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WEIGHTED ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO
SEMILINEAR INTEGRO-DIFFERENTIAL EQUATIONS IN

BANACH SPACES

YAN-TAO BIAN, YONG-KUI CHANG, JUAN J. NIETO

Abstract. In this article, we study weighted asymptotic behavior of solutions
to the semilinear integro-differential equation

u′(t) = Au(t) + α

Z t

−∞
e−β(t−s)Au(s)ds+ f(t, u(t)), t ∈ R,

where α, β ∈ R, with β > 0, α 6= 0 and α + β > 0, A is the generator of
an immediately norm continuous C0-Semigroup defined on a Banach space X,

and f : R × X → X is an Sp-weighted pseudo almost automorphic function

satisfying suitable conditions. Some sufficient conditions are established by us-
ing properties of Sp-weighted pseudo almost automorphic functions combined

with theories of uniformly exponentially stable and strongly continuous family

of operators.

1. Introduction

In this article, we are mainly focused upon weighted asymptotic behavior of
solutions to the semilinear integro-differential equation

u′(t) = Au(t) + α

∫ t

−∞
e−β(t−s)Au(s)ds+ f(t, u(t)), t ∈ R, (1.1)

where α, β ∈ R with β > 0, α 6= 0 and α + β > 0, A : D(A) ⊆ X → X is the
generator of an immediately norm continuous C0-semilinear defined on the Banach
space X, and f : R×X→ X is an Sp-weighted pseudo almost automorphic function
satisfying suitable conditions given later.

The concept of almost automorphy was first introduced by Bochner in [5] in
relation to some aspects of differential geometry, for more details about this topic
we refer to [1, 2, 7, 8, 11, 12, 13, 14, 22, 23, 25] and references therein. Since
then, this concept has undergone several interesting, natural and powerful gener-
alizations. The concept of asymptotically almost automorphic functions was in-
troduced by N’Guérékata in [21]. Liang, Xiao and Zhang [17, 27] presented the
concept of pseudo almost automorhy. N’Guérékata and Pankov [24] introduced
the concept of Stepanov-like almost automorphy and Blot et al. [6] introduced the

2000 Mathematics Subject Classification. 4K14, 60H10, 35B15, 34F05.
Key words and phrases. Integro-differential equations; uniformly exponentially stable;

Stepanov-like weighted pseudo almost automorphy.
c©2014 Texas State University - San Marcos.

Submitted October 21, 2013. Published April 2, 2014.

1



2 Y.-T. BIAN, Y.-K. CHANG, J. J. NIETO EJDE-2014/91

notion of weighted pseudo almost automorphic functions with values in a Banach
space. Xia and Fan [26] presented the notation of Stepanov-like (or Sp-) weighted
pseudo almost automorphy, and Chang, N’Guérékata et al. [28, 29] investigated
some properties and new composition theorems of Stepanov-like weighted pseudo
almost automorphic functions.

Lizama and Ponce [18] studied systematically the existence and uniqueness of
bounded solutions, such as almost periodic, almost automorphic and asymptotically
almost periodic solutions, to the problem (1.1). However, few results are available
for weighted asymptotic behavior of solutions to the problem (1.1). By the main
theories developed in [18, 26, 28], the main aim of the present paper is to investigate
weighted asymptotic behavior of solutions to the problem (1.1) with Sp-weighted
pseudo almost automorphic coefficients. Some sufficient conditions are established
via composition theorems of Sp-weighted pseudo almost automorphic functions
combined with theories of uniformly exponentially stable and strongly continuous
family of operators.

The rest of this paper is organized as follows. In section 2, we recall some prelim-
inary results which will be used throughout this paper. In section 3, we establish
some sufficient conditions for weighted pseudo almost automorphic solutions to the
problem (1.1).

2. Preliminaries

Throughout this paper, we assume that (X, ‖ · ‖) and (Y, ‖ · ‖Y) are two Banach
spaces. We let C(R,X) (respectively, C(R×Y,X)) denote the collection of all con-
tinuous functions from R into X (respectively, the collection of all jointly continuous
functions f : R × Y → X). Furthermore, BC(R,X) (respectively, BC(R × Y,X))
stands for the class of all bounded continuous functions from R into X (respectively,
the class of all jointly bounded continuous functions from R×Y into X). Note that
BC(R,X) is a Banach space with the sup norm ‖ · ‖∞. Furthermore, we denote
by B(X) the space of bounded linear operators form X into X endowed with the
operator topology.

First, we list some basic definitions, properties of some almost automorphic type
functions in abstract spaces.

Definition 2.1 ([23]). A continuous function f : R→ X is said to be almost auto-
morphic if for every sequence of real numbers {s′n}n∈N, there exists a subsequence
{sn}n∈N such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R. The collection of all such functions will be denoted by AA(X).

Definition 2.2 ([23]). A continuous function f : R × Y → X is said to be almost
automorphic if f(t, x) is almost automorphic for each t ∈ R uniformly for all x ∈ K,
where K is any bounded subset of Y. The collection of all such functions will be
denoted by AA(R× X,X).

Let U denote the set of all functions ρ : R→ (0,∞), which are locally integrable
over R such that ρ > 0 almost everywhere. For a given r > 0 and for each ρ ∈ U,
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we set m(r, ρ) :=
∫ r
−r ρ(t)dt. Thus the space of weights U∞ is defined by

U∞ := {ρ ∈ U : lim
r→∞

m(r, ρ) =∞}.

