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SELF-SIMILAR SOLUTIONS WITH COMPACTLY SUPPORTED
PROFILE OF SOME NONLINEAR SCHRÖDINGER EQUATIONS

PASCAL BÉGOUT, JESÚS ILDEFONSO DÍAZ

Abstract. “Sharp localized” solutions (i.e. with compact support for each
given time t) of a singular nonlinear type Schrödinger equation in the whole

space RN are constructed here under the assumption that they have a self-
similar structure. It requires the assumption that the external forcing term

satisfies that f(t, x) = t−(p−2)/2F(t−1/2x) for some complex exponent p and

for some profile function F which is assumed to be with compact support in
RN . We show the existence of solutions of the form u(t, x) = tp/2U(t−1/2x),

with a profile U, which also has compact support in RN . The proof of the

localization of the support of the profile U uses some suitable energy method
applied to the stationary problem satisfied by U after some unknown trans-

formation.

1. Introduction and main result

This article deals with the study of sharp localized solutions of the nonlinear
type Schrödinger equation in the whole space RN ,

i
∂u
∂t

+ ∆u = a|u|−(1−m)u + f(t, x), (1.1)

under the fundamental assumption m ∈ (0, 1) and for different choices of the com-
plex coefficient a. Here we use the notation of bold symbols for complex symbols,
i2 = −1 and ∆ =

∑N
j=1

∂2

∂x2
j

for the Laplacian in the variables x.
By the term sharp localized solutions we understand solutions which go beyond

the so called localized solutions considered earlier by many authors. For instance,
most of the localized type solutions in the previous literature must vanish at infinity
in an asymptotic way: |u(t, x)| → 0 as |x| → ∞. They have been intensively
studied mostly when some other structure property is added to the solution. It is
the case of the special solutions which receive also other names such as standing
waves, travelling waves, solitons, etc.

Here we are interested on solutions which have a sharper decay when |x| ap-
proaches infinity in the sense that we will require the support of the function u(t, ·)
to be a compact set of RN , for any t > 0.
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We recall that equations of the type (1.1) arise in many different contexts: Non-
linear Optics, Quantum Mechanics, Hydrodynamics, etc., and that, for instance,
in Quantum Mechanics the main interest concerns the case in which Re(a) > 0,
Im(a) = 0 (here and in which follows Re(a) is the real part of the complex number a
and Im(a) is its imaginary part) and that in Nonlinear Optics the t does not repre-
sent time but the main scalar variable which appears in the propagation of the wave
guide direction (see [2, p.7], [30, p.517]). Sometimes equations of the type (1.1) are
named as Gross-Pitaevskĭı type of equations in honor of two famous papers by those
authors in 1961 ([19] and [26]). For some physical details and many references, we
refer the reader to the general presentations made in the books [1, 14, 29].

In most of the papers on equations of the type (1.1), it is assumed that m = 3
(the so called cubic case). Nevertheless there are applications in which the general
case m > 0 is of interest. For instance, it is the case of the so called non-Kerr type
equations arising in the study of optical solitons (see, e.g., [2, p.14], and following).

The case m ∈ (0, 1) has been studied before by other authors but under different
points of view: some explicit self-similar solutions (the so called algebraic solitons)
can be found in [27] (see also [2, p.33]). We also mention here the series of interesting
papers by Rosenau and co-authors ([21, 28]) in which sharp localized solutions are
also considered with other type of statements and methods.

We also mention that the case Re(a) > 0 (which corresponds to the dissipative
case, also called defocusing or repulsive case, when Im(a) = 0) must be well dis-
tinguished of the so called attractive problem (or also focusing case) in which it is
assumed that Re(a) < 0 (and Im(a) = 0). See, e.g., [1, 14, 29] and their references).

The case of complex potentials with certain types of singularities, i.e. corre-
sponding to the choice Im(a) 6= 0, has been previously considered by several au-
thors, and arises in many different situations (see, for instance, [12, 13, 23, 24] and
the references therein).

Here we assume that the datum f is not zero and represents some other phys-
ical magnitude which may arise in the possible coupling with some different phe-
nomenon: see the different chapters of Part IV of the book [29], the interaction
phenomena between long waves and short waves ([10, 18, 31] and their references),
etc.

Obviously, the property of the compactness of the support of u(t, ·) requires
the assumption that “the support” of the datum function f(t, ·) is a compact set
of RN , for a.e. t > 0. Because of that, the qualitative property we consider in
this paper can be understood as a “finite speed of propagation property” typical
of linear wave equations. We point out that our treatment is very different than
other “propagation properties” studied previously in the literature for Schrödinger
equations which are formulated in terms of the spectrum of the solutions. See, e.g.,
the so called Anderson localization ([3]), [20], etc.

One of the main reasons of the study of sharp localized solutions arises from the
fact that, if we assume for the moment f ≡ 0, then

∂

∂t
|u|2 + div J = 2 Im(a)|u|m+1,

where

J :=
(
u∇u− u∇u

)
= −2 Re(iu∇u),
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(u denotes the conjugate of the complex function u) and so we get (at least formally)
that

1
2

d
dt

∫
RN

|u(t, x)|2dx = Im(a)
∫

RN

|u(t, x)|m+1dx.

Note that if Im(a) 6= 0 then there is no mass conservation. For instance, this is
the case studied by [13] where they prove that actually the solution vanishes after
a finite time, once that m ∈ (0, 1). More generally, it is easy to see that the two
following conservation laws hold, once a ∈ R and f ≡ 0: if u(t) ∈ H1(RN ) ∩
Lm+1(RN ) then we have the mass conservation d

dt‖u(t)‖2L2(RN ) = 0; moreover, if
u(t) ∈ H2(RN ) ∩ L2m(RN ) then u(t) ∈ Lm+1(RN ) and we have conservation of
energy d

dtE
(
u(t)

)
= 0, where

E
(
u(t)

)
=

1
2
‖∇u(t)‖2L2(RN ) +

a

m+ 1
‖u(t)‖m+1

Lm+1(RN )
.

