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HALO-SHAPED BIFURCATION CURVES IN ECOLOGICAL
SYSTEMS

JEROME GODDARD II, RATNASINGHAM SHIVAJI

Abstract. We examine the structure of positive steady state solutions for a

diffusive population model with logistic growth and negative density dependent
emigration on the boundary. In particular, this class of nonlinear boundary

conditions depends on both the population density and the diffusion coefficient.

Results in the one-dimensional case are established via quadrature methods.
Additionally, we discuss the existence of a Halo-shaped bifurcation curve.

1. Introduction

We consider the diffusive logistic population dynamics model with nonlinear
boundary conditions:

ut = d∆u+ au− bu2, x ∈ Ω, t > 0

dα(x, u)∇u · η + [1− α(x, u)]u = 0, x ∈ ∂Ω, t > 0
(1.1)

where Ω is a bounded domain with smooth boundary in Rn for n ≥ 1, ∆ is the
Laplace operator, d > 0 is the diffusion coefficient, a, b are positive parameters, ∇u ·
η is the outward normal derivative, and α(x, u) : ∂Ω×R→ [0, 1] is a nondecreasing
C1 function.

Spatiotemporal models have been extensively employed in population dynamics
to describe the distribution and abundance of organisms living in a patch, Ω. The
archetypal form of such a model is given by

ut = d∆u+ uf̃(x, u), x ∈ Ω, t > 0

with u(t, x) representing the population density and f̃(x, u) the per capita growth
rate which could be influenced by the heterogenous environment. These ecological
models were first studied by Skellam in his pioneering work, [27]. Similar models
were analyzed prior to Skellam by authors such as Kolomogoroff et al. in [17]. One
of the most classic examples is Fisher’s equation where f̃(x, u) = (1 − u), which
was first studied by in the Skellam in [27]. Reaction diffusion models have since
been successfully applied to other spatiotemporal phenomena in disciplines such as
physics, chemistry, and biology (see [4, 9, 21, 22, 28]).

Throughout the literature, the logistic growth rate, given by f̃(x, u) = a(x) −
b(x)u, has been extensively used to model crowding effects (see [23]). However, a
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more general logistic type growth rate can be characterized as having a decreasing
per capita growth function; i.e., f̃(x, u) is decreasing with respect to u. In this
paper, we consider logistic growth with f̃(x, u) = (a − bu) where a, b are positive
parameters.

To date, the homogeneous Dirichlet boundary condition, u = 0; ∂Ω, Neumann
boundary condition, ∂u

∂η = 0; ∂Ω, and linear combinations of the two aforemen-
tioned boundary conditions (known as a Robin boundary condition) have been
employed almost exclusively in population models. Linear boundary conditions
assume the behavior of the population on the boundary is independent of the pop-
ulation density itself. But, density dependent emigration rates from patches of
habitat have been reported by several ecologists. Empirical studies conducted by
ecologists have even shown a negative correlation between density and emigration
rates, in which animals have a tendency to leave a patch when density is low and
stay in the patch when it is high. This fact brings into question a commonly made
assumption in ecology, that animals exhibit positive density dependent dispersal
and patch emigration.

In fact, automatic use of this assumption has been cautioned by authors such as
Paivinen et. al. in [24]. Negative density dependent dispersal has been reported in
the black-headed gull Larus ridibundus (see [15]), Cassin’s auklet Ptychoramphus
aleuticus (see [25]), great it Parus major (see [14]), bighorn sheep, Ovis canadensis
(see [20]), roe deer Capreolus capreolus (see [30, 31]), banner-tailed kangaroo rat
Dipodomys spectabilis (see [16]), and the Glanville fritillary butterfly Melitaea cinxi
(see [18]) among others.

Several mechanisms have been proposed in the literature as a cause of nega-
tive density dependent dispersal including, range position (in which the density of
organisms decreases while moving along a gradient from the center of the species
distribution range toward its edge), niche breadth (where a particular organism
that has the ability to use a wider range of resources is assumed to be widespread
and more abundant), density dependent habitat selection (in particular when or-
ganisms tend to occupy more habitats when density is low), and dispersal ability
(especially when organisms differ in their ability to disperse which can reduce den-
sity but increase distribution) (see [24]). Notably, conspecific attraction has also
been shown to induce negative density dependent dispersal by Kuussaari et al. who
observed emigration of the Glanville fritillary butterfly out of low density areas and
Danielson et al. who reported a tendency for individuals to be more attracted to
areas with conspecifics, see [8, 18, 29].

In an effort to improve population models to account for this behavior, Cantrell
and Cosner proposed the following nonlinear boundary condition which explicitly
models conspecific attraction occurring on the boundary of a patch (see [4, 5, 6]),

dα(x, u)∇u · η + [1− α(x, u)]u = 0, x ∈ ∂Ω (1.2)

where d is the diffusion coefficient, ∇u · η is the outward normal derivative, and
α(x, u) : ∂Ω × R → [0, 1] is a nondecreasing C1 function. Only recently has the
nonlinear boundary condition (1.2) been studied in terms of population dynamics
(see [2, 3, 4, 5, 6, 7]). Note that if α(x, u) ≡ 0, then (1.2) becomes the Dirichlet
boundary condition and all organisms leave the patch upon reaching the boundary.
For the case when α(x, u) ≡ 1, (1.2) becomes the Neumann boundary condition
implying that all organisms remain on the boundary when reached. If α(x, u) =
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α0 ∈ (0, 1) then only a fraction of the organisms will remain on the boundary when
reached.

Figure 1. Typical graph of α(x, u)

The class of α(x, u)’s which model negative density dependent emigration on the
boundary have the structure exemplified in Figure 1, where α(x, 0) = 0 and α(x, u)
is increasing to one as u→∞. With this in mind we will be interested in α(x, u)’s
of the form:

α(x, u) = α(u) :=
u

u+ g(u)
, x ∈ ∂Ω

where g ∈ C1([0,∞), [δ,∞)) for some δ > 0, g(u)
u tends to 0 as u→∞.

The dynamics of the population model (1.1) are completely determined by the
model’s steady state solutions. Thus, we are interested in obtaining the structure
of positive steady state solutions of (1.1), namely we consider

−∆u = λ[au− bu2], x ∈ Ω, (1.3)

u[
1
λ
∇u · η + g(u)] = 0, x ∈ ∂Ω (1.4)

where λ = 1/d and d > 0 is the diffusion coefficient. In the case when λ = 1, the
authors have studied (1.3) - (1.4) with the addition of constant yield harvesting
in [10, 11] for one-dimension and higher dimensions, respectively. See also [13, 12]
where the authors have also considered (1.3) - (1.4) with λ = 1, strong Allee
effect, and constant yield harvesting in both one-dimension and higher dimensions,
respectively.