For a given ρ ∈ U∞, we define

PAA0(X, ρ) :=
{
f ∈ BC(R,X) : lim

r→∞

1
m(r, ρ)

∫ r

−r
‖f(t)‖ρ(t)dt = 0

}
;

PAA0(Y,X, ρ) :=
{
f ∈ C(R× Y,X) : f(·, y) is bounded for each y ∈ Y

and lim
r→∞

1
m(r, ρ)

∫ r

−r
‖f(t, y)‖ρ(t)dt = 0 uniformly in y ∈ Y

}
.

Definition 2.3 ([6]). Let ρ ∈ U∞. A function f ∈ BC(R,X) (respectively,
f ∈ BC(R × Y,X)) is called weighted pseudo almost automorphic if it can be
expressed as f = g + χ, where g ∈ AA(X) (respectively, AA(R × Y,X)) and
χ ∈ PAA0(X, ρ) (respectively, PAA0(Y,X, ρ)). We denote by WPAA(R,X) (re-
spectively, WPAA(R× Y,X)) the set of all such functions.

Lemma 2.4 ([20, Theorem 2.15]). Let ρ ∈ U∞. If PAA0(X, ρ) is translation
invariant, then

(
WPAA(R,X), ‖ · ‖∞

)
is a Banach space.

Definition 2.5 ([9, 10]). The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1], of a
function f : R→ X is defined by

f b(t, s) := f(t+ s).

Definition 2.6 ([9, 10]). The Bochner transform f b(t, s, u), t ∈ R, s ∈ [0, 1], u ∈ X
of a functions f : R× X −→ X is defined by

f b(t, s, u) := f(t+ s, u) for all u ∈ X.

Remark 2.7 ([10]). (i) A function ϕ(t, s), t ∈ R, s ∈ [0, 1], is the Bochner transform
of a certain function f , ϕ(t, s) = f b(t, s), if and only if ϕ(t+ τ, s− τ) = ϕ(t, s) for
all t ∈ R, s ∈ [0, 1] and τ ∈ [s− 1, s].

(ii) Note that if f = g + χ, then f b = gb + χb. Moreover, (λf)b = λf b for each
scalar λ.

Definition 2.8 ([9, 10]). Let p ∈ [1,∞). The space BSp(X) of all Stepanov-
like bounded functions, with the exponent p, consists of all measurable functions
f : R → X such that f b ∈ L∞ (R, Lp(0, 1; X)). This is a Banach space with the
norm

‖f‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

(∫ t+1

t

‖f(τ)‖pdτ
)1/p

.

Definition 2.9 ([9, 10]). The space ASp(X) of Stepanov-like almost automorphic
(or Sp-almost automorphic) functions consists of all f ∈ BSp(X) such that f b ∈
AA (Lp(0, 1; X)). In other words, a function f ∈ Lploc(R,X) is said to be Sp-almost
automorphic if its Bochner transform f b : R→ Lp(0, 1; X) is almost automorphic in
the sense that for every sequence of real numbers {s′n}n∈N, there exist a subsequence
{sn}n∈N and a function g ∈ Lploc(R,X) such that

lim
n→∞

(∫ 1

0

‖f(t+ s+ sn)− g(t+ s)‖pds
)1/p

= 0,

lim
n→∞

(∫ 1

0

‖g(t+ s− sn)− f(t+ s)‖pds
)1/p

= 0.
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pointwise on R.

Definition 2.10 ([9, 10]). A function f : R×Y→ X, (t, u)→ f(t, u) with f(·, u) ∈
Lploc(R,X) for each u ∈ Y, is said to be Sp-almost automorphic in t ∈ R uniformly
in u ∈ Y if t → f(t, u) is Sp-almost automorphic for each u ∈ Y. That means, for
every sequence of real numbers {s′n}n∈N, there exist a subsequence {sn}n∈N and a
function g(·, u) ∈ Lploc(R,X) such that

lim
n→∞

(∫ 1

0

‖f(t+ s+ sn, u)− g(t+ s, u)‖pds
)1/p

= 0,

lim
n→∞

(∫ 1

0

‖g(t+ s− sn, u)− f(t+ s, u)‖pds
)1/p

= 0,

pointwise on R and for each u ∈ Y. We denote by ASp(R×Y,X) the set of all such
functions.

Definition 2.11 ([28]). Let ρ ∈ U∞. A function f ∈ BSp(X) is said to be
Stepanov-like weighted pseudo almost automorphic (or Sp-weighted pseudo al-
most automorphic) if it can be expressed as f = g + χ, where g ∈ ASp(X) and
χb ∈ PAA0 (Lp(0, 1; X), ρ). In other words, a function f ∈ Lploc(R,X) is said to be
Stepanov-like weighted pseudo almost automorphic relatively to the weight ρ ∈ U∞,
if its Bochner transform f b : R → Lp(0, 1; X) is weighted pseudo almost automor-
phic in the sense that there exist two functions g, χ : R → X such that f = g + χ,
where g ∈ ASp(X) and χb ∈ PAA0 (Lp(0, 1; X), ρ). We denote by WPAASp(R,X)
the set of all such functions.

Definition 2.12 ([28]). Let ρ ∈ U∞. A function f : R × Y → X, (t, u) →
f(t, u) with f(·, u) ∈ Lploc(R,X) for each u ∈ Y, is said to be Stepanov-like weighted
pseudo almost automorphic (or Sp-weighted pseudo almost automorphic) if it can be
expressed as f = g+χ, where g ∈ ASp(R×Y,X) and χb ∈ PAA0 (Y, Lp(0, 1; X), ρ).
We denote by WPAASp(R× Y,X) the set of all such functions.