Indeed, in the first case, ∆u(t) ∈ H−1(RN ) and |u(t)|−(1−m)u(t) ∈ L
m+1
m (RN ).

It follows from the equation (1.1) that ∂u(t)
∂t ∈ H−1(RN ) + L

m+1
m (RN ) and since(

H1(RN ) ∩ Lm+1(RN )
)? = H−1(RN ) + L

m+1
m (RN ), it follows that we may take

the duality product of equation (1.1) with iu(t), from which the mass conservation
follows. In the same way, since u(t) ∈ L2(RN ) ∩ L2m(RN ) and 0 < m < 1,
we get that u(t) ∈ Lm+1(RN ). We also easily have that ∆u(t) ∈ L2(RN ) and
|u(t)|−(1−m)u(t) ∈ L2(RN ). It follows from the equation (1.1) that ∂u(t)

∂t ∈ L2(RN )
and so we may take the duality product of equation (1.1) with ∂u(t)

∂t , from which
the conservation of energy follows.

Like in the pioneering study by Schrödinger, the condition Im(a) = 0 implies that
|u|2 represents a probability density, and so the study of sharp localized solutions
becomes very relevant (recall the Heisenberg Uncertainty Principle). As we will
show here (sequel of previous papers by the authors, [7, 8]), if m ∈ (0, 1), under
suitable conditions on the coefficient a (for instance for Re(a) > 0 and Im(a) = 0),
it is possible to get some estimates on the support of solutions u(t, x) showing that
the probability |u(t, x)|2 to localize a particle is zero outside of a compact set of
RN .

The natural structure for searching self-similar solutions is based on the trans-
formation λ 7−→ uλ, where for λ > 0, p ∈ C and u ∈ C

(
(0,∞); L1

loc(RN )
)
, we

define
uλ(t, x) = λ−pu(λ2t, λx), ∀t > 0, for a.e. x ∈ RN . (1.2)

Recall that since p ∈ C, it follows that λp := ep lnλ = eRe(p) lnλei Im(p) lnλ =
λRe(p)ei Im(p) lnλ and that |λp| = λRe(p). Our main assumption on the datum f is
that

f(t, x) = λ−(p−2)f(λ2t, λx), ∀λ > 0, (1.3)
for some p ∈ C, for any t > 0 and almost every x ∈ RN , or equivalently, that

f(t, x) = t
p−2

2 F
( x√

t

)
, (1.4)

for any t > 0 and almost every x ∈ RN , where F = f(1). It is easy to build
functions f satisfying (1.3). Indeed, for any given function F, we define f by (1.4).
Then f(1) = F and f satisfies (1.3). Finally, if we assume Re(p) = 2

1−m then a
direct calculation show that if u is a solution to (1.1) then for any λ > 0, uλ is also
a solution to (1.1), and conversely.
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We easily check that if u satisfies the invariance property u = uλ, for any λ > 0,
then

u(t, x) = tp/2U
( x√

t

)
, (1.5)

for any t > 0 and almost every x ∈ RN , where U = u(1). Thus, we arrive to the
following notion:

Definition 1.1. Let 0 < m < 1, let f ∈ C
(
(0,∞); L2

loc(RN )
)

satisfies (1.3) and let
p ∈ C be such that Re(p) = 2

1−m . A solution u of (1.1) is said to be self-similar
if u ∈ C

(
(0,∞); L2

loc(RN )
)

and if for any λ > 0, uλ = u, where uλ is defined by
(1.2). In this cases, u(1) is called the profile of u and is denoted by U.

It follows from equation (1.1) and (1.5) that U satisfies

−∆U + a|U|−(1−m)U− ip
2

U +
i
2
x.∇U = −F, (1.6)

in D ′(RN ), where F = f(1). Conversely, if U ∈ L2
loc(RN ) verifies (1.6), in D ′(RN ),

then the function u defined by (1.5) belongs to C
(
(0,∞); L2

loc(RN )
)

and is a self-
similar solution to (1.1), where f is defined by (1.4) and satisfies (1.3). It is useful
to introduce the unknown transformation

g(x) = U(x)e−i|x|2/8. (1.7)

Then for any m ∈ R, p ∈ C and U ∈ L2
loc(RN ), U is a solution to (1.6) in D ′(RN )

if and only if g ∈ L2
loc(RN ) is a solution to

−∆g + a|g|−(1−m)g − i
N + 2p

4
g − 1

16
|x|2g = −Fe−i

|·|2
8 , (1.8)

in D ′(RN ). It will be convenient to study (1.8) instead of (1.6). Indeed, formally,
if we multiply (1.8) by ±g or ±ig, integrate by parts and take the real part, one
obtains some positive or negative quantities. But the same method applied to (1.6)
gives (at least directly) nothing because of the term ix.∇U.

Notice that if p ∈ C is such that Re(p) = 2
1−m and if f ∈ C

(
(0,∞); L2(RN )

)
and satisfies (1.3) with f(t0) compactly supported for some t0 > 0, then it follows
from (1.3) that for any t > 0, supp f(t) is compact. Moreover, from (1.5), if u is a
self-similar solution of (1.1) and if supp U is compact then for any t > 0, supp u(t)
is compact. As a matter of fact, it is enough to have that u(t0) is compactly
supported for some t0 > 0 to have that u satisfies (1.9) below and supp u(t) is
compact, for any t > 0. Indeed, U = u(1) satisfies (1.6) and by (1.5), supp U
and supp u(t) are compact for any t > 0. Let g be defined by (1.7). Then g is a
solution compactly supported to (1.8) and it follows the results of Section 3 below
that g ∈ H2

c (RN ). By (1.7), we obtain that U ∈ H2
c (RN ) and we deduce easily

from (1.5) that u satisfies (1.9).
The main result of this paper reads as follows.