In this paper, we are interested in the case when λ > 0 is allowed to vary. Notice
that the diffusion parameter will be present in the nonlinear boundary condition.
In particular, we consider the case when n = 1, Ω = (0, 1), and g(u) ≡ 1. Thus, we
study the nonlinear boundary value problem,

−u′′ = λ[au− bu2], x ∈ (0, 1) (1.5)

[− 1
λ
u′(0) + 1]u(0) = 0 (1.6)
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[
1
λ
u′(1) + 1]u(1) = 0. (1.7)

It is clear that analyzing the positive solutions of (1.5) - (1.7) is equivalent to
studying the four boundary value problems

−u′′ = λ[au− bu2], x ∈ (0, 1) (1.8)

u(0) = 0 (1.9)

u(1) = 0, (1.10)

−u′′ = λ[au− bu2], x ∈ (0, 1) (1.11)

u(0) = 0 (1.12)

u′(1) = −λ, (1.13)

−u′′ = λ[au− bu2], x ∈ (0, 1) (1.14)

u′(0) = λ (1.15)

u(1) = 0, (1.16)

and

−u′′ = λ[au− bu2], x ∈ (0, 1) (1.17)

u′(0) = λ (1.18)

u′(1) = −λ. (1.19)

We note that if u(x) is a solution of (1.11) - (1.13) then v(x) := u(1 − x) is
also solution of (1.14) - (1.16). It suffices to only consider (1.8) - (1.10), (1.11) -
(1.13), and (1.17) - (1.19). The structure of positive solutions for (1.8) - (1.10) has
been established in the literature (even for the higher dimensional case), see [4, 26].
For completeness, we detail the structure of positive solutions of (1.8) - (1.10) in
Section 2.1 via the quadrature method introduced by Laetsch in [19]. In Sections
2.2 and 2.3, we extend the quadrature method to study (1.11) - (1.13) and (1.17) -
(1.19), respectively. Section 3 is concerned with employing the mathematics soft-
ware package Mathematica to generate the bifurcation curve of positive solutions
of (1.5) - (1.7) as the parameter λ > 0 is varied.

Throughout this paper we will consider the case when a > b. Computational
results indicate that for certain ranges of a and b, the bifurcation curve consists
of three different connected components. One component forms a closed-loop con-
necting two distinct points on the ‖u‖∞-axis, while another component forms an
ellipse or “halo”. Moreover, for certain ranges of the parameter λ > 0, (1.5) - (1.7)
has exactly 7 positive solutions, see Figure 2. Note that (1.8) - (1.10) is portrayed
in red, (1.11) - (1.13) in green, and (1.17) - (1.19) in blue.

2. Results via the quadrature method

2.1. Positive solutions of (1.8) - (1.10). Here we recall some of the one-di-
mensional results of [4] for positive solutions of (1.8) - (1.10) via the quadrature
method. Evidently, a positive solution, u(x), of (1.8) - (1.10):

−u′′ = λ[au− bu2] =: λf(u), x ∈ (0, 1)

u(0) = 0

u(1) = 0,
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Figure 2. Halo-shaped bifurcation curve of positive solutions for
(1.5) - (1.7)

must resemble Figure 3, where ρ := ‖u‖∞.

Figure 3. Typical solution of (1.8) - (1.10)

We now present the main result for positive solutions of (1.8) - (1.10) in Theorem
2.1.

Theorem 2.1 ([1, 19]). Problem (1.8) - (1.10) has a positive solution, u(x), with
‖u‖∞ = ρ if and only if G1(ρ) :=

√
2
∫ ρ
0

ds√
F (ρ)−F (s)

=
√
λ for some λ > 0, where

F (s) :=
∫ s
0
f(s)ds.
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Remark (see [1]) G1(ρ) is well defined and the included improper integral is con-
vergent on S := (0, ab ), since f(ρ) > 0, ρ ∈ S and F (s) is strictly increasing on S.
Moreover, G1(ρ) is a continuous and differentiable function on S.

Proof of Theorem 2.1. (⇒:) Assume that u(x) is a positive solution to (1.8) - (1.10)
with ρ := ‖u‖∞. Since (1.8) is an autonomous differential equation, if there exists
an x0 ∈ (0, 1) such that u′(x0) = 0 then v(x) := u(x0 + x) and w(x) := u(x0 − x)
will both satisfy the initial value problem,

−z′′ = λf(z)

z(0) = u(x0)

z′(0) = 0

(2.1)

for all x ∈ [0, d) with d = min{x0, 1 − x0}. Picard’s Existence and Uniqueness
Theorem asserts that u(x0 +x) ≡ u(x0−x). Hence, u(x) must be symmetric about
x0 = 1

2 , u′(x) ≥ 0;x ∈ [0, x0], and u′(x) ≤ 0;x ∈ [x0, 1]. Multiplying (1.8) by u′(x)
, gives

−
[ [u′(x)]2

2
]′ = λ[F (u(x))]′. (2.2)

Integration of (2.2) from x to 1/2 yields,

u′(x)√
F (ρ)− F (u(x))

=
√

2λ, x ∈ [0,
1
2

). (2.3)

Integrating (2.3) from 0 to x, we have∫ u(x)

0

ds√
F (ρ)− F (s)

=
√

2λx, x ∈ [0,
1
2

]. (2.4)

Substitution of x = 1/2 into (2.4) and use of the fact that u(1/2) = ρ, yields,

G1(ρ) :=
√

2
∫ ρ

0

ds√
F (ρ)− F (s)

=
√
λ. (2.5)

(⇐:) Now, suppose that there exists a λ > 0, ρ ∈ S such that G1(ρ) =
√
λ. Define

u : [0, 1
2 ]→ R by ∫ u(x)

0

ds√
F (ρ)− F (s)

=
√

2λx. (2.6)

It remains to be seen that u(x) is well defined and a positive solution of (1.8).
It follows that the left-hand side of (2.6) is a differentiable function of u, strictly
increasing from 0 to 1

2 as u increases from 0 to ρ. Hence, for each x ∈ [0, 1
2 ) there

exists a unique u(x) that satisfies (2.6). Now, use of the Implicit Function Theorem
establishes that u(x) is differentiable as a function of x. Differentiating (2.6), we
have

u′(x) =
√

2λ[F (ρ)− F (u(x))], x ∈ (0,
1
2

). (2.7)

Rearranging (2.7), it yields

− [u′(x)]2

2
= λ[F (u(x))− F (ρ)], x ∈ (0,

1
2

). (2.8)

Differentiating (2.8), we have

−u′′(x) = f(u(x)), x ∈ (0, 1).
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Hence, u(x) satisfies the differential equation in (1.8). It is also easy to see that
u(0) = 0. Finally, defining u(x) as a symmetric function on (0, 1) yields a positive
solution to (1.8) - (1.10) with ‖u‖∞ = ρ and u(0) = 0 = u(1). �

To close this subsection, we recall a result about the global behavior of the
bifurcation curve of positive solutions for (1.8) - (1.10). Figure 4 exemplifies the
behavior of the bifurcation curve of positive solutions.

Theorem 2.2 ([4]). Problem (1.8) - (1.10) has no positive solution for λ ≤ π2

a .
Furthermore, (1.8) - (1.10) has a unique positive solution for λ > π2

a and this branch
of positive solutions approaches infinity in the λ-direction as ρ = ‖u‖∞ → a

b .

Figure 4. Bifurcation curve of positive solutions for (1.8) - (1.10)

2.2. Positive solutions of (1.11) - (1.13). In this subsection, we extend the quad-
rature method to study the structure of positive solutions of (1.11) - (1.13), namely

−u′′ = λ[au− bu2] =: λf(u), x ∈ (0, 1)

u(0) = 0

u′(1) = −λ.
It is clear that a positive solution, u(x), of (1.11) - (1.13) will resemble Figure 5
with ρ := ‖u‖∞, u′(x0) = 0 for some x0 ∈ ( 1

2 , 1), and q := u(1).
We now state and prove the main result for positive solutions of (1.11) - (1.13)

in Theorem 2.3.

Theorem 2.3. Problem (1.11) - (1.13) has a positive solution, u(x), with ρ = ‖u‖∞
and q = u(1) if and only if

G2(ρ, q) := 2[F (ρ)− F (q)] = λ

for some λ > 0, where q = q(ρ) ∈ [0, ρ) satisfies

G̃2(ρ, q) := 2
∫ ρ

0

ds√
F (ρ)− F (s)

−
∫ q

0

ds√
F (ρ)− F (s)

− 2
√
F (ρ)− F (q) = 0
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Figure 5. Typical solution of (1.11) - (1.13)

and F (s) :=
∫ s
0
f(s)ds.

