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NECESSARY AND SUFFICIENT CONDITIONS FOR THE
EXISTENCE OF PERIODIC SOLUTION TO SINGULAR

PROBLEMS WITH IMPULSES

JUNTAO SUN, JIFENG CHU

Abstract. In this article we give a necessary sufficient conditions for the

existence of periodic solutions to impulsive periodic solution for a singular

differential equation. The proof is based on the variational method.

1. Introduction

In this article we discuss the T -periodic solution for the second-order singular
problem with impulsive effects

u′′(t)− 1
uα(t)

= e(t), a.e. t ∈ (0, T ),

∆u′(tj) = bj , j = 1, 2, . . . , p− 1,
(1.1)

where α ≥ 1, e ∈ L1([0, T ],R) is T -periodic, ∆u′(tj) = u′(t+j )−u′(t−j ) with u′(t±j ) =
limt→t±j

u′(t); tj , j = 1, 2, . . . , p− 1, are the instants where the impulses occur and
0 = t0 < t1 < t2 < · · · < tp−1 < tp = T , tj+p = tj + T ; and bj (j = 1, 2, . . . , p− 1)
are constants.

Impulsive effects occur widely in many evolution processes in which their states
are changed abruptly at certain moments of time. In the past few decades, im-
pulsive differential equations have been extensively studied by many researchers
[6, 11, 13, 14, 15, 16, 17]. In particular, In 2008, Tian and Ge [17] studied the exis-
tence of solutions for impulsive differential equations by using a variational method.
Later, Nieto and O’Regan [11] further developed the variational framework for im-
pulsive problems and established existence results for a class of impulsive differen-
tial equations with Dirichlet boundary conditions. From then on, the variational
method has been a powerful tool in the study of impulsive differential equations.
On the other hand, singular differential equations with different kinds of boundary
conditions have also been investigated widely in the literature by using either topo-
logical methods or variational methods; see [1, 2, 3, 4, 5, 7, 8, 9] and the references
therein.
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In 1987, Lazer and Solimini [10] considered a the second order singular problem

u′′(t)− 1
uα(t)

= e(t), t ∈ (0, T ). (1.2)

By using the method of upper and lower solutions, they obtained a famous sufficient
and necessary condition on positive T -periodic solution for Problem (1.2) as follows

Theorem 1.1 ([10]). Assume that e ∈ L1([0, T ],R) is T -periodic. Then Problem
(1.2) has a positive T -periodic weak solution if and only if

∫ T
0
e(t)dt < 0.

Motivated by the above fact, in the present paper we shall consider Problem
(1.2) with impulsive effects, i.e., Problem (1.1), and also obtain a sufficient and
necessary condition on T -periodic solution. It is worth emphasizing that the method
used by us is a variational method, which is different from that in Theorem 1.1.
Furthermore, we also point out the dynamical differences between singular problems
and singular problems with impulses.

Our results are presented as follows.

Theorem 1.2. Assume that e ∈ L1([0, T ],R) is T -periodic. Then Problem (1.1)
has a positive T -periodic weak solution u ∈ H1

T if and only if
∑p−1
j=1 bj +

∫ T
0
e(t)dt <

0.

Remark 1.3. From Theorem 1.2 we can see that if
∫ T

0
e(t)dt ≥ 0, but

∑p−1
j=1 bj +∫ T

0
e(t)dt < 0, then Problem (1.1) still admits a positive T -periodic solution. This

shows that the existence of positive T -periodic solution for Problem (1.1) depends
on the forced term e and impulsive functions bj together, not single one.

2. Preliminaries

Set

H1
T =

{
u : R→ R|u is absolutely continuous, u′ ∈ L2((0, T ),R)

and u(t) = u(t+ T ) for t ∈ R
}

with the inner product

(u, v) =
∫ T

0

u(t)v(t)dt+
∫ T

0

u′(t)v′(t)dt, ∀u, v ∈ H1
T .

The corresponding norm is defined by

‖u‖H1
T

=
(∫ T

0

|u(t)|2dt+
∫ T

0

|u′(t)|2dt
)1/2

, ∀u ∈ H1
T .

Then H1
T is a Banach space (in fact it is a Hilbert space).

To study Problem (1.1), for any λ ∈ (0, 1) we consider the following modified
problem

u′′(t) + fλ(u(t)) = e(t), a.e. t ∈ (0, T ),

∆u′(tj) = bj , j = 1, 2, . . . , p− 1,
(2.1)

where fλ : R→ R is defined by

fλ(s) =

{
− 1
sα , s ≥ λ,
− 1
λα , s < λ.

Now we introduce the following concept of a weak solution for Problem (2.1).