Theorem 1.2. Let 0 < m < 1, let a ∈ C be such that Im(a) 6 0. If Re(a) 6 0
then assume further that Im(a) < 0. Let p ∈ C be such that Re(p) = 2

1−m and let
f ∈ C

(
(0,∞); L2(RN )

)
satisfying (1.3). Assume also that supp f(1) is compact.

(1) If ‖f(1)‖L2(RN ) is small enough then there exists a self-similar solution

u ∈ C
(
(0,∞); H2(RN )

)
∩C1

(
(0,∞); H1(RN )

)
∩C2

(
(0,∞); L2(RN )

)
(1.9)
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to (1.1) such that for any t > 0, supp u(t) is compact. In particular, u is a
strong solution and verifies (1.1) for any t > 0 in L2(RN ), and so almost
everywhere in RN .

(2) Let R > 0. For any ε > 0, there exists δ0 = δ0(R, ε, |a|, |p|, N,m) > 0 satis-
fying the following property: if supp f(1) ⊂ B(0, R) and if ‖f(1)‖L2(RN ) 6 δ0
then the profile U of the solution obtained above verifies supp U ⊂ K(ε) ⊂
B(0, R+ ε), where

K(ε) =
{
x ∈ RN ; ∃y ∈ supp f(1) such that |x− y| 6 ε

}
,

which is compact.
(3) Let R0 > 0. Assume now further that Re(a) > 0, Im(a) = 0 and

4 Im(p) + 2
√

4 Im2(p) + 2 > R2
0.

Then the solution is unique in the set of functions C
(
(0,∞); L2

c (RN )
)

whose
profile V satisfies supp V ⊂ B(0, R0).

In contrast with many other papers on self-similar solutions of equations dealing
with exponents m > 1 (see [15, 16, 17] and their references), in this paper we do
not prescribe any initial data u(0) to (1.1) since we are only interested on any
solution u(t) by an external source f(t) compactly supported. Moreover, we point
out that if u ∈ C

(
[0,∞); Lq(RN )

)
is a self-similar solution to (1.1), for some 0 <

q 6 ∞, then necessarily u(0) = 0. Indeed, with help of (1.5), we easily show that
U ∈ Lq(RN ) and that for any t > 0, ‖u(t)‖Lq(RN ) = t

1
1−m + N

2q ‖U‖Lq(RN ), implying
necessarily that u(0) = 0. On the other hand, notice that if u ∈ C

(
[0,∞); D ′(RN )

)
is a self-similar solution to (1.1) then one cannot expect to have u(0) ∈ Lq(RN ),
unless u(0) = 0. Indeed, we would have uλ(0) = u(0) in Lq(RN ) and for any
λ > 0, ‖u(0)‖Lq(RN ) = λ

2
1−m + N

q ‖u(0)‖Lq(RN ) and again we deduce that necessarily
u(0) = 0. More generally, the set of functions u satisfying the invariance property,

∀λ > 0, for a.e. x ∈ RN , uλ(x) := λ−pu(λx) = u(x),

and lying in Lq(RN ) is reduced to 0.
In the special case of self-similar solution, the above arguments show that if

f ≡ 0, a ∈ R and u ∈ C
(
(0,∞); L2

c (RN )
)

then necessarily u(t) = 0, for any t > 0.
Indeed, if u ∈ C

(
(0,∞); L2

c (RN )
)

is a self-similar solution to (1.1) then its profile
U belongs to L2(RN ) and u ∈ C2((0;∞)× RN ) (see Section 3 below). So for any
t > 0, we can multiply the above equation by −iu(t), integrate by parts over RN
and take the real part. We then deduce the mass conservation, d

dt‖u(t)‖2L2(RN ) = 0,
which yields with the above identity,

‖U‖L2(RN ) = ‖u(t)‖L2(RN ) = t
1

1−m + N
4 ‖U‖L2(RN ),

for any t > 0. Hence the result. As a matter of fact, if ` ∈ {0, 1, 2} and if
u ∈ C

(
(0,∞); H`(RN )

)
is a self-similar solution to (1.1) then one easily deduces

from (1.5) that actually limt↘0 ‖u(t)‖H`(RN ) = 0.
We also mention here that our treatment of sharp localized solutions has some

indirect connections with the study of the “unique continuation property”. Indeed,
we are showing that this property does not hold when m ∈ (0, 1), in contrast to the
case of linear and other type of nonlinear Schrödinger equations (see, e.g., [22, 31]).
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The paper is organized as follows. In the next section, we introduce some no-
tation and give general versions of the main results (Theorems 2.3 and 2.5). In
Section 3, we recall some existence, uniqueness, a priori bound and smoothness
results of solutions to equation (1.8) associated to the evolution equation (1.1).
Finally, Section 4 is devoted to the proofs of the mentioned results, which we carry
out by improving some energy methods presented in [4].

2. Notation and general versions of the main result

Before stating our main results, we will indicate here some of the notation used
throughout. For 1 6 p 6 ∞, p′ is the conjugate of p defined by 1

p + 1
p′ = 1. We

denote by Ω the closure of a nonempty subset Ω ⊆ RN and by Ωc = RN \ Ω its
complement. We note ω b Ω to mean that ω ⊂ Ω and that ω is a compact subset of
RN . Unless specified, any function lying in a functional space

(
Lp(Ω), Wm,p(Ω),

etc
)

is supposed to be a complex-valued function (Lp(Ω; C), Wm,p(Ω; C), etc).
For a functional space E ⊂ L1

loc(Ω; C), we denote by Ec =
{
f ∈ E; supp f b Ω

}
.