As in the previous subsection, the improper integral in G̃2(ρ, q) is well-defined
and convergent for ρ ∈ S and q = q(ρ) ∈ [0, ρ). Now we prove Theorem 2.3.

Proof of Theorem 2.3. (⇒:) Assume that u(x) is a positive solution to (1.11) -
(1.13) with ρ := ‖u‖∞ and q := u(1). Through a similar argument to the one used
in the proof of Theorem 2.1, it is easy to show that if there exists an x0 ∈ (0, 1)
such that u′(x0) = 0 then u(x) will be symmetric about x0 with u′(x) > 0; [0, x0)
and u′(x) < 0; (x0, 1]. Now, multiplying (1.11) by u′ and integrating with respect
to x yields,

− [u′(x)]2

2
= λF (u(x)) + C, x ∈ [0, 1]. (2.9)

Substituting x = x0 and x = 1 into (2.9) gives

C = −λF (ρ) (2.10)

C = −λF (q)− λ2

2
. (2.11)

Combining (2.10) with (2.11) we have,

F (ρ) = F (q) +
λ

2
. (2.12)

Now, substitution of (2.10) into (2.9) yields

[u′(x)]2

2
= λ[F (ρ)− F (u(x))], x ∈ [0, 1]. (2.13)

Solving for u′(x) in (2.13) and using the fact that u′(x) > 0; [0, x0) and u′(x) <
0; (x0, 1] we have

u′(x) =
√

2λ
√
F (ρ)− F (u(x)), x ∈ [0, x0] (2.14)

u′(x) = −
√

2λ
√
F (ρ)− F (u(x)), x ∈ [x0, 1]. (2.15)
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Integration of (2.14) from 0 to x and (2.15) from x0 to x yields∫ x

0

u′(x)dx√
F (ρ)− F (u(x))

=
√

2λx, x ∈ [0, x0] (2.16)∫ x

x0

u′(x)dx√
F (ρ)− F (u(x))

= −
√

2λ(x− x0), x ∈ [x0, 1]. (2.17)

Through a change of variables and using the fact that u(0) = 0 and u(x0) = ρ we
have ∫ u(x)

0

ds√
F (ρ)− F (s)

=
√

2λx, x ∈ [0, x0] (2.18)∫ u(x)

ρ

ds√
F (ρ)− F (s)

= −
√

2λ(x− x0), x ∈ [x0, 1]. (2.19)

Substituting x = x0 into (2.18) and x = 1 into (2.18) gives∫ ρ

0

ds√
F (ρ)− F (s)

=
√

2λx0 (2.20)∫ q

ρ

ds√
F (ρ)− F (s)

= −
√

2λ(1− x0). (2.21)

Now, subtraction of (2.21) from (2.20) yields,

2
∫ ρ

0

ds√
F (ρ)− F (s)

−
∫ q

0

ds√
F (ρ)− F (s)

−
√

2λ = 0. (2.22)

Solving for
√

2λ in (2.12), we have
√

2λ = 2
√
F (ρ)− F (q). (2.23)

Finally, combining (2.22) and (2.23), gives

G̃2(ρ, q) := 2
∫ ρ

0

ds√
F (ρ)− F (s)

−
∫ q

0

ds√
F (ρ)− F (s)

− 2
√
F (ρ)− F (q) = 0.

It is now readily apparent from (2.23) that

G2(ρ, q) := 2[F (ρ)− F (q)] = λ.

(⇐:) Suppose G2(ρ, q) = λ for some ρ ∈ S and λ > 0 where q = q(ρ) ∈ [0, ρ) is a
solution of G̃2(ρ, q) = 0. Now, define u(x) : [0, 1]→ R by∫ u(x)

0

ds√
F (ρ)− F (s)

=
√

2λx, x ∈ [0, x0] (2.24)∫ u(x)

ρ

ds√
F (ρ)− F (s)

= −
√

2λ(x− x0), x ∈ [x0, 1]. (2.25)

We will show that u(x) is a positive solution to (1.11) - (1.13). It is easy to see
that the turning point given by x0 = 1√

2λ

∫ ρ
0

ds√
F (ρ)−F (s)

is unique for fixed λ- and

ρ-values. The function,
1√
2λ

∫ u

0

ds√
F (ρ)− F (s)

,
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is a differentiable function of u which is strictly increasing from 0 to x0 as u increases
from 0 to ρ. Thus, for each x ∈ [0, x0], there is a unique u(x) such that∫ u(x)

0

ds√
F (ρ)− F (s)

=
√

2λx. (2.26)

Moreover, by the Implicit Function theorem, u(x) is differentiable with respect to
x. Differentiating (2.26), gives

u′(x) =
√

2[F (ρ)− F (u(x))], x ∈ (0, x0). (2.27)

Through a similar argument, u(x) is a differentiable, decreasing function of x for
x ∈ (x0, 1) with

u′(x) = −
√

2[F (ρ)− F (u(x))], x ∈ (x0, 1). (2.28)

This implies that we have,

−[u′(x)]2

2
= F (ρ)− F (u(x)), x ∈ (0, 1).

Differentiating again, we have

−u′′(x) = f(u(x)), x ∈ (0, 1).

Thus, u(x) satisfies (1.11). It only remains to be seen that u(x) satisfies (1.12) and
(1.13). However, from (2.24) it is clear that u(0) = 0. Since G2(ρ, q) = λ, we have

2[F (ρ)− F (q(ρ))] = λ. (2.29)

Substituting x = 1 into (2.28), gives

u′(1) = −
√

2λ
√
F (ρ)− F (q). (2.30)

Combining (2.29) and (2.30), we have

u′(1) = −λ.
Hence, u(x) satisfies both (1.12) and (1.13). �

With Theorem 2.3, it is imperative that we study the existence and possible
multiplicity of q-values for a given ρ ∈ S. We see that the sign of

[G̃2(ρ, q)]q =
f(q)− 1√
F (ρ)− F (q)

is completely determined by f(q)−1 = aq−bq2−1. Let h1(q) := f(q)−1 and denote
its roots by q1(a, b) := a−

√
a2−4b
2b and q2(a, b) := a+

√
a2−4b
2b . Clearly, when q1(a, b)

and q2(a, b) are real we must have that 0 < q1(a, b) ≤ q2(a, b) < a/b. Lemma 2.4
below gives a detailed description of the sign of [G̃2(ρ, q)]q for all possible parameter
values. Its proof is just elementary algebra and is omitted.

Lemma 2.4. (1) Let b < 4 and a ≤ 2
√
b.

(a) If a < 2
√
b then [G̃2(ρ, q)]q < 0 for all ρ ∈ S and q ∈ [0, ρ).