Remark 2.13 ([28]). It is clear that if 1 ≤ p < q < ∞ and f ∈ Lqloc(R,X) is
Sq-almost automorphic, then f is Sp almost automorphic. Also if f ∈ AA(X), then
f is Sp-almost automorphic for any 1 ≤ p <∞.

Lemma 2.14 ([28]). Let ρ ∈ U∞. Assume that PAA0(Lp(0, 1; X), ρ) is translation
invariant. Then the decomposition of an Sp-weighted pseudo almost automorphic
function is unique.

Lemma 2.15 ([26, 29]). Let ρ ∈ U∞ be such that

lim sup
t→∞

ρ(t+ ι)
ρ(t)

<∞ and lim sup
r→∞

m(r + ι, ρ)
m(r, ρ)

<∞, (2.1)

for every ι ∈ R, then spaces WPAASp(R,X) and PAA0(Lp(0, 1; X), ρ) are transla-
tion invariant.

Lemma 2.16 ([26, 28]). If f ∈ WPAA(R,X), then f ∈ WPAASp(R,X) for
each 1 ≤ p < ∞. In other words, WPAA(R,X) ⊆ WPAASp(R,X). Moreover,
WPAASq(R,X) ⊆WPAASp(R,X) for 1 ≤ p < q < +∞.

Lemma 2.17 ([28]). Let ρ ∈ U∞ satisfy (2.1). Then the space WPAASp(R,X)
equipped with the norm ‖ · ‖Sp is a Banach space.
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Lemma 2.18 ([28]). Let ρ ∈ U∞ and let f = g + χ ∈ WPAASp(R × X,X)
with g ∈ ASp(R × Y,X), χb ∈ PAA0 (Y, Lp(0, 1; X), ρ). Assume that the following
condition are satisfied:

(i) f(t, x) is Lipschitzian in x ∈ X uniformly in t ∈ R; that is, there exists a
constant L > 0 such that

‖f(t, x)− f(t, y)| ≤ L‖x− y|
for all x, y ∈ X and t ∈ R.

(ii) g(t, x) is uniformly continuous in any bounded subset K ′ ⊆ X uniformly for
t ∈ R.

If u = u1 + u2 ∈ WPAASp(R,X), with u1 ∈ ASp(X), ub2 ∈ PAA0(Lp(0, 1; X), p)
and K = {u1(t) : t ∈ R} is compact, then Υ : R → X defined by Υ(·) = f(·, u(·))
belongs to WPAASp(R,X).

Lemma 2.19 ([28]). Let ρ ∈ U∞ and let f = g + χ ∈ WPAASp(R × X,X)
with g ∈ ASp(R × Y,X), χb ∈ PAA0 (Y, Lp(0, 1; X), ρ). Assume that the following
conditions are satisfied:

(i) there exists a nonnegative function Lf (·) ∈ BSp(R) with p > 1 such that
for all u, v ∈ R and t ∈ R.(∫ t+1

t

‖f(s, u)− f(s, v)‖pds
)1/p

≤ Lf (t)‖u− v‖;

(ii) ρ ∈ Lqloc(R) satisfies limT→∞ sup T 1/pmq(T,ρ)
m(T,ρ) < ∞, where 1

p + 1
q = 1 and

mq(T, ρ) =
( ∫ T
−T ρ

q(t)dt
)1/q;

(iii) g(t, x) is uniformly continuous in any bounded subset K ⊆ X.
If u = u1 + u2 ∈ WPAASp(R,X), with u1 ∈ ASp(X), ub2 ∈ PAA0(Lp(0, 1; X), p)
and K = {u1(t) : t ∈ R} is compact, then Υ : R → X defined by Υ(·) = f(·, u(·))
belongs to WPAASp(R,X).

Lemma 2.20 ([26]). Let ρ ∈ U∞, p > 1 and let f = g + χ ∈WPAASp(R× X,X)
with g ∈ ASp(R × X,X), χb ∈ PAA0(X, Lp(0, 1; X), ρ). Assume that the following
conditions are satisfied:

(i) there exist nonnegative functions Lf (·) and Lg(·) in ASr(R,R) with r ≥
max{p, p

p−1} such that for all u, v ∈ X and t ∈ R,

‖f(s, u)− f(s, v)‖ ≤ Lf (t)‖u− v‖, ‖g(s, u)− g(s, v)‖ ≤ Lg(t)‖u− v‖;

(ii) u = u1 + u2 ∈ WPAASp(R,X), with ub2 ∈ PAA0(Lp(0, 1; X), ρ), u1 ∈
ASp(X), and K = {u1(t) : t ∈ R} compact in X.

Then there exists q ∈ [1, p) such that Υ : R −→ X defined by Υ(·) = f(·, u(·))
belongs to WPAASq(R,X).

Lemma 2.21 ([28]). Let ρ ∈ U∞ and f = g + χ : R × X → X be an Sp-
weighted pseudo almost automorphic function with g ∈ ASp(R × X,X), χb ∈
PAA0(X, Lp(0, 1; X), ρ). Suppose that f satisfies the following conditions:

(i) f(t, x) is uniformly conditions in any bounded subset K ′ ⊆ X uniformly for
t ∈ R.