For a Banach space E, we denote by E? its topological dual and by 〈·, ·〉E?,E ∈ R
the E? − E duality product. In particular, for any T ∈ Lp′(Ω) and ϕ ∈ Lp(Ω)
with 1 6 p < ∞, 〈T,ϕ〉Lp′ (Ω),Lp(Ω) = Re

∫
Ω

T(x)ϕ(x)dx. For x0 ∈ RN and
r > 0, we denote by B(x0, r) the open ball of RN of center x0 and radius r,
by S(x0, r) its boundary and by B(x0, r) its closure. As usual, we denote by C
auxiliary positive constants, and sometimes, for positive parameters a1, . . . , an,
write C(a1, . . . , an) to indicate that the constant C continuously depends only on
a1, . . . , an (this convention also holds for constants which are not denoted by “C”).

Now, we state the precise notion of solution.

Definition 2.1. Let Ω be a nonempty bounded open subset of RN , let (a,b, c) ∈
C3, let 0 < m 6 1 and let G ∈ L1

loc(Ω).
(1) We say that g is a local very weak solution to

−∆g + a|g|−(1−m)g + bg + cx.∇g = G, (2.1)

in D ′(Ω), if g ∈ L2
loc(Ω) and if

〈g,−∆ϕ〉D′(Ω),D(Ω) + 〈H(g),ϕ〉D′(Ω),D(Ω) = 〈G,ϕ〉D′(Ω),D(Ω), (2.2)

for any ϕ ∈ D(Ω), where

H(h) = a|h|−(1−m)h + bh + cx.∇h, (2.3)

for any h ∈ L2
loc(Ω). If, in addition, g ∈ L2(Ω) then we say that g is a

global very weak solution to (2.1).
(2) We say that g is a local weak solution to (2.1) in D ′(Ω), if g ∈ H1

loc(Ω) and
if

〈∇g,∇ϕ〉D′(Ω),D(Ω) + 〈H(g),ϕ〉D′(Ω),D(Ω) = 〈G,ϕ〉D′(Ω),D(Ω), (2.4)

for any ϕ ∈ D(Ω), where H ∈ C
(
L2

loc(Ω); D ′(Ω)
)

is defined by (2.3).
(3) We say that g is a local weak solution to

−∆g + a|g|−(1−m)g + bg + c|x|2g = G, (2.5)

in D ′(Ω), if g ∈ H1
loc(Ω) and if g satisfies (2.4), for any ϕ ∈ D(Ω), where

H(h) = a|h|−(1−m)h + bh + c|x|2h, (2.6)
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for any h ∈ H1
loc(Ω).

(4) Assume further that G ∈ L2(Ω). We say that g is a global weak solution
to (2.1) and

g|Γ = 0, (2.7)
in L2(Ω), if g ∈ H1

0(Ω) and if

〈∇g,∇v〉L2(Ω),L2(Ω) + 〈H(g),v〉L2(Ω),L2(Ω) = 〈G,v〉L2(Ω),L2(Ω), (2.8)

for any v ∈ H1
0(Ω), where H ∈ C

(
H1(Ω); L2(Ω)

)
is defined by (2.3). Note

that ∆g ∈ L2(Ω), so that equation (2.1) makes sense in L2(Ω) and almost
everywhere in Ω.

(5) Assume further that G ∈ L2(Ω). We say that g is a global weak solution
to (2.5) and (2.7), in L2(Ω), if g ∈ H1

0(Ω) and if g satisfies (2.8), for
any v ∈ H1

0(Ω), where H ∈ C
(
L2(Ω); L2(Ω)

)
is defined by (2.6). Note

that ∆g ∈ L2(Ω), so that equation (2.5) makes sense in L2(Ω) and almost
everywhere in Ω.

In the above definition, Γ denotes the boundary of Ω and C(Ω) = C0(Ω) is
the space of complex-valued functions which are defined and continuous over Ω.
Obviously, for k ∈ N, Ck(Ω) denotes the space of complex-valued functions lying in
C(Ω) and having all derivatives of order lesser or equal than k belonging to C(Ω).

Remark 2.2. Here are some comments about Definition 2.1.
(1) Note that in Definition 2.1, any global weak solution is a local weak and a

global very weak solution, and any local weak or global very weak solution
is a local very weak solution.

(2) Assume that Ω has a C0,1 boundary. Let g ∈ H1(Ω). Then boundary
condition g|Γ = 0 makes sense in the sense of the trace γ(g) = 0. Thus,
it is well-known that g ∈ H1

0(Ω) if and only if γ(g) = 0. If furthermore Ω
has a C1 boundary and if g ∈ C(Ω) ∩H1

0(Ω) then for any x ∈ Γ, g(x) = 0
(Theorem 9.17, p.288, in [11]). Finally, if g 6∈ C(Ω) and Ω has not a C0,1

boundary, the condition g|Γ = 0 does not make sense and, in this case, has
to be understood as g ∈ H1

0(Ω).
(3) Let 0 < m 6 1 and let z ∈ C \ {0}. Since

∣∣|z|−(1−m)z
∣∣ = |z|m, it is

understood in Definition 2.1 that
∣∣|z|−(1−m)z

∣∣ = 0 when z = 0.

The main results of this section are the two following theorems implying, as a
special case, the statement of Theorem 1.2.