(b) If a = 2
√
b then

(i) for ρ ∈ (0, q1(a, b)], [G̃2(ρ, q)]q < 0 when q ∈ [0, ρ)
(ii) for ρ ∈ (q1(a, b), ab ), [G̃2(ρ, q)]q < 0 when q ∈ [0, q1(a, b)) ∪

(q1(a, b), ρ) and [G̃2(ρ, q1(a, b))]q = 0.
(2) Let a > 2

√
b. Then
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(a) for ρ ∈ (0, q1(a, b)], [G̃2(ρ, q)]q < 0 when q ∈ [0, ρ)
(b) for ρ ∈ (q1(a, b), q2(a, b)]

(i) [G̃2(ρ, q)]q < 0 when q ∈ [0, q1(a, b))
(ii) [G̃2(ρ, q1(a, b))]q = 0
(iii) [G̃2(ρ, q)]q > 0 when q ∈ (q1(a, b), ρ)

(c) for ρ ∈ (q2(a, b), ab )
(i) [G̃2(ρ, q)]q < 0 when q ∈ [0, q1(a, b))

(ii) [G̃2(ρ, q1(a, b))]q = 0
(iii) [G̃2(ρ, q)]q > 0 when q ∈ (q1(a, b), q2(a, b))
(iv) [G̃2(ρ, q2(a, b))]q = 0
(v) [G̃2(ρ, q)]q < 0 when q ∈ (q2(a, b), ρ).

The above lemma gives sufficient conditions for nonexistence of positive solutions
of (1.11) - (1.13), which are outlined in the following theorem.

Theorem 2.5. If b < 4 and a ≤ 2
√
b then (1.11) - (1.13) has no positive solution

for any λ > 0. Moreover, if a > 2
√
b then (1.11) - (1.13) has no positive solution,

u(x), whenever ‖u‖∞ ≤ q1(a, b) for any λ > 0.

Proof. Let ρ ∈ S. Clearly, G̃2(ρ, ρ) > 0. But, if a ≤ 2
√
b then Lemma 2.4 gives

that [G̃2(ρ, q)]q ≤ 0 for all q ∈ [0, ρ). Hence, G̃2(ρ, q) 6= 0 for all q ∈ [0, ρ) and
Theorem 2.3 guarantees that (1.11) - (1.13) will not have a positive solution for
any λ > 0. Now, if a > 2

√
b and ρ = ‖u‖∞ ≤ q1(a, b) then Lemma 2.4 gives that

[G̃2(ρ, q)]q < 0 for all q ∈ [0, ρ) and it follows as in the previous case that (1.11) -
(1.13) will not have a positive solution for any λ > 0. �

Another consequence of Lemma 2.4 is that given a ρ ∈ S, the number of positive
solutions of (1.11) - (1.13) having ‖u‖∞ = ρ can be easily ascertained by comput-
ing the values of both G̃2(ρ, 0) and G̃2(ρ, q1(a, b)), as exemplified in the following
Lemma.

Lemma 2.6. Suppose that a > 2
√
b and ρ ∈ (q1(a, b), ab ).

(1) Let G̃2(ρ, q1(a, b)) > 0. Then (1.11) - (1.13) has no positive solution with
‖u‖∞ = ρ for any λ > 0.

(2) Let G̃2(ρ, q1(a, b)) = 0. Then (1.11) - (1.13) has a unique positive solution
with ‖u‖∞ = ρ and u(1) = q = q1(a, b) for some λ > 0.

(3) Let G̃2(ρ, q1(a, b)) < 0.
(i) If G̃2(ρ, 0) > 0 then (1.11) - (1.13) has two positive solutions both

having ‖u‖∞ = ρ and the first with u(1) = q ∈ (0, q1(a, b)) and the
second has u(1) = q ∈ (q1(a, b),min {ρ, q2(a, b)}) corresponding to two
different λ-values.

(ii) If G̃2(ρ, 0) = 0 then (1.11) - (1.13) has two positive solutions both
having ‖u‖∞ = ρ and the first with u(1) = 0 and the second with
u(1) = q ∈ (q1(a, b),min {ρ, q2(a, b)}) corresponding to two different
λ-values.

(iii) If G̃2(ρ, 0) < 0 then (1.11) - (1.13) has a unique positive solution with
‖u‖∞ = ρ and u(1) = q ∈ (q1(a, b),min{ρ, q2(a, b)}) for some λ > 0.



12 J. GODDARD II, R. SHIVAJI EJDE-2014/88

Proof. Let a > 2
√
b. Notice that G̃2(ρ, q) has a unique local minimum at q =

q1(a, b) and clearly G̃2(ρ, ρ) > 0. Whenever ρ ∈ (q2(a, b), ab ), G̃2(ρ, q) strictly
decreasing (from Lemma 2.4) combined with G̃2(ρ, ρ) > 0 implies that G̃2(ρ, q) 6= 0
for any q ∈ [q2(a, b), ρ).

(1) Since G̃2(ρ, q1(a, b)) > 0 and G̃2(ρ, ρ) > 0 we have that G̃2(ρ, q) 6= 0 for
all q ∈ [0, ρ). Theorem 2.3 immediately gives that (1.11) - (1.13) has no positive
solution with ‖u‖∞ = ρ ∈ (q1(a, b), ab ) for any λ > 0.

(2) Theorem 2.3 and the fact that G̃2(ρ, q1(a, b)) = 0 implies that (1.11) - (1.13)
has a positive solution with ‖u‖∞ = ρ and u(1) = q = q1(a, b). Since q = q1(a, b) is
the unique local minimum for G̃2(ρ, q) and G̃2(ρ, ρ) > 0 we have that this q is the
only solution of G̃2(ρ, q) = 0. Hence, the aforementioned positive solution must be
unique.

(3) For (i), we note that since G̃2(ρ, 0) > 0, G̃2(ρ, q1(a, b)) < 0, and G̃2(ρ, q) is
strictly decreasing on q ∈ [0, q1(a, b)) we have that G̃2(ρ, q) = 0 for a unique q ∈
(0, q1(a, b)). Also, G̃2(ρ, ρ) > 0 and G̃2(ρ, q) is strictly increasing on q ∈ (q1(a, b),
min{ρ, q2(a, b)}). Thus, G̃2(ρ, q) = 0 for a unique q ∈ (q1(a, b),min{ρ, q2(a, b)}).
Theorem 2.3 then guarantees that (1.11) - (1.13) has two positive solutions both
with ‖u‖∞ = ρ where the first solution is such that u(1) = q ∈ (0, q1(a, b))
and the second is such that u(1) = q ∈ (q1(a, b),min{ρ, q2(a, b)}) for two dif-
ferent λ-values. A similar argument proves (ii). For (iii), G̃2(ρ, 0) < 0 and
G̃2(ρ, q1(a, b)) < 0 combined with the fact that G̃2(ρ, q) is strictly increasing on
q ∈ (q1(a, b),min{ρ, q2(a, b)}) and G̃2(ρ, ρ) > 0 implies that there can be only one
solution of G̃2(ρ, q) = 0, namely, some unique q ∈ (q1(a, b),min{ρ, q2(a, b)}). Theo-
rem 2.3 again gives that (1.11) - (1.13) has a unique positive solution with ‖u‖∞ = ρ
and u(1) = q ∈ (q1(a, b),min{ρ, q2(a, b)}) for some λ > 0. �

Next, we compute G̃2(ρ, 0) and G̃2(ρ, q1(a, b)) values using Mathematica in order
to conclude the shape of the bifurcation curve of positive solutions for (1.11) - (1.13).
In particular, we are interested in the case when b = 1 and a > 2 is varied (note
that from Theorem 2.5 we must have a > 2 to have the possibility of a positive
solution). Our computational results indicate the following cases:
Case 1. For b = 1, if a ∈ (2, a1) (some a1 > 0) then G̃2(ρ, 0) and G̃2(ρ, q1(a, b))
have the structure displayed in Figure 6. Computations indicate that a1 ≈ 3.072.

Note that Lemma 2.6 gives that (1.11) - (1.13) has no positive solution when
a ∈ (2, a1) for any λ > 0.
Case 2. For b = 1, if a = a1 then G̃2(ρ, 0) and G̃2(ρ, q1(a, b)) have the structure
displayed in Figure 7.