(ii) g(t, x) is uniformly conditions in any bounded subset K ′ ⊆ X uniformly for
t ∈ R.
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(iii) For every bounded subset K ′ ⊂ X, the set of functions f(·, x) : x ∈ K ′ is
bounded in WPAASp(X).

If u = u1 + u2 ∈ WPAASp(X), with u1 ∈ ASp(R,X), ub2 ∈ PAA0(Lp(0, 1; X), p)
and K = {u1(t) : t ∈ R} is compact, then Υ : R → X defined by Υ(·) = f(·, u(·))
belongs to WPAASp(R,X).

Next, to establish an operator sketch to the problem (1.1), we recall some basic
results which are main from the paper [18, 19]. Consider the following homogeneous
abstract Volterra equation

u′(t) = Au(t) + α

∫ t

0

e−β(t−s)Au(s)ds, t ≥ 0

u(0) = x.

(2.2)

A solution of (2.2) is called to be uniformly exponentially bounded if for some ω ∈
R, there exists a constant M > 0 such that for each x ∈ D(A), the corresponding
solution u(t) satisfies

‖u(t)‖ ≤Me−ωt, t ≥ 0. (2.3)
Particularly, the solutions of the equation (2.2) are said to be uniformly exponen-
tially stable if the equation (2.3) holds for some ω > 0 and M > 0.

Definition 2.22 ([18, Definition 2.3.]). Let X be a Banach space. A strongly
continuous function T : R+ → B(X) is said to be immediately norm continuous if
T :→ B(X) is continuous.

Lemma 2.23 ([18, Theorem 2.4.]). Let β > 0, α 6= 0 and α + β > 0 be given.
Assume that

(A1) A generates an immediately norm continuous C0-semigroup on a Banach
space X;

(A2) sup{<λ, λ ∈ C : λ(λ+ β)(λ+ α+ β)−1 ∈ σ(A)} < 0.
Then, the solutions of (2.2) are uniformly exponentially stable.

Lemma 2.24 ([18, Proposition 3.1.]). Let β > 0, α 6= 0 and α + β > 0. Assume
that conditions (A1) and (A2) in Lemma 2.23 hold, then there exists a uniformly
exponentially stable and strongly continuous family of operators {S(t)}t≥0 ⊂ B(X)
such that S(t) commutes with A, that is, S(t)D(A) ⊂ D(A), AS(t)x = S(t)Ax for
all x ∈ D(A), t ≥ 0 and

S(t)x = x+
∫ t

0

b(t− s)AS(t)xds, for all x ∈ X, t ≥ 0,

where b(t) = 1 + α
β [1− e−βt], t ≥ 0.

Finally, we recall a useful compactness criterion and a well-known fixed point
theorem. Let h : R → R be a continuous function such that h(t) ≥ 1 for all t ∈ R
and h(t)→∞ as |t| → ∞. We consider the space

Ch(X) =
{
u ∈ C(R,X) : lim

|t|→∞

u(t)
h(t)

}
. (2.4)

Endowed with the norm ‖u‖h = supt∈R
‖u(t)‖
h(t) , it is a Banach space.

Lemma 2.25 ([16]). A subset R ⊆ Ch(X) is a relatively compact set if it verifies
the following conditions:
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(C1) The set R(t) = {u(t) : u ∈ R} is relatively compact in X for each t ∈ R.
(C2) The R is equicontinuous.
(C3) For each ε > 0 there exists L > 0 such that ‖u(t)‖ ≤ εh(t) for all u ∈ R

and all |t| > L.

Lemma 2.26 ([15]). Let D be a closed convex subset of a Banach space X such
that 0 ∈ D. Let F : D → D be a completely continuous map. Then the set
{x ∈ D : x = λF(x), 0 < λ < 1} is unbounded or the map F has a fixed point in D.

3. Main results

In this section, we study the weighted asymptotic behavior of solutions to (1.1).

Definition 3.1 ([18, Definition 4.1]). A function u : R → X is said to be a mild
solution to (1.1) if

u(t) =
∫ t

−∞
S(t− s)f(s, u(s))ds,

for all t ∈ R, where {S(t)}t≥0 is given in Lemma 2.24.

In the sequel, we always assume that the weight ρ satisfies condition (2.1). And
now, we list the following basic assumptions:

(H1) f ∈WPAASp(R× X,X), and there exists a constant L > 0, such that

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖
for all t ∈ R and each x, y ∈ X.

(H2) f ∈ WPAASp(R× X,X), and there exists a nonnegative function Lf (·) ∈
BSp(R), with p > 1 such that

‖f(t, x)− f(t, y)‖ ≤ Lf (t)‖x− y‖
for all t ∈ R and each x, y ∈ X.

(H3) ρ ∈ Lqloc(R) satisfies

lim
T→∞

T 1/pmq(T, ρ)
m(T, ρ)

<∞,

where 1
p + 1

q = 1 and mq(t) = (
∫ T
−T ρ

q(t)dt)1/q.
(H4) f = g + χ ∈ WPAASp(R × X,X), where g ∈ ASp(R × X,X) is uni-

formly continuous in any bounded subset M ⊆ X in t ∈ R and χb ∈
PAA0 (Y, Lp(0, 1; X), ρ).

(H5) The function f = g + χ ∈ WPAASp(R× X,X) (p > 1) with g ∈ ASp(R×
X,X), χb ∈ PAA0(X, Lp(0, 1; X), ρ), and there exist nonnegative functions
Lf (·), Lg(·) in ASr(R,R) with r ≥ max{p, p

p−1} such that for all u, v ∈ X
and t ∈ R

‖f(s, u)− f(s, v)‖ ≤ Lf (t)‖u− v‖, ‖g(s, u)− g(s, v)‖ ≤ Lg(t)‖u− v‖.