Theorem 2.3. Let Ω ⊂ B(0, R) be a nonempty bounded open subset of RN , let
0 < m < 1, let (a,b, c) ∈ C3 be such that Im(a) 6 0, Im(b) < 0 and Im(c) 6 0.
If Re(a) 6 0 then assume further that Im(a) < 0. Then there exist three positive
constants C = C(N,m), L = L(R, |a|, |p|, N,m) and M = M(R, |a|, |p|, N,m)
satisfying the following property: let G ∈ L1

loc(Ω), let g ∈ H1
loc(Ω) be any local weak

solution to (2.5), let x0 ∈ Ω and let ρ0 > 0. If ρ0 > dist(x0,Γ) then assume further
that g ∈ H1

0(Ω). Assume now that G|Ω∩B(x0,ρ0) ≡ 0. Then g|Ω∩B(x0,ρmax) ≡ 0,
where

ρνmax =
(
ρν0 − CM2 max{1, 1

L2
}max{ρν−1

0 , 1}

× min
τ∈( m+1

2 ,1]

{E(ρ0)γ(τ) max{b(ρ0)µ(τ), b(ρ0)η(τ)}
2τ − (1 +m)

})
+
,

(2.9)
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where

E(ρ0) = ‖∇g‖2L2(Ω∩B(x0,ρ0)), b(ρ0) = ‖g‖m+1
Lm+1(Ω∩B(x0,ρ0)),

k = 2(1 +m) +N(1−m), ν =
k

m+ 1
> 2,

and where

γ(τ) =
2τ − (1 +m)

k
∈ (0, 1), µ(τ) =

2(1− τ)
k

, η(τ) =
1−m
1 +m

− γ(τ) > 0.

for any τ ∈ (m+1
2 , 1].

Here and in what follows, r+ = max{0, r} denotes the positive part of the real
number r.

Remark 2.4. If the solution is too “large”, it may happen that ρmax = 0 and
so the above result is not consistent. A sufficient condition to observe a localizing
effect is that the solution is small enough, in a suitable sense. We give below a
sufficient condition on the data a ∈ C, p ∈ C and G to have ρmax > 0.

Theorem 2.5. Let Ω ⊂ B(0, R) be a nonempty bounded open subset of RN , let
0 < m < 1, let (a,b, c) ∈ C3 be such that Im(a) 6 0, Im(b) < 0 and Im(c) 6 0. If
Re(a) 6 0 then assume further that Im(a) < 0. Let G ∈ L1

loc(Ω), let g ∈ H1
loc(Ω) be

any local weak solution to (2.5), let x0 ∈ Ω and let ρ1 > 0. If ρ1 > dist(x0,Γ) then
assume further that g ∈ H1

0(Ω). Then there exist two positive constants E? > 0
and ε? > 0 satisfying the following property: let ρ0 ∈ (0, ρ1) and assume that
‖∇g‖2L2(Ω∩B(x0,ρ1)) < E? and

∀ρ ∈ (0, ρ1), ‖G‖2L2(Ω∩B(x0,ρ))
6 ε?(ρ− ρ0)p+, (2.10)

where p = 2(1+m)+N(1−m)
1−m . Then g|Ω∩B(x0,ρ0) ≡ 0. In other words (with the

notation of Theorem 2.3), ρmax = ρ0.

Remark 2.6. We may estimate E? and ε? as

E? = E?

(
‖g‖−1

Lm+1(B(x0,ρ1)), ρ1,
ρ0

ρ1
,
L

M
,N,m

)
,

ε? = ε?

(
‖g‖−1

Lm+1(B(x0,ρ1)),
ρ0

ρ1
,
L

M
,N,m

)
,

where L > 0 and M > 0 are given by Theorem 2.3. The dependence on 1/δ means
that if δ goes to 0 then E? and ε? may be very large. Note that p = 1/γ(1), where
γ is the function defined in Theorem 2.3.

3. Existence, uniqueness and smoothness

We recall the following results which are taken from other works by the authors
[5, Theorems 2.4, 2.6 and 2.12]. Let Ω ⊂ B(0, R) be a nonempty bounded open
subset of RN , let 0 < m < 1 and let (a,b, c) ∈ C3 be such that Im(a) 6 0,
Im(b) < 0 and Im(c) 6 0. If Re(a) 6 0 then assume further that Im(a) < 0. For
any G ∈ L2(Ω), there exists at least one global weak solution g ∈ H1

0(Ω)∩H2
loc(Ω)

to (2.5) and (2.7). Moreover, if Ω has a C1,1 boundary then g ∈ H2(Ω). Finally,

‖g‖H1(Ω) 6M0(R2 + 1)‖G‖L2(Ω), (3.1)
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where M0 = M0(|a|, |b|, |c|). Finally, if U belongs to L2
loc(Ω) with U a local very

weak solution to

−∆U + a|U|−(1−m)U + bU + icx.∇U = F, in D ′(Ω),

(with any (a,b, c) ∈ C × C × R) then U ∈ H2
loc(Ω). Indeed, by the unknown

transformation described at the beginning of Section 4 below, we are brought back
to the study of the smoothness of solutions to equation,

−∆g + a|g|−(1−m)g + (b− i
cN

2
)g − c2

4
|x|2g = F(x)e−ic

|x|2
4 , in D ′(Ω),

for which the above smoothness result applies. Concerning the uniqueness of solu-
tions, we have the following result.

Theorem 3.1 (Uniqueness). Let Ω ⊆ RN be a nonempty open subset let 0 < m < 1,
let (a,b, c) ∈ R × C × R be such that a > 0, Re(b) > 0 and c > 0. Then for any
F ∈ L2(Ω), equation

−∆U− ia|U|−(1−m)U− ibU + icx.∇U = F, in D ′(Ω),

admits at most one global very weak solution compact with support U ∈ L2
c (Ω).