Denote M1 > 0 as the ρ-value for which G̃2(M1, q1(a, b)) = 0. In this case,
Lemma 2.6 gives that (1.11) - (1.13) has only one positive solution with ‖u‖∞ = M1,
u(1) = q1(a, b), and a corresponding unique λ > 0. In this case, the bifurcation
curve of positive solutions would consist of a single point.
Case 3. For b = 1, if a ∈ (a1, a2) (for some a2 > a1), then G̃2(ρ, 0) and
G̃2(ρ, q1(a, b)) have the structure displayed in Figure 8. Computations suggest that
a2 ≈ 3.1123.

Denote Mi > 0 as the ρ-values for which G̃2(Mi, q1(a, b)) = 0 where i = 1, 2.
Using Lemma 2.6, we can describe the structure of positive solutions for (1.11) -
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Figure 6. (left) ρ vs G̃2(ρ, 0) for a ∈ (2, a1). (right) ρ vs
G̃2(ρ, q1(a, b)) for a ∈ (2, a1)

Figure 7. (left) ρ vs G̃2(ρ, 0) for a = a1. (right) ρ vs
G̃2(ρ, q1(a, b)) for a = a1

Figure 8. (left) ρ vs G̃2(ρ, 0) for a ∈ (a1, a2). (right) ρ vs
G̃2(ρ, q1(a, b)) for a ∈ (a1, a2)

(1.13) as ρ varies from M1 to M2. Note that Lemma 2.6 implies that (1.11) - (1.13)
has no positive solution with ‖u‖∞ = ρ for ρ ∈ [q1(a, b),M1) and ρ ∈ (M2,

a
b ).

When ρ = M1 then (1.11) - (1.13) has only one positive solution with ‖u‖∞ = M1,
u(1) = q1(a, b), and a corresponding unique λ > 0. For ρ ∈ (M1,M2), (1.11)
- (1.13) has exactly two positive solutions both with ‖u‖∞ = M1 but the first
having u(1) ∈ (0, q1(a, b)) and the second having u(1) ∈ (q1(a, b),min{q2(a, b), ρ})
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for corresponding λ-values. Finally, when ρ = M2 then (1.11) - (1.13) has only one
positive solution with ‖u‖∞ = M2, u(1) = q1(a, b), and a corresponding unique
λ > 0. Thus, we have a closed loop or halo-shaped bifurcation curve of positive
solutions for (1.11) - (1.13).
Case 4. For b = 1, if a = a2 then G̃2(ρ, 0) and G̃2(ρ, q1(a, b)) have the structure
displayed in Figure 9.

Figure 9. (left) ρ vs G̃2(ρ, 0) for a = a2. (right) ρ vs
G̃2(ρ, q1(a, b)) for a = a2

Denote Mi > 0 as the ρ-values for which G̃2(Mi, q1(a, b)) = 0 where i = 1, 2 and
N1 > 0 as the ρ-value for which G̃2(N1, 0) = 0. Clearly, q1(a, b) < M1 < N1 <
M2 < ρ. Using Lemma 2.6, we can easily determine that the bifurcation curve of
positive solutions for (1.11) - (1.13) will have the same closed loop or halo-shape
as in Case 4 with one exception. In this case, when ρ = N1, (1.11) - (1.13) has
exactly two positive solutions both with ‖u‖∞ = N1 but the first having u(1) = 0
and the second having u(1) ∈ (q1(a, b),min{q2(a, b), ρ}) for corresponding λ-values.
Notice that for ρ = N1 and u(1) = 0 this positive solution is also a solution for
the Dirichlet boundary condition case, namely (1.8) - (1.10). This implies that the
halo-shaped curve will connect to the Dirichlet boundary case bifurcation curve at
one point, (N1, λ

∗(N1)) for some λ∗(N1) > 0.
Case 5. For b = 1, if a ∈ (a2,∞) then G̃2(ρ, 0) and G̃2(ρ, q1(a, b)) have the
structure displayed in Figure 10.

Denote Mi > 0 as the ρ-values for which G̃2(Mi, q1(a, b)) = 0 and Ni > 0 as the
ρ-values for which G̃2(Ni, 0) = 0 where where i = 1, 2. Clearly, q1(a, b) < M1 <
N1 < N2 < M2 < ρ. Again Lemma 2.6 can be used to to determine that the
bifurcation curve of positive solutions for (1.11) - (1.13) will have loop structure.
However, when ρ ∈ (N1, N2) Lemma 2.6 gives that (1.11) - (1.13) will have only
one positive solution with ‖u‖∞ = ρ and u(1) ∈ (q1(a, b),min{q2(a, b), ρ}) for a
corresponding λ-value. Furthermore, when ρ = Ni (1.11) - (1.13) has exactly two
positive solutions both with ‖u‖∞ = Ni but the first having u(1) = 0 and the second
having u(1) ∈ (q1(a, b),min{q2(a, b), ρ}) for corresponding λ-values with i = 1, 2.
As in the previous case, when ρ = Ni and u(1) = 0 this positive solution is also
a solution for the Dirichlet boundary condition case for i = 1, 2. The bifurcation
curve of positive solutions for (1.11) - (1.13) will form a loop connecting to the
Dirichlet boundary condition bifurcation curve at two different points, (N1, λ

∗(N1))
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Figure 10. (left) ρ vs G̃2(ρ, 0) for a ∈ (a2,∞). (right) ρ vs
G̃2(ρ, q1(a, b)) for a ∈ (a2,∞)

and (N2, λ
∗∗(N2)) for some λ∗(N1), λ∗∗(N2) > 0. See Section 3 for the complete

evolution of the bifurcation curve of positive solutions of (1.5) - (1.7).

2.3. Positive solutions of (1.17) - (1.19). We further extend the quadrature
method in this section to study the structure of positive steady states of (1.17) -
(1.19), namely

−u′′ = λ[au− bu2] =: λf(u), x ∈ (0, 1)

u′(0) = λ

u′(1) = −λ.

It is clear that positive solutions of (1.17) - (1.19) will resemble Figure 11 with
ρ := ‖u‖∞, u′( 1

2 ) = 0, and q := u(0) = u(1).

Figure 11. Typical solution of (1.17) - (1.19)

We now state the main result for positive solutions of (1.17) - (1.19) in Theorem
2.7.
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Theorem 2.7. Problem (1.17) - (1.19) has a positive solution, u(x), with ρ = ‖u‖∞
and q = u(0) = u(1) if and only if

G3(ρ, q) := 2[F (ρ)− F (q)] = λ

for some λ > 0, where q = q(ρ) ∈ [0, ρ) satisfies

G̃3(ρ, q) := 2
∫ ρ

0

ds√
F (ρ)− F (s)

− 2
∫ q

0

ds√
F (ρ)− F (s)

− 2
√
F (ρ)− F (q) = 0

and F (s) :=
∫ s
0
f(s)ds.

As previously noted in the remark from Section 2.1, the improper integral in
G̃3(ρ, q) is well-defined and convergent for ρ ∈ S and q = q(ρ) ∈ [0, ρ). The proof
of Theorem 2.7 is almost identical to that of Theorem 2.3 and is omitted.

To understand the structure of positive solutions of (1.17) - (1.19) it is imperative
that we study the existence and possible multiplicity of q-values for any given ρ ∈ S
as delineated in Theorem 2.7.

