ppds

≤ ce2ε
R t
0 z(θsω)ds−λt‖vε0(ω)‖2 + c

∫ t

0

e−2εz(θsω)+2ε
R t
s
z(θτω)dτ+λ(s−t)

= ce2ε
R t
0 z(θsω)ds−λt−2εz(ω)‖uε0(ω)‖2 + c

∫ t

0

e−2εz(θsω)+2ε
R t
s
z(θτω)dτ+λ(s−t)

≤ ce2
R t
0 |z(θsω)|ds−λt+2|z(ω)|‖uε0(ω)‖2 + c

∫ t

0

e2|z(θsω)|+2
R t
0 |z(θτω)|dτ .

(5.19)

Thus∫ t

0

(e−pεz(θsω) + 1)‖uε(s)‖ppds

=
∫ t

0

(e−pεz(θsω) + 1)e2εz(θsω)−2ε
R t
s
z(θτω)dτ−λ(s−t)e−2εz(θsω)+2ε

R t
s
z(θτω)dτ+λ(s−t)

× ‖uε(s, ω, uε0(ω))‖ppds

≤ (epmax0≤s≤t |z(θsω)| + 1)e2 max0≤s≤t |z(θsω)|+2
R t
0 |z(θτω)|dτ+λt

×
(
ce2

R t
0 |z(θsω)|ds−λt+2|z(ω)|‖uε0(ω)‖2 + c

∫ t

0

e2|z(θsω)|+2
R t
0 |z(θτω)|dτds

)
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≤ cec(1+t) max0≤s≤t |z(θsω)|‖uε0(ω)‖2 + ctec(1+t) max0≤s≤t |z(θsω)|+λt.

Then it follows that

c

∫ t

0

|1− e−εz(θsω)|(e−pεz(θsω) + 1)‖uε(s)‖ppds

= c max
0≤s≤t

|1− e−εz(θsω)|
∫ t

0

(e−pεz(θsω) + 1)‖uε(s)‖ppds→ 0 as ε ↓ 0.
(5.20)

Similarly, according to (5.19), we can get

c

∫ t

0

|eε(p−2)z(θsω) − 1|‖∇vε(s)‖ppds→ 0 as ε ↓ 0 . (5.21)

And by (5.3) for ε = 0, we can also get that

c

∫ t

0

|eε(p−2)z(θsω) − 1|‖∇u(s)‖ppds+ c

∫ t

0

|1− e−εz(θsω)|‖u(s)‖ppds→ 0 (5.22)

as ε ↓ 0. Furthermore, it is easy to see

lim
ε↓0

(c
∫ t

0

|1− e−εz(θsω)|ds+ cε

∫ t

0

|z(θsω)|‖u(s)‖2ds) = 0. (5.23)

Thus, together (5.17), (5.18), (5.20)–(5.23), imply that for P-a.e. ∈ Ω,∀ fixed
t ≥ 0, uε0 → u0 (ε ↓ 0),

‖W (t)‖2 = ‖vε − u‖2 → 0 as ε ↓ 0. (5.24)

Finally, by (5.13) and (5.24), we obtain

‖uε − u‖2 = ‖eεz(θtω)vε − u‖2 = ‖eεz(θtω)vε − eεz(θtω)u+ (eεz(θtω) − 1)u‖2

≤ c(e2εz(θtω)‖vε − u‖2 + |eεz(θtω) − 1|2‖u‖2)→ 0 as ε ↓ 0.

This completes the proof. �

Theorem 5.3. Let g ∈ L2(Rn), (3.3)-(3.4) and (5.1)-(5.2) hold. Then for P-a.e.
ω ∈ Ω

lim
ε↓0

dist L2(Rn)(Aε(ω),A0) = 0. (5.25)

Proof. It suffices to show that conditions (i)–(iii) of Proposition 2.9 are all satisfied.
Note that {Dε(ω)}ω∈Ω is a closed absorbing set for Φε in D, where Dε(ω) is given
by (5.3). And it is easy to get

lim sup
ε↓0

‖Dε(ω)‖ ≤M =

√
1 +

1
λ
, (5.26)

where
√

1 + 1
λ is a positive deterministic constant. Thus condition (ii) of Propo-

sition 2.9 is satisfied. Lemma 5.1 and Lemma 5.2 show that condition (iii) and (i)
of Proposition 2.9 are satisfied respectively. Hence, (5.25) follows from Proposition
2.9 immediately. �
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