Proof. Let U1,U2 ∈ L2
c (Ω) be two global very weak solutions both compactly

supported to the above equation. By the results above, one has U1,U2 ∈ H2
c (Ω).

Setting g1 = U1e−ic
|·|2
4 and g2 = U2e−ic

|·|2
4 , a straightforward calculation shows

that (see also the beginning of Section 4 below) g1,g2 ∈ H2
c (Ω) satisfy

−∆g + ã|g|−(1−m)g + b̃g + c̃V 2g = F̃, in L2(Ω),

where ã = −ia, b̃ = −i(b + cN
2 ), c̃ = − c

2

4 , V (x) = |x| and F̃ = Fe−ic
|·|2
4 . Note

that,

ã 6= 0, Re(ã) = 0,

Re(ã b̃) = Re
(
a
(
b +

cN

2
))

= aRe(b) +
1
2
acN > 0,

Re
(
ã c̃
)

=
ac2

4
Re(i) = 0.

Then it follows from (1) of Theorem 2.10 in [5] that g1 = g2 and hence, U1 =
U2. �

Remark 3.2. Notice that uniqueness for self-similar solution is relied to uniqueness
for (1.8). Using Theorem 2.10 in [5], we can show that the uniqueness of self-similar
solutions to equation (1.1) holds in the class of functions C

(
(0,∞); L2

c (RN )
)

when,
for instance, Re(a) = 0 and Im(a) < 0 (Theorem 3.1). These hypotheses are the
same as in [13]. We point out that it seems possible to adapt the uniqueness method
of [5, Theorem 2.10] to obtain other criteria of uniqueness.

Remark 3.3. In the proof of uniqueness of Theorem 1.2, we will use the Poincaré’s
inequality (4.9). This estimate can be improved in several ways. For instance, for
any x0 ∈ RN and any R > 0, we have

‖u‖L2(B(x0,R)) 6
2R
π
‖∇u‖L2(B(x0,R)), (3.2)
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which is substantially better than (4.9), since 2/π < 1 <
√

2. Actually, (3.2) holds
for any u ∈ H1

(
B(x0, R)

)
such that∫

B(x0,R)

u(x)dx = 0,

and
∂2u

∂xj∂xk
∈ L∞

(
B(x0, R)

)
, for any (j, k) ∈ [[1, N ]] × [[1, N ]]. See [25] for more

details.

4. Proofs of the localization properties

We start by pointing out that if Ω ⊆ RN is a nonempty open subset and if
0 < m 6 1, we have the following property: let U ∈ H1

loc(Ω) be a local weak
solution to

−∆U + a|U|−(1−m)U + bU + icx.∇U = F(x), in D ′(Ω),

for some (a,b, c) ∈ C × C × R and F ∈ L1
loc(Ω). Setting g(x) = U(x)e−ic

|x|2
4 , for

almost every x ∈ Ω, it follows that g ∈ H1
loc(Ω) is a local weak solution to

−∆g + a|g|−(1−m)g + (b− i
cN

2
)g − c2

4
|x|2g = F(x)e−ic

|x|2
4 , in D ′(Ω).

Conversely, if g ∈ H1
loc(Ω) is a local weak solution to

−∆g + a|g|−(1−m)g + bg − c2|x|2g = G(x), in D ′(Ω),

for some (a,b, c) ∈ C × C × R and G ∈ L1
loc(Ω), then setting U(x) = g(x)eic

|x|2
2 ,

for almost every x ∈ Ω, it follows that U ∈ H1
loc(Ω) is a local weak solution to

−∆U + a|U|−(1−m)U + (b + icN)U + 2icx.∇U = G(x)eic
|x|2
2 , in D ′(Ω).

The proof of Theorems 2.3 and 2.5 follows the main structure of application of
the energy methods introduced to the study of free boundary (see, e.g., the general
presentation made in the monograph [4]). In both cases, the conclusions follow
quite easily once it is obtained a general differential inequality for the local energy
E(ρ) of the type

E(ρ)α 6 Cρ−βE′(ρ) +K(ρ− ρ0)ω+, (4.1)
for some positive constants C, β and ω with K = 0, in case of Theorem 2.3 and
K > 0 small enough, in case of Theorem 2.5. The key estimate which leads to
desired local behaviour is that the exponent α arising in (4.1) satisfies that α ∈
(0, 1).

Although the main steps to prove (4.1) follow the same steps already indicated
in the monograph [4], it turns out that the concrete case of the systems of scalar
equations generated by the Schrödinger operator does not fulfill the assumptions
imposed in [4] for the case of systems of nonlinear equations. The extension of
the method which applied to the system associated to the complex Schrödinger
operator is far to be trivial and it was the main object of [8]. Unfortunately,
the extension of the method presented in [8] is not enough to be applied to the
fundamental equation of the present paper (i.e. (1.8) or (2.5)) mainly due to the
presence of the source term −c2|x|2g. A sharper version of the energy method, also
applicable to a different type of nonlinear complex Schrödinger type equations (for
instance containing a Hartree-Fock type nonlocal term), was developed in [6], where
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the applicability of the energy method was reduced to prove a certain local energy
balance. Such a local balance will be proved here in the following lemma. Thanks
to that, the proofs of Theorems 2.3 and 2.5 are then a corollary of Theorems 2.1
and 2.2 in [6].