We see that the sign of [G̃3(ρ, q)]q = f(q)−2√
F (ρ)−F (q)

can be completely determined

by analyzing f(q)− 2 = aq− bq2− 2. Let h2(q) := f(q)− 2 and denote its roots by
q̄1(a, b) := a−

√
a2−8b
2b and q̄2(a, b) := a+

√
a2−8b
2b . Clearly, when q̄1(a, b) and q̄2(a, b)

are real we must have that 0 < q̄1(a, b) ≤ q̄2(a, b) < a
b . A detailed description of

the sign of [G̃3(ρ, q)]q for all possible parameter values is presented in Lemma 2.8.
Its proof is just elementary algebra and is omitted.

Lemma 2.8. (1) Let b < 8 and a ≤ 2
√

2
√
b.

(a) If a < 2
√

2
√
b then [G̃3(ρ, q)]q < 0 for all ρ ∈ S and q ∈ [0, ρ).

(b) If a = 2
√

2
√
b then

(i) for ρ ∈ (0, q̄1(a, b)], [G̃3(ρ, q)]q < 0 when q ∈ [0, ρ)
(ii) for ρ ∈ (q̄1(a, b), ab ), [G̃3(ρ, q)]q < 0 when q ∈ [0, q̄1(a, b)) ∪

(q̄1(a, b), ρ) and [G̃3(ρ, q̄1(a, b))]q = 0.
(2) Let a > 2

√
2
√
b. Then

(a) for ρ ∈ (0, q̄1(a, b)], [G̃3(ρ, q)]q < 0 when q ∈ [0, ρ)
(b) for ρ ∈ (q̄1(a, b), q̄2(a, b)]

(i) [G̃3(ρ, q)]q < 0 when q ∈ [0, q̄1(a, b))
(ii) [G̃3(ρ, q̄1(a, b))]q = 0
(iii) [G̃3(ρ, q)]q > 0 when q ∈ (q̄1(a, b), ρ)

(c) for ρ ∈ (q̄2(a, b), ab )
(i) [G̃3(ρ, q)]q < 0 when q ∈ [0, q̄1(a, b))

(ii) [G̃3(ρ, q̄1(a, b))]q = 0
(iii) [G̃3(ρ, q)]q > 0 when q ∈ (q̄1(a, b), q̄2(a, b))
(iv) [G̃3(ρ, q̄2(a, b))]q = 0
(v) [G̃3(ρ, q)]q < 0 when q ∈ (q̄2(a, b), ρ).

The above lemma determines sufficient conditions for nonexistence of positive
solutions of (1.17) - (1.19), which are outlined in the following theorem.

Theorem 2.9. If b < 8 and a ≤ 2
√

2
√
b then (1.17) - (1.19) has no positive solution

for any λ > 0. Moreover, if a > 2
√

2
√
b then (1.17) - (1.19) has no positive solution

whenever ‖u‖∞ ≤ q̄1(a, b) for any λ > 0.
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Proof. Let ρ ∈ S. Clearly, G̃3(ρ, ρ) = 0. But, if a ≤ 2
√

2
√
b then Lemma 2.8 gives

that [G̃3(ρ, q)]q ≤ 0 for all q ∈ [0, ρ). Hence, G̃3(ρ, q) 6= 0 for all q ∈ [0, ρ) and
Theorem 2.7 guarantees that (1.17) - (1.19) will not have a positive solution. Now,
if a > 2

√
2
√
b and ρ = ‖u‖∞ ≤ q̄1(a, b) then Lemma 2.8 gives that [G̃3(ρ, q)]q < 0

for all q ∈ [0, ρ) and it follows as in the previous case that (1.17) - (1.19) will not
have a positive solution. �

Note that Lemma 2.8 also allows for the number of positive solutions of (1.17)
- (1.19) having ‖u‖∞ = ρ to be easily ascertained by computing the values of both
G̃3(ρ, 0) and G̃3(ρ, q̄1(a, b)), as exemplified in the next lemma.

Lemma 2.10. Suppose that a > 2
√

2
√
b and ρ ∈ (q̄1(a, b), ab ).

(1) Let G̃3(ρ, q̄1(a, b)) > 0. Then (1.17) - (1.19) has no positive solution with
‖u‖∞ = ρ for any λ > 0.

(2) Let ρ ∈ (q̄1(a, b), q̄2(a, b)].
(i) If G̃3(ρ, q̄1(a, b)) = 0 then (1.17) - (1.19) has no positive solution with
‖u‖∞ = ρ for any λ > 0.

(ii) Let G̃3(ρ, q̄1(a, b)) < 0.
(a) If G̃3(ρ, 0) > 0 then (1.17) - (1.19) has a unique positive solution

with ‖u‖∞ = ρ and u(1) = q ∈ (0, q̄1(a, b)) for some λ > 0.
(b) If G̃3(ρ, 0) = 0 then (1.17) - (1.19) has a unique positive solution

with ‖u‖∞ = ρ and u(1) = 0 for some λ > 0.
(c) If G̃3(ρ, 0) < 0 then (1.17) - (1.19) has no positive solution with
‖u‖∞ = ρ for any λ > 0.

(3) Let ρ ∈ (q̄2(a, b), ab ).
(i) If G̃3(ρ, q̄1(a, b)) = 0 then (1.17) - (1.19) has a unique positive solution

with ‖u‖∞ = ρ and u(1) = q = q̄1(a, b) for some λ > 0.
(ii) Let G̃3(ρ, q̄1(a, b)) < 0.

(a) If G̃3(ρ, 0) > 0 then (1.17) - (1.19) has two positive solutions
both having ‖u‖∞ = ρ, the first with u(1) = q ∈ (0, q̄1(a, b)) and
the second has u(1) = q ∈ (q̄1(a, b), q̄2(a, b)) corresponding to
two different λ-values.

(b) If G̃3(ρ, 0) = 0 then (1.17) - (1.19) has two positive solutions
both having ‖u‖∞ = ρ and the first with u(1) = 0 and the second
has u(1) = q ∈ (q̄1(a, b), q̄2(a, b)) corresponding to two different
λ-values.

(c) If G̃3(ρ, 0) < 0 then (1.17) - (1.19) has a unique positive solution
with ‖u‖∞ = ρ and u(1) = q ∈ (q̄1(a, b), q̄2(a, b)) for some λ > 0.

Proof. Let a > 2
√

2
√
b. Notice that G̃3(ρ, q) has a unique local minimum at q =

q1(a, b) for ρ ∈ (q̄1(a, b), ab ) and a unique local maximum at q = q̄2(a, b) for ρ ∈
(q̄2(a, b), ab ). Also, it is easy to see that G̃3(ρ, ρ) = 0.

(1) Notice that for ρ ∈ (q̄1(a, b), q̄2(a, b)], G̃3(ρ, q) attains its absolute minimum
value at q = q̄1(a, b). But, G̃3(ρ, q̄1(a, b)) > 0 so G̃3(ρ, q) 6= 0 for any q ∈ [0, ρ). In
the case when ρ ∈ (q̄2(a, b), ab ), G̃3(ρ, q̄1(a, b)) > 0 implies that G̃3(ρ, q) = 0 only
for q ∈ (q̄2(a, b), ρ). But, G̃3(ρ, ρ) = 0 and [G̃3(ρ, q)]q < 0 for q ∈ (q̄2(a, b), ab ).
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Thus, G̃3(ρ, q) 6= 0 for any q ∈ [0, ρ). Theorem 2.7 gives that (1.17) - (1.19) has no
positive solution with ‖u‖∞ = ρ for any λ > 0 in either case.