Lemma 3.2. Let β > 0, α 6= 0 with α+β > 0 and conditions (A1)–(A2) in Lemma
2.23 hold. If f : R → X is a stepanov-like weighted pseudo almost automorphic
function, and F (·) is given by

F (t) =
∫ t

−∞
S(t− s)f(s)ds, t ∈ R,

then, F (·) ∈WPAA(R× X), where {S(t)}t≥0 is given in Lemma 2.24.
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Proof. Since f ∈ WPAASp(R × X), we have f = g + χ with g ∈ ASp(X), χb ∈
PAA0(Lp(0, 1; X), p). Consider for each n = 1, 2, . . . , the integrals

Fn(t) =
∫ t−n+1

t−n
S(t− s)f(s)ds

=
∫ t−n+1

t−n
S(t− s)g(s)ds+

∫ t−n+1

t−n
S(t− s)χ(s)ds

= Xn(t) + Yn(t),

where

Xn(t) =
∫ t−n+1

t−n
S(t− s)g(s)ds, Yn(t) =

∫ t−n+1

t−n
S(t− s)χ(s)ds.

To prove that each Fn is a weighted pseudo almost automorphic function, we only
need to verify Xn ∈ AA(X) and Yn ∈ PAA0(X, ρ) for each n = 1, 2, . . . .

Let us first show that Xn ∈ AA(X). We have

‖Xn(t)‖ = ‖
∫ t−n+1

t−n
S(t− s)g(s)ds‖

≤
∫ t−n+1

t−n
Me−ω(t−s)‖g(s)‖ds

≤Me−ω(n−1)
(∫ t−n+1

t−n
‖g(s)‖pds

)1/p

≤Me−ω(n−1)‖g‖sp .

Since
∑∞
n=1 e

−ω(n−1) = 1
1−e−ω < ∞, we conclude that the series

∑∞
n=1Xn(t) is

uniformly convergent on R. Furthermore,

X(t) :=
∫ t

−∞
S(t− s)g(s)ds =

∞∑
n=1

Xn(t).

Clearly, X(t) ∈ C(R,X) and ‖X(t)‖ ≤
∑∞
n=1 ‖Xn(t)‖ ≤

∑∞
n=1Me−ω(n−1)‖g‖sp .

Since g ∈ ASp(R,X), then for every sequence of real numbers {Sn′}n′∈N there
exist a sequence {Sn}n∈N and a function g′(·) ∈ Lploc(R,X) such that for each t ∈ R,
the following equalities hold:

lim
n→∞

(∫ 1

0

‖g(t+ s+ sn)− g′(t+ s)‖pds
)1/p

= 0,

lim
n→∞

(∫ 1

0

‖g′(t+ s− sn)− g(t+ s)‖pds
)1/p

= 0.

Let X ′n(t) =
∫ t−n+1

t−n S(t− s)g′(s)ds. Then using the Hölder inequality, we have

‖Xn(t+ sn)−X ′n(t)‖

=
∥∥∫ t+sn−n+1

t+sn−n
S(t+ sn − s)g(s)ds−

∫ t−n+1

t−n
S(t− s)g′(s)ds

∥∥
≤
∫ t−n+1

t−n
‖S(t− s)‖‖g(s+ sn)− g′(s)‖ds
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≤
∫ t−n+1

t−n
Me−ω(t−s)‖g(s+ sn)− g′(s)‖ds

≤Me−ω(n−1)
(∫ 1

0

‖g(s+ t− n+ sn)− g′(s+ t− n)‖pds
)1/p

.

Obviously, ‖Xn(t+ sn)−X ′n(t)‖ → 0 as n→∞. Similarly, we can prove that

lim
n→∞

‖X ′n(t− sn)−Xn(t)‖ = 0.

Thus, we conclude that each Xn ∈ AA(X) and consequently their uniform limit
X(t) ∈ AA(X).

Next, we show that each Yn ∈ PAA0(X, ρ). For this, we note that

‖Yn(t)‖ ≤
∫ t−n+1

t−n
‖S(t− s)χ(s)‖ds

≤
∫ t−n+1

t−n
‖S(t− s)‖‖χ(s)‖ds

≤
∫ t−n+1

t−n
Me−ω(t−s)‖χ(s)‖ds

≤Me−ω(n−1)

∫ t−n+1

t−n
‖χ(s)‖ds

≤Me−ω(n−1)
(∫ t−n+1

t−n
‖χ(s)‖pds

)1/p

.

Then, for T > 0, we see that

1
m(T, ρ)

∫ T

−T
‖Yn(t)‖ρ(t)dt

≤Me−ω(n−1) 1
m(T, ρ)

∫ T

−T

(∫ t−n+1

t−n
‖χ(s)‖pds

)1/p

ρ(t)dt.

Since χb ∈ PAA0(Lp(0, 1; X), ρ), the above inequality leads to Yn ∈ PAA0(X, ρ)
for each n = 1, 2, . . . . By a similar way, we deduce that the uniform limit Y (·) =∑∞
n=1 Yn(t) ∈ PAA0(X, ρ). Therefore, F (t) := X(t) + Y (t) is weighted pseudo

almost automorphic. The proof is complete. �

Now, we shall present and prove our main results.