Lemma 4.1. Let Ω ⊂ B(0, R) be a nonempty bounded open subset of RN , let
0 < m < 1, let (a,b, c) ∈ C3 be such that Im(a) 6 0, Im(b) < 0 and Im(c) 6 0.
If Re(a) 6 0 then assume further that Im(a) < 0. Let G ∈ L1

loc(Ω) and let g ∈
H1

loc(Ω) be any local weak solution to (2.5). Then there exist two positive constants
L = L(R, |a|, |b|, |c|) and M = M(R, |a|, |b|, |c|) such that for any x0 ∈ Ω and any
ρ? > 0, if G|Ω∩B(x0,ρ?) ∈ L2

(
Ω ∩B(x0, ρ?)

)
then we have

‖∇g‖2L2(Ω∩B(x0,ρ))
+ L‖g‖m+1

Lm+1(Ω∩B(x0,ρ))
+ L‖g‖2L2(Ω∩B(x0,ρ))

6M
(∣∣ ∫

Ω∩S(x0,ρ)

g∇g.
x− x0

|x− x0|
dσ
∣∣+
∫

Ω∩B(x0,ρ)

|G(x)g(x)|dx
)
,

(4.2)

for every ρ ∈ [0, ρ?), where it is additionally assumed that g ∈ H1
0(Ω) if ρ? >

dist(x0,Γ).

Proof. Let x0 ∈ Ω and let ρ? > 0. Let σ be the surface measure on a sphere and
set for every ρ ∈ [0, ρ∗),

I(ρ) =
∣∣ ∫

Ω∩S(x0,ρ)

g∇g.
x− x0

|x− x0|
dσ
∣∣, J(ρ) =

∫
Ω∩B(x0,ρ)

|G(x)g(x)|dx,

w(ρ) =
∫

Ω∩S(x0,ρ)

g∇g.
x− x0

|x− x0|
dσ, IRe(ρ) = Re

(
w(ρ)

)
, IIm(ρ) = Im

(
w(ρ)

)
.

By taking as test function ϕ̃n(x) = ψn(|x − x0|)g̃(x), where g̃ is the extension by
0 of g on Ωc ∩B(x0, ρ0) and ψn is the cut-off function

∀t ∈ R, ψn(t) =


1, if |t| ∈ [0, ρ− 1

n ],
n(ρ− |t|), if |t| ∈ (ρ− 1

n , ρ),
0, if |t| ∈ [ρ,∞),

it can be proved (see [6, Theorem 3.1]) that I, J, IRe, IIm ∈ C([0, ρ∗); R) and, by
passing to the limit as n→∞, that

‖∇g‖2L2(Ω∩B(x0,ρ))
+ Re(a)‖g‖m+1

Lm+1(Ω∩B(x0,ρ))
+ Re(b)‖g‖2L2(Ω∩B(x0,ρ))

+ Re(c)‖|x|g‖2L2(Ω∩B(x0,ρ))

= IRe(ρ) + Re
(∫

Ω∩B(x0,ρ)

G(x)g(x)dx
)
,

(4.3)

Im(a)‖g‖m+1
Lm+1(Ω∩B(x0,ρ))

+ Im(b)‖g‖2L2(Ω∩B(x0,ρ))
+ Im(c)‖|x|g‖2L2(Ω∩B(x0,ρ))

= IIm(ρ) + Im
(∫

Ω∩B(x0,ρ)

G(x)g(x)dx
)
,

(4.4)
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for any ρ ∈ [0, ρ?). From these estimates, we obtain∣∣∣‖∇g‖2L2(B(x0,ρ))
+ Re(a)‖g‖m+1

Lm+1(B(x0,ρ))
+ Re(b)‖g‖2L2(B(x0,ρ))

+ Re(c)‖|x|g‖2L2(B(x0,ρ))

∣∣∣
6 I(ρ) + J(ρ),

(4.5)

| Im(a)|‖g‖m+1
Lm+1(B(x0,ρ))

+ | Im(b)|‖g‖2L2(B(x0,ρ))
+ | Im(c)|‖|x|g‖2L2(B(x0,ρ))

6 I(ρ) + J(ρ),
(4.6)

for any ρ ∈ [0, ρ?). Let A > 1 to be chosen later. We multiply (4.6) by A and sum
the result with (4.5). This leads to

‖∇g‖2L2(B(x0,ρ))
+A1‖g‖m+1

Lm+1(B(x0,ρ))
+A2‖g‖2L2(B(x0,ρ))

+ Re(c)‖|x|g‖2L2(B(x0,ρ))

6 2A
(
I(ρ) + J(ρ)

)
,

(4.7)
where

A1 =

{
Re(a), if Re(a) > 0,
A| Im(a)| − |Re(a)|, if Re(a) 6 0,

A2 = A| Im(b)| − |Re(b)|.

But (4.7) yields,

‖∇g‖2L2(B(x0,ρ))
+A1‖g‖m+1

Lm+1(B(x0,ρ))
+
(
A2 −R2|Re(c)|

)
‖g‖2L2(B(x0,ρ))

6 2A
(
I(ρ) + J(ρ)

) (4.8)

We choose A = A(R, |a|, |b|, |c|) large enough to have A| Im(a)| − |Re(a)| > 1
(when Re(a) 6 0) and A2 − R2|Re(c)| > 1. Then (4.2) comes from (4.8) with
L = min

{
A1, 1

}
and M = 2A. Note that L = L(R, |a|, |b|, |c|) and M =

M(R, |a|, |b|, |c|). This concludes the proof. �

Remark 4.2. When ρ? 6 dist(x0,Γ) and G ∈ L2
loc(Ω), one may easily obtain (4.3)–

(4.4) without the technical [6, Theorem 3.1]. Indeed, it follows from [8, Proposition
4.5] that g ∈ H2

loc(Ω), so that equation (2.5) makes sense in L2
loc(Ω) and almost

everywhere in Ω. Thus, if ρ? 6 dist(x0,Γ) then g|B(x0,ρ) ∈ H2
(
B(x0, ρ)

)
and (4.3)(

respectively, (4.4)
)

is obtained by multiplying (2.5) by g (respectively, by ig),
integrating by parts over B(x0, ρ) and taking the real part.