(2) Fix ρ ∈ (q̄1(a, b), q̄2(a, b)]. For (i), since G̃3(ρ, q̄1(a, b)) = 0 we have that
G̃3(ρ, ρ) 6= 0 and thus Theorem 2.7 gives that (1.17) - (1.19) has no positive solution
with ‖u‖∞ = ρ for any λ > 0. In (ii) we assume that G̃3(ρ, q̄1(a, b)) < 0. For (a)
we have that G̃3(ρ, 0) > 0. Thus, there is a unique q ∈ (0, q̄1(a, b)) such that
G̃3(ρ, q) = 0. Theorem 2.7 guarantees that (1.17) - (1.19) has a positive solution
with ‖u‖∞ = ρ and u(1) = q ∈ (0, q̄1(a, b)). Since [G̃3(ρ, q)]q > 0 for q ∈ (q̄1(a, b), ρ)
and G̃3(ρ, ρ) = 0 this positive solution must be unique. In case (b) we have that
G̃3(ρ, 0) = 0. Theorem 2.7 again guarantees that (1.17) - (1.19) has a positive
solution with ‖u‖∞ = ρ and u(1) = 0. But, [G̃3(ρ, q)]q < 0 for q ∈ [0, q̄1(a, b))
and [G̃3(ρ, q)]q > 0 for q ∈ (q̄1(a, b), ρ) combined with G̃3(ρ, ρ) = 0 gives that
this positive solution is again unique. For (c) we have that G̃3(ρ, 0) < 0. Again,
[G̃3(ρ, q)]q < 0 for q ∈ [0, q̄1(a, b)) and [G̃3(ρ, q)]q > 0 for q ∈ (q̄1(a, b), ρ) combined
with G̃3(ρ, ρ) = 0 implies that G̃3(ρ, q) 6= 0 for any q ∈ [0, ρ). Theorem 2.7 gives
that (1.17) - (1.19) has no positive solution with ‖u‖∞ = ρ for any λ > 0.

(3) Similar arguments give the result. �

Next, we compute G̃3(ρ, 0) and G̃3(ρ, q̄1(a, b)) values using Mathematica in order
to conclude the shape of the bifurcation curve of positive solutions for (1.17) - (1.19).
Again, we are interested in the case when b = 1 and a > 2

√
2 is varied (note that

from Theorem 2.9 we must have a > 2
√

2 to have the possibility of a positive
solution). Our computational results indicate the following cases:
Case 1. For b = 1, if a ∈ (2

√
2, a2) (a2 is the same value from Section 2.2) then

G̃3(ρ, 0) and G̃3(ρ, q̄1(a, b)) have the structure displayed in Figure 12.

Figure 12. (left) ρ vs G̃3(ρ, 0) for a ∈ (2
√

2, a2). (right) ρ vs
G̃3(ρ, q̄1(a, b)) for a ∈ (2

√
2, a2)

Denote M̄1 > 0 as the ρ-value for which G̃3(M̄1, q̄1(a, b)) = 0. From these
computational results, we have that q̄1(a, b) < q̄2(a, b) < M̄1 <

a
b . In this case,

Lemma 2.10 gives that for ρ ∈ (q̄1(a, b), q̄2(a, b)], (1.17) - (1.19) has only one positive
solution with ‖u‖∞ = ρ, u(1) = q ∈ (0, q̄1(a, b)), and a corresponding unique λ > 0.
Also, for ρ ∈ (q̄2(a, b), M̄1) Lemma 2.10 gives that (1.17) - (1.19) has two positive
solutions both having ‖u‖∞ = ρ and the first with u(1) = q ∈ (0, q̄1(a, b)) (which
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connects to the branch in the case when ρ ∈ (q̄1(a, b), q̄2(a, b)]) and the second has
u(1) = q ∈ (q̄1(a, b), q̄2(a, b)) corresponding to two different λ-values. Finally, when
ρ = M̄1 Lemma2.10 implies that (1.17) - (1.19) has a unique positive solution with
‖u‖∞ = ρ and u(1) = q = q̄1(a, b) for some λ > 0. Computationally, we see that
the bifurcation curve of positive solutions for (1.17) - (1.19) forms a closed loop
connecting two different values on the ‖u‖∞-axis. An interesting feature of this
case is that the closed loop structure seems to exist for every a > 2

√
2. This fact

indicates that the nonexistence result for a ≤ 2
√

2 from Theorem 2.9 is the best
possible.
Case 2. For b = 1, if a = a2 then G̃3(ρ, 0) and G̃3(ρ, q̄1(a, b)) have the structure
displayed in Figure 13.

Figure 13. (left) ρ vs G̃3(ρ, 0) for a = a2. (right) ρ vs
G̃3(ρ, q̄1(a, b)) for a = a2

Denote M̄1 > 0 as the ρ-value for which G̃3(M̄1, q̄1(a, b)) = 0 andN1 > 0 as the ρ-
value for which G̃3(N1, 0) = 0 (recall that G̃3(ρ, 0) = G̃2(ρ, 0))). Computationally,
we have that q̄1(a, b) < N1 < q̄2(a, b) < M̄1 < a

b . Again using Lemma 2.6, we
can describe the structure of positive solutions for (1.17) - (1.19) as ρ varies from
q̄1(a, b) to M̄1. The bifurcation curve of positive solutions for (1.17) - (1.19) will be
identical to that of Case 1 with one exception. When ρ = N1 one of the two positive
solutions of (1.17) - (1.19) will satisfy u(1) = 0 and thus the Dirichlet boundary
condition will also be satisfied at this point for some λ > 0. In essence, the closed
loop will connect to the Dirichlet boundary case at the point (N1, λ

∗(N1)) for the
same λ∗(N1) > 0 as in Section 2.2.
Case 3. For b = 1, if a ∈ (a2, a3] (for some a3 > a2) then G̃3(ρ, 0) and G̃3(ρ, q̄1(a, b))
have the structure displayed in Figure 14.

Denote M̄1 > 0 as the ρ-value for which G̃3(M̄1, q̄1(a, b)) = 0 and Ni > 0 as
the ρ-values for which G̃3(Ni, 0) = 0 for i = 1, 2. Computationally, we have that
q̄1(a, b) < N1 < N2 < q̄2(a, b) < M̄1 <

a
b with N2 = q̄2(a, b) whenever a = a3. For

ρ ∈ (q̄1(a, b), N1] Lemma 2.10 implies that the bifurcation curve of positive solutions
of (1.17) - (1.19) will be a single branch connecting a point on the ‖u‖∞-axis to the
Dirichlet boundary condition branch (at the point (N1, λ

∗(N1)) from Section 2.2),
since when ρ = N1 the corresponding unique q-value is zero. When ρ ∈ (N1, N2),
(1.17) - (1.19) will have no positive solution with ‖u‖∞ = ρ for any λ > 0. For
ρ = N2, (1.17) - (1.19) will have a unique positive solution with ‖u‖∞ = ρ and
u(1) = 0 (this is the point on the Dirichlet boundary case, (N2, λ

∗∗(N2)) from
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Figure 14. (left) ρ vs G̃3(ρ, 0) for a ∈ (a2, a3]. (right) ρ vs
G̃3(ρ, q̄1(a, b)) for a ∈ (a2, a3]

Section 2.2). Furthermore, when ρ ∈ (N2, q̄2(a, b)], (1.17) - (1.19) will have a
unique positive solution with ‖u‖∞ = ρ and u(1) = q ∈ (0, q̄1(a, b)) for some λ > 0.
When ρ ∈ (q̄2(a, b), M̄1), (1.17) - (1.19) will have two positive solutions both with
‖u‖∞ = ρ and with one having u(1) = q ∈ (0, q̄1(a, b)) and the other with u(1) = q ∈
(q̄1(a, b), q̄2(a, b)) corresponding to two different λ−values. Computations indicate
that the bifurcation curve of positive solutions of (1.17) - (1.19) forms a loop that
connects the single branch mentioned in the case when ρ ∈ (N2, q̄2(a, b)] to a point
on the ‖u‖∞-axis.
Case 4. For b = 1, if a ∈ (a3,∞) then G̃3(ρ, 0) and G̃3(ρ, q̄1(a, b)) have the
structure displayed in Figure 15.