Theorem 3.3. Let β > 0, α 6= 0 with α + β > 0 and conditions (A1)–(A2)
in Lemma 2.23 hold. If (H1) and (H4) are satisfied, then the problem (1.1) has
a unique weighted pseudo almost automorphic mild solution on R provided that
L < ω

M .

Proof. Let Γ : WPAA(R,X)→WPAA(R,X) be the nonlinear operator defined by

(Γx)(t) =
∫ t

−∞
S(t− s)f(s, x(s))ds, t ∈ R,

where {S(t)}t≥0 is given in Lemma 2.24. First, let us prove that Γ(WPAA(R,X)) ⊆
WPAA(R,X). For each x ∈ WPAA(R,X), by using Lemmas 2.16 and 2.18, one
can easily see that f(·, x(·)) ∈ WPAASp(R,X). Hence, from the proof of Lemma
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3.2, we know that (Γx)(·) ∈ WPAA(R,X). That is, Γ maps WPAA(R,X) into
WPAA(R,X).

Next, we prove that Γ is a strict contraction mapping on WPAA(R,X). To this
end, for each t ∈ R, x, y ∈WPAA(R,X), we have

‖Γx− Γy‖∞ := sup
t∈R
‖
∫ t

−∞
S(t− s)[f(s, x(s))− f(s, y(s))]ds‖

≤ LM sup
t∈R

∫ ∞
0

e−ωs‖x(t− s)− y(t− s)‖ds

≤ LM‖x− y‖∞
∫ ∞

0

e−ωsds

=
LM

ω
‖x− y‖∞,

which implies that Γ is a contraction on WPAA(R,X). Therefore, by the Banach
contraction principle, we draw a conclusion that there exists a unique fixed point
x(·) for Γ in WPAA(R,X) with Γx = x. It is clear that x is the unique weighted
pseudo almost automorphic mild solution of (1.1). This completes the proof. �

A different Lipschitz condition is considered in the following results.

Theorem 3.4. Let β > 0, α 6= 0 with α + β > 0 and conditions (A1)–(A2) in
Lemma 2.23 hold. If (H2)–(H4) hold, then (1.1) has a unique weighted pseudo
almost automorphic mild solution whenever M

1−e−ω ‖Lf‖Sp < 1.

Proof. Consider the nonlinear operator Γ is given by

(Γx)(t) =
∫ t

−∞
S(t− s)f(s, x(s))ds, t ∈ R.

For given x ∈WPAA(R,X), it follows from Lemmas 2.16 and 2.19 that the function
s → f(s, x(s)) is in WPAASp(R,X). Moreover, from Lemma 3.2, we infer that
Γx ∈ WPAA(R,X), that is, Γ maps WPAA(R,X) into itself. Next, we prove
that the operator Γ has a unique fixed point in WPAA(R,X). Indeed, for each
t ∈ R,x, y ∈WPAA(R,X), we have

‖Γx(t)− Γy(t)‖ =
∥∥∫ t

−∞
S(t− s)[f(s, x(s))− f(s, y(s))]ds

∥∥
≤
∫ t

−∞
Me−ω(t−s)Lf (s)‖x(s)− y(s)‖ds

≤
∞∑
n=1

Me−ω(n−1)

∫ t−n+1

t−n
Lf (s)‖x− y‖∞ds

≤
∞∑
n=1

Me−ω(n−1)
(∫ t−n+1

t−n
‖Lf (s)‖pds

)1/p

‖x− y‖∞

≤ M

1− e−ω
‖Lf‖Sp‖x− y‖∞.

Hence

‖Γx− Γy‖∞ ≤
M

1− e−ω
‖Lf‖Sp‖x− y‖∞.
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Since M
1−e−ω ‖Lf‖Sp < 1, Γ has a unique fixed point x ∈ WPAA(R,X). The proof

is complete. �

Theorem 3.5. Let β > 0, α 6= 0 with α + β > 0 and conditions (A1)–(A2)
in Lemma 2.23 hold. If (H5) holds, then (1.1) admits a unique weighted pseudo
almost automorphic mild solution whenever M

1−e−ω ‖Lf‖Sr < 1.

Proof. Consider the nonlinear operator Γ given by

(Γx)(t) =
∫ t

−∞
S(t− s)f(s, x(s))ds, t ∈ R.

For given x ∈WPAA(R,X), it follows from Lemmas 2.16 and 2.20 that the function
s → f(s, x(s)) is in WPAASq(R,X). Moreover, from Lemma 3.2, we infer that
Γx ∈ WPAA(R,X), that is, Γ maps WPAA(R,X) into itself. Next, we prove
that the operator Γ has a unique fixed point in WPAA(R,X). Indeed, for each
t ∈ R,x, y ∈WPAA(R,X), we have

‖Γx(t)− Γy(t)‖ =
∥∥∫ t

−∞
S(t− s)[f(s, x(s))− f(s, y(s))]ds

∥∥
≤
∫ t

−∞
Me−ω(t−s)Lf (s)‖x(s)− y(s)‖ds

≤
∞∑
n=1

Me−ω(n−1)

∫ t−n+1

t−n
Lf (s)‖x− y‖∞ds

≤
∞∑
n=1

Me−ω(n−1)
(∫ t−n+1

t−n
‖Lf (s)‖rds

)1/r

‖x− y‖∞

≤ M

1− e−ω
‖Lf‖Sr‖x− y‖∞.