Proof of Theorem 1.2. Let R > 0. Let ε > 0 and let f ∈ C
(
(0,∞); L2(RN )

)
satisfying (1.3) and supp f(1) ⊂ B(0, R). Let M0 be the constant in (3.1). Let

b = −iN+2p
4 , c = − 1

16 and G = −f(1)e−i
|·|2
8 . Note that Im(a) 6 0, Im(b) =

−N(1−m)+4
4(1−m) < 0 and Im(c) = 0. In addition, if Re(a) 6 0 then Im(a) < 0. It follows

that the existence result of Section 3 applies to equation (1.8): let g ∈ H1
0(B(0, 2R+

2ε))∩H2(B(0, 2R+2ε)) be such a solution to (1.8) and (2.7). We apply Theorem 2.3
with ρ0 = 2ε. By (3.1), there exists δ0 = δ0(R, ε, |a|, |b|, |c|, N,m) > 0 such
that if ‖f(1)‖L2(RN ) 6 δ0 then ρmax > ε. Set K = supp f(1) = supp G. Let
x0 ∈ K(2ε)c ∩ B(0, 2R + 2ε). Let y ∈ B(x0, 2ε) and let z ∈ K. By definition of
K(2ε), dist(K(2ε)c,K) = 2ε. We then have

2ε = dist(K(2ε)c,K) ≤ |x0 − z| ≤ |x0 − y|+ |y − z| < 2ε+ |y − z|.
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It follows that for any z ∈ K, |y − z| > 0, so that y 6∈ K. This means that
B(x0, 2ε) ∩ K = ∅, for any x0 ∈ K(2ε)c ∩ B(0, 2R + 2ε). By Theorem 2.3 we
deduce that for any x0 ∈ K(2ε)c ∩ B(0, 2R + 2ε), g|B(x0,ε) ≡ 0. By compactness,
K(ε)c∩B(0, 2R+2ε) may be covered by a finite number of sets B(x0, ε)∩B(0, 2R+
2ε) with x0 ∈ K(2ε)c. It follows that g|K(ε)c∩B(0,2R+2ε) ≡ 0. This means that
supp g ⊂ K(ε) ⊂ B(0, 2R + 2ε). We then extend g by 0 outside of B(0, 2R + 2ε).

Thus, g ∈ H2
c (RN ) is a solution to (1.8) in RN . Now, let U = gei

|·|2
8 and let for any

t > 0, u(t) = tp/2U( ·√
t
). It follows that supp U = supp g ⊂ K(ε), U ∈ H2

c (RN )
and U is a solution to (1.6) in RN . By (1.5), u verifies (1.9) and is a solution to (1.1)
in (0,∞) × RN with u(1) = U compactly supported in K(ε). By Definition 1.1,
u is self-similar and still by (1.5), supp u(t) is compact for any t > 0. Hence
Properties 1 and 2. It remains to show Property 3. Let R0 > 0 and assume

further that Re(a) > 0, Im(a) = 0 and 0 < R2
0 6 4 Im(p) + 2

√
4 Im2(p) + 2. Let

u1,u2 ∈ C
(
(0,∞); L2

c (RN )
)

be two solutions to (1.1) whose profile U1,U2 satisfy
supp U, supp V ⊂ B(0, R0). By Section 3, U1,U2 ∈ H2

c (RN ). For j ∈ {1, 2},
let gj = Uje−i

|·|2
8 . It follows that g1 and g2 belong to H2

c (RN ), are compactly
supported in B(0, R0) and satisfy the same equation (1.8). Let g = g1 − g2 and
set for any h ∈ L2

c (RN ), H(h) = |h|−(1−m)h. It follows that,

−∆g + a
(
H(g1)−H(g2)

)
− i

N + 2p
4

g − 1
16
|x|2g = 0, a.e. in RN .

Multiplying this equation by g, integrating by parts over RN and taking the real
part, we obtain

‖∇g‖2L2 + a〈H(g1)−H(g2),g1 − g2〉L2,L2 − Re
(
i
N + 2p

4
)
‖g‖2L2 −

1
16
‖| · |g‖2L2

= ‖∇g‖2L2 + a〈H(g1)−H(g2),g1 − g2〉L2,L2 +
1
2

Im(p)‖g‖2L2 −
1
16
‖| · |g‖2L2

= 0,

We recall the following refined Poincaré’s inequality [9].

∀u ∈ H1
0

(
B(0, R0)

)
, ‖u‖2L2(B(0,R0)) 6 2R2

0‖∇u‖2L2(B(0,R0)), (4.9)

If follows from (4.9) and [8, Lemma 9.1], that there exists a positive constant C
such that( 1

2R2
0

+
1
2

Im(p)− R2
0

16

)
‖g‖2L2 + Ca

∫
ω

|g1(x)− g2(x)|2

(|g1(x)|+ |g2(x)|)1−m dx 6 0,

where ω =
{
x ∈ Ω; |g1(x)|+ |g2(x)| > 0

}
. But,

1
2R2

0

+
1
2

Im(p)− R2
0

16
=

1
16R2

0

(
−R4

0 + 8 Im(p)R2
0 + 8

)
> 0,

when

0 6 R2
0 6 4 Im(p) + 2

√
4 Im2(p) + 2.

It follows that g1 = g2 which implies that U1 = U2 and for any t > 0, u1(t) =
u2(t). This completes the proof. �
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