Figure 15. (left) ρ vs G̃3(ρ, 0) for a ∈ (a3,∞). (right) ρ vs
G̃3(ρ, q̄1(a, b)) for a ∈ (a3,∞)

Denote M̄1 > 0 as the ρ-value for which G̃3(M̄1, q̄1(a, b)) = 0 and Ni > 0 as
the ρ-values for which G̃3(Ni, 0) = 0 for i = 1, 2. Computationally, we have that
q̄1(a, b) < N1 < q̄2(a, b) < N2 < M̄1 <

a
b . For ρ ∈ (q̄1(a, b), N1] Lemma 2.10 implies

that the bifurcation curve of positive solutions of (1.17) - (1.19) will be a single
branch connecting a point on the ‖u‖∞-axis to the Dirichlet boundary condition
branch at the point (N1, λ

∗(N1)), since when ρ = N1 the corresponding unique q-
value is zero. When ρ ∈ (N1, q̄2(a, b)], (1.17) - (1.19) will have no positive solution
with ‖u‖∞ = ρ for any λ > 0. For ρ ∈ (q̄2(a, b), N2), (1.17) - (1.19) has a unique
positive solution with ‖u‖∞ = ρ and u(1) = q ∈ (q̄1(a, b), q̄2(a, b)) for some λ > 0.
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When ρ ∈ [N2, M̄1) the bifurcation curve of positive solutions of (1.17) - (1.19) has
a loop that connects the point (N2, λ

∗∗(N2)) on the Dirichlet boundary condition
curve to the single branch mentioned in the case when ρ ∈ (q̄2(a, b), N2). Based on
our computations, the bifurcation curve of positive solutions for (1.17) - (1.19) is
identical in shape for both Cases 3 and 4.

3. Computational Results

In this section, we present the complete evolution of the bifurcation curve of
positive solutions of (1.5) - (1.7) as the parameter a > 0 is varied. In this paper,
we are particularly interested in the case when b = 1. Recalling, the Lemmas and
Theorems from Section 2, we employed the mathematics software package Math-
ematica to computationally generate the bifurcation curve. Due to the complex
nature of the formulas, these calculations were extremely computationally expen-
sive. In what follows, the bifurcation curve of positive solutions of (1.8) - (1.10) is
portrayed in red, (1.11) - (1.13) in green, and (1.17) - (1.19) in blue. Also note that
the green curve represents solutions to (1.11) - (1.13) and (1.14) - (1.16) and thus
counts twice. Throughout this section we will denote λ0 = π2

a , the critical λ-value
for (1.8) - (1.10) from Theorem 2.2.
Case 1. For b = 1, if a ∈ (0, 2

√
2] then there exists a λ0 > 0 such that if

(1) λ ∈ (λ0,∞) then (1.5) - (1.7) has a unique positive solution.
(2) λ ∈ (0, λ0] then (1.5) - (1.7) has no positive solution.

Figure 16 shows an example of Case 1.

Figure 16. Bifurcation curve of positive solutions for Case 1 with
a = 1.5, b = 1

Case 2. For b = 1, if a ∈ (2
√

2, a0) (some a0 ∈ (0, a1)) then there exist λ0, λ1 > 0
such that if

(1) λ ∈ (0, λ1) then (1.5) - (1.7) has two positive solutions.
(2) λ = λ1 or λ ∈ (λ0,∞) then (1.5) - (1.7) has a unique positive solution.
(3) λ ∈ (λ1, λ0] then (1.5) - (1.7) has no positive solution.
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Case 2 is illustrated in Figure 17.

Figure 17. Bifurcation curve of positive solutions for Case 2 with
a = 2.837, b = 1

Case 3. For b = 1, if a = a0 then there exists a λ0 > 0 such that if
(1) λ ∈ (0, λ0) then (1.5) - (1.7) has two positive solutions.
(2) λ ∈ [λ0,∞) then (1.5) - (1.7) has a unique positive solution.

Figure 18 portrays Case 3.

Figure 18. Bifurcation curve of positive solutions for Case 3 with
a = 2.88, b = 1

Case 4. For b = 1, if a ∈ (a0, a1) then there exist λ0, λ1 > 0 such that if
(1) λ ∈ (λ0, λ1) then (1.5) - (1.7) has three positive solutions.
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(2) λ = λ1 or λ ∈ (0, λ0] then (1.5) - (1.7) has two positive solutions.
(3) λ ∈ (λ1,∞) then (1.5) - (1.7) has a unique positive solution.

Case 4 is illustrated in Figure 19.

Figure 19. Bifurcation curve of positive solutions for Case 4 with
a = 2.92, b = 1

Case 5. For b = 1, if a = a1 then there exist λ0, λ1, λ2 > 0 such that if
(1) λ = λ1 then (1.5) - (1.7) has five positive solutions.
(2) λ ∈ (λ0, λ1) or λ ∈ (λ1, λ2) then (1.5) - (1.7) has three positive solutions.
(3) λ = λ2 or λ ∈ (0, λ0] then (1.5) - (1.7) has two positive solutions.
(4) λ ∈ (λ2,∞) then (1.5) - (1.7) has a unique positive solution.

Figure 20 exemplifies Case 5.
Case 6. For b = 1, if a ∈ (a1, a2] then there exist λi > 0 for i = 0, 1, 2, 3 such that
if

(1) λ ∈ (λ1, λ2) then (1.5) - (1.7) has seven positive solutions.
(2) λ = λ1, λ2 then (1.5) - (1.7) has five positive solutions.
(3) λ ∈ (λ0, λ1) or λ ∈ (λ2, λ3) then (1.5) - (1.7) has three positive solutions.
(4) λ = λ3 or λ ∈ (0, λ0] then (1.5) - (1.7) has two positive solutions.
(3) λ ∈ (λ3,∞) then (1.5) - (1.7) has a unique positive solution.

An example of Case 6 is shown in Figures 21 and 22. Notice in Figure 22 that for
λ = λ∗(N1) and the corresponding ρ = N1, all four cases of the boundary conditions
are satisfied. This point is where the Dirichlet boundary condition branch bifurcates
into the other cases.
Case 7. For b = 1, if a > a2 then there exist λi > 0 for i = 0, 1, 2, 3, 4, 5 such that
if

(1) λ ∈ (λ1, λ2] or λ ∈ [λ3, λ4) then (1.5) - (1.7) has seven positive solutions.
(2) λ = λ1, λ4 then (1.5) - (1.7) has five positive solutions.
(3) λ ∈ (λ2, λ3) then (1.5) - (1.7) has four positive solutions.
(4) λ ∈ (λ0, λ1) or λ ∈ (λ4, λ5) then (1.5) - (1.7) has three positive solutions.
(5) λ = λ5 or λ ∈ (0, λ0] then (1.5) - (1.7) has two positive solutions.
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Figure 20. Bifurcation curve of positive solutions for Case 5 with
a = 3.072, b = 1

Figure 21. Bifurcation curve of positive solutions for Case 6 with
a = 3.084, b = 1

(6) λ ∈ (λ5,∞) then (1.5) - (1.7) has a unique positive solution.
Case 7 is illustrated in Figure 23.
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