Hence
‖Γx− Γy‖∞ ≤

M

1− e−ω
‖Lf‖Sr‖x− y‖∞.

Since M
1−e−ω ‖Lf‖Sr < 1, Γ has a unique fixed point x ∈ WPAA(R,X). The proof

is complete. �

In the following, we investigate the existence of weighted pseudo almost automor-
phic solutions to the problem (1.1) when f is not necessarily Lipschitz continuous.
For that, we require the following assumptions:

(H6) f ∈WPAASp(R×X,X) and f(t, x) is uniformly continuous in any bounded
subset M ⊆ X uniformly for t ∈ R and for every bounded subset M ⊆ X,
{f(·, x) : x ∈M} is bounded in WPAASp(X).

(H7) There exists a continuous nondecreasing function W : [0,∞)→ (0,∞) such
that

‖f(t, x)‖ ≤W (‖x‖) for all t ∈ R and x ∈ R.

Remark 3.6. Let f(t, x) = sin(t) + sin(πt) + sin
(
x
φ(t)

)
, where φ(t) = max{1, |t|},

t ∈ R. According to [3, Remark 3.4], this defined function also satisfies the condition
(H6) with ρ(t) = 1 + t2.

Remark 3.7. For condition (H7), an interesting result (see Corollary 3.9) is given
for the perturbation f satisfying the Hölder type condition.
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Theorem 3.8. Assume that β > 0, α 6= 0 with α + β > 0, and conditions (A1)–
(A2) in Lemma 2.23 hold. Let f : R×X→ X be a function satisfying assumptions
(H6), (H7), and the following additional conditions:

(i) For each C ≥ 0, the function t →
∫ t
−∞Me−ω(t−s)W (Ch(s))ds belongs to

BC(R), where h(·) is defined in (2.4). Let

β(C) = ‖
∫ t

−∞
Me−ω(t−s)W (Ch(s))ds‖h.

(ii) For each ε > 0, there exists δ > 0 such that for each u, v ∈ Ch(X), ‖u −
v‖h ≤ δ implies that∫ t

−∞
Me−ω(t−s)‖f(s, x(s))− f(s, y(s))‖ds ≤ ε

for all t ∈ R.
(iii) lim infξ→∞ ξ/β(ξ) > 1.
(iv) For all a, b ∈ R, a < b, and Λ > 0, the set {f(s, x) : a ≤ s ≤ b, x ∈

Ch(X), ‖x‖h ≤ Λ} is relatively compact in X.
Then (1.1) admits at least one weighted pseudo almost autorphic mild solution on
R.

Proof. We define the nonlinear operator Γ : Ch(X)→ Ch(X) by

(Γx)(t) :=
∫ t

−∞
S(t− s)f(s, x(s))ds, t ∈ R.

We will show that Γ has a fixed point in WPAA(R,X). For the sake of convenience,
we divide the proof into several steps.

(I) For x ∈ Ch(X), we have that

‖(Γx)(t)‖ ≤
∫ t

−∞
Me−ω(t−s)W (‖x(s)‖)ds ≤

∫ t

−∞
Me−ω(t−s)W (‖x‖hh(s))ds.

It follows from condition (i) that Γ is well defined.
(II) The operator Γ is continuous. In fact, for any ε > 0, we take δ > 0 involved

in condition (ii). If x, y ∈ Ch(X) and ‖x− y‖h ≤ δ, then

‖(Γx)(t)− (Γy)(t)‖ ≤
∫ t

−∞
Me−ω(t−s)‖f(s, x(s))− f(s, y(s))‖ds ≤ ε,

which shows the assertion.
(III) The operator Γ is completely continuous. Set BΛ(X) for the closed ball

with center at 0 and radius Λ in the space X. Let V = Γ(BΛ(Ch(X))) and v =
Γ(x) for x ∈ BΛ(Ch(X)). First, we will prove that V (t) is a relatively compact
subset of X for each t ∈ R. It follows form condition (i) that the function s →
Me−ωsW (Λh(t− s)) is integrable on [0,∞). Hence, for ε > 0,we can choose a ≥ 0
such that

∫∞
a
Me−ωsW (Λh(t− s)ds) ≤ ε. Since

v(t) =
∫ a

0

S(s)f(t− s, x(t− s))ds+
∫ ∞
a

S(s)f(t− s, x(t− s))ds

and

‖
∫ ∞
a

S(s)f(t− s, x(t− s))ds‖ ≤
∫ ∞
a

Me−ωsW (Λh(t− s)ds) ≤ ε,
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we obtain that v(t) ∈ ac0(N ) + Bε(X), where c0(N ) denotes the convex hull of N
and N := {S(s)f(ξ, x) : 0 ≤ s ≤ a, t − a ≤ ξ ≤ t, ‖x‖h ≤ Λ}. Just as the proofs
in [4, Theorem 3.5(ii)] and [16, Theorem 4.9(iii)], in view of the strong continuity
of S(·) and property (iv) of f , we infer that N is a relatively compact set, and
V (t) ⊆ ac0(N ) +Bε(X), which establishes our assertion.

Second, we show that the set V is equicontinuous. In fact, we can decompose

v(t+ s)− v(t) ≤
∫ s

0

S(σ)f(t+ s− σ, x(t+ s− σ))dσ

+
∫ a

0

[S(σ + s)− S(σ)]f(t− σ, x(t− σ))dσ

+
∫ ∞
a

[S(σ + s)− S(σ)]f(t− σ, x(t− σ))dσ.

For each ε > 0, we can choose a > 0 and δ1 > 0 such that

‖
∫ s

0

S(σ)f(t+ s− σ, x(t+ s− σ))dσ +
∫ ∞
a

[S(σ + s)− S(σ)]f(t− σ, x(t− σ))dσ‖

≤
∫ s

0

Me−ωσW (Λh(t+ s− σ))dσ +
∫ ∞
a

(Me−ω(σ+s) +Me−ωσ)W (Λh(t− σ))dσ

≤ ε

2
for s ≤ δ1. Moreover, since {f(t − σ, x(t − σ)) : 0 ≤ σ ≤ a, x ∈ BΛ(Ch(X))} is a
relatively compact set and S(·) is strongly continuous, we can choose δ2 > 0 such
that ‖[S(σ+s)−S(σ)]f(t−σ, x(t−σ))‖ ≤ ε

2a for s ≤ δ2. Combining these estimates,
we get ‖v(t+ s)− v(t)‖ ≤ ε for s small enough and independent of x ∈ BΛ(Ch(X)).

Finally, applying condition (i) in Theorem 3.8, we can see that

‖v(t)‖
h(t)

≤ 1
h(t)

∫ t

−∞
Me−ω(t−s)W (Λh(s))ds→ 0, |t| → ∞,

and this convergence is independent of x ∈ BΛ(Ch(X)). Hence, by Lemma 2.25, V
is a relatively compact set in Ch(X).

(IV) The set {xλ : xλ = λΓ(xλ), λ ∈ (0, 1)} is bounded. Let us show assume that
xλ(·) is a solution of equation xλ = λΓ(xλ) for some 0 < λ < 1. We can estimate

‖xλ(t)‖ = λ‖
∫ t

−∞
S(t− s)f(s, xλ(s))ds‖

≤ λ
∫ t

−∞
Me−ω(t−s)W (‖xλ‖hh(s))ds

≤ β(‖xλ‖h)h(t).

Hence, we obtain
‖xλ‖h

β(‖xλ‖h)
≤ 1

and combining with condition (iii), we conclude that the set {xλ : xλ = λΓ(xλ), λ ∈
(0, 1)} is bounded.

(V) It follows from Lemma 2.16, (H4), (H6) and Lemma 2.21 that the function
t→ f(t, x(t)) belongs to WPAASp(R,X), whenever x ∈WPAA(R,X). Moreover,
from Lemma 3.2 we infer that Γ(WPAA(R,X)) ⊆WPAA(R,X) and nothing that
WPAA(R,X) is a closed subspace of Ch(X), consequently, we can consider Γ :
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WPAA(R,X) → WPAA(R,X). Using properties (I)–(III), we deduce that this
map is completely continuous. Applying Lemma 2.26, we infer that Γ has a fixed
point x ∈WPAA(R,X), which completes the proof. �

Taking into account Lemma 2.21 and Theorem 3.8, and using the same argument
as in [16, Corollary 4.10], we can obtain the following result.

Corollary 3.9. Let β > 0, α 6= 0 with α + β > 0 and conditions (A1)–(A2) in
Lemma 2.23 hold. Assume that f : R × X → X satisfies assumption (H6) and the
Hölder type condition

‖f(t, x)− f(t, y)‖ ≤ ζ‖x− y‖γ , 0 < γ < 1,

for all t ∈ R and x, y ∈ X, where ζ is a positive constant. Moreover, assume the
following conditions:

(a1) f(t, 0) = η.
(a2) M supt∈R

∫ t
−∞ e−ω(t−s)h(s)γds = ϑ <∞.

(a3) For all a, b ∈ R, a < b, and r > 0, the set {f(s, x) : a ≤ s ≤ b, x ∈
X, ‖x‖h ≤ r} is relatively compact in X.

Then (1.1) has a weighted pseudo almost automorphic mild solution on R.

Example 3.10. Consider the problem

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) +

∫ t

−∞
e−(t−s) ∂

2u

∂x2
(s, x)ds+ f(t, u(t, x)), t ∈ R,

u(0, t) = u(π, t) = 0,
(3.1)

where f ∈ L2[0, π]→ L2[0, π] is given by

f(t, u(t, x)) = u(t, x) sin
1

2 + cos t+ cos
√

2t
+ e−|t| sinu(t, x).

We set X := L2[0, π] and define A := ∂2u
∂x2 , with domain of the operator A as

D(A) := {u ∈ L2[0, π] : u(0) = u(π) = 0, u′′ ∈ L2[0, π]}.
From the computation of [18, Example 4.10], we can see the operator A satisfies
condition (A2) in Lemma 2.23 and generates an immediately norm continuous and
compact C0-semigroup T (t) on X. Thus (3.1) can be converted into the abstract
system (1.1) with α = β = 1.

Note that the function f defined above is an Sp-weighted almost automorphic
function with weight ρ(t) = |t| for t ∈ R, and

‖f(t, u)− f(t, v)‖ ≤ 2‖u− v‖.
The following corollary is a consequence of Theorem 3.3.

Corollary 3.11. Problem (3.1) admits a unique weighted pseudo almost automor-
phic solution with weight ρ(t) = |t| provided that M

ω < 1/2.
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tiago de Compostela, 15782, Santiago de Compostela, Spain.

Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box

80203, Jeddah 21589, Saudi Arabia
E-mail address: juanjose.nieto.roig@usc.es


	1. Introduction
	2. Preliminaries
	3. Main results
	Acknowledgements

	References