EJDE-2014/94 NECESSARY AND SUFFICIENT CONDITIONS 3

Definition 2.1. We say that a function u ∈ H1
T is a weak solution of Problem

(2.1) if∫ T

0

u′(t)v′(t)dt+
p−1∑
j=1

bjv(tj)−
∫ T

0

fλ(u(t))v(t)dt+
∫ T

0

e(t)v(t)dt = 0

holds for any v ∈ H1
T .

Let Fλ ∈ C1(R,R) be defined by

Fλ(s) =
∫ s

1

fλ(t)dt

and consider the functional Φλ : H1
T → R defined by

Φλ(u) :=
1
2

∫ T

0

|u′(t)|2dt+
p−1∑
j=1

bju(tj)−
∫ T

0

Fλ(u(t))dt+
∫ T

0

e(t)u(t)dt. (2.2)

Clearly, Φλ is well defined on H1
T , continuously Gâteaux differentiable functional

whose derivative is

Φ′λ(u)v =
∫ T

0

u′(t)v′(t)dt+
p−1∑
j=1

bjv(tj)−
∫ T

0

fλ(u(t))v(t)dt+
∫ T

0

e(t)v(t)dt,

for any v ∈ H1
T . Moreover, it is easy to verify that Φλ is weakly lower semi-

continuous. Furthermore, by the standard discussion, the critical points of Φλ are
the weak solutions of Problem (2.1).

3. Proof of Theorem 1.2

Proof. First we show that if u ∈ H1
T is a positive T -periodic weak solution of

Problem (1.1), then
∑p−1
j=1 bj +

∫ T
0
e(t)dt < 0.

Integrating the first equation of Problem (1.1) from 0 to T , one has∫ T

0

u′′(t)dt−
∫ T

0

1
uα(t)

dt =
∫ T

0

e(t)dt. (3.1)

The first term one the left-hand side satisfies∫ T

0

u′′(t)dt =
p−1∑
j=0

∫ tj+1

tj

u′′(t)dt,

and ∫ tj+1

tj

u′′(t)dt = u′(t−j+1)− u′(t+j ).

Thus, ∫ T

0

u′′(t)dt =
p−1∑
j=0

(u′(t−j+1)− u′(t+j ))

= −
p−1∑
j=1

∆u′(tj) + u′(T )− u′(0)

= −
p−1∑
j=1

bj .

(3.2)



4 J. SUN, J. CHU EJDE-2014/94

By (3.1) and (3.2) we have

0 > −
∫ T

0

1
uα(t)

dt =
p−1∑
j=1

bj +
∫ T

0

e(t)dt.

Now we prove that if
∑p−1
j=1 bj +

∫ T
0
e(t)dt < 0, then Problem (1.1) has a positive

T -periodic weak solution u ∈ H1
T . The proof is based on the mountain pass theorem,

see [12]. We divide it into four steps.
Step 1. Let a sequence {un} in H1

T satisfy Φλ(un) be bounded and Φ′λ(un)→ 0,
i.e., there exist a constant c1 > 0 and a sequence {εn}n∈N ⊂ R+ with εn → 0 as
n→ +∞ such that for all n,∣∣∣ ∫ T

0

[1
2
|u′n(t)|2 − Fλ(un(t)) + e(t)un(t)

]
dt+

p−1∑
j=1

bjun(tj)
∣∣∣ ≤ c1, (3.3)

and for every v ∈ H1
T ,∣∣∣ ∫ T

0

[u′n(t)v′(t))− fλ(un(t))v(t) + e(t)v(t)]dt+
p−1∑
j=1

bjv(tj)
∣∣∣ ≤ εn‖v‖H1

T
. (3.4)

Now we show that {un} is bounded in H1
T . Taking v(t) ≡ −1 in (3.4) one has∣∣∣ ∫ T

0

[fλ(un(t))− e(t)]dt−
p−1∑
j=1

bj

∣∣∣ ≤ εn√T for all n,

which implies

∣∣ ∫ T

0

fλ(un(t))dt
∣∣ ≤ εn√T +

∫ T

0

e(t)dt+
p−1∑
j=1

|bj | := c2.

Note that for any t ∈ [0, T ], fλ(un(t)) < 0. Thus∫ T

0

|fλ(un(t))|dt =
∣∣ ∫ T

0

fλ(un(t))dt
∣∣ ≤ c2.

On the other hand, take, in (3.4), v(t) ≡ wn(t) := un(t) − ūn, where ūn =
1
T

∫ T
0
un(t)dt, by [12, Proposition 1.1] we have

c3‖wn‖H1
T
≥
∫ T

0

[w′n(t)2 − fλ(un(t))wn(t) + e(t)wn(t)]dt+
p−1∑
j=1

bjwn(tj)

≥ ‖w′n‖2L2 − (c2 + ‖e‖L1)‖wn‖L∞ −
p−1∑
j=1

|bj |‖wn‖L∞

= ‖w′n‖2L2 − (c2 + ‖e‖L1 +
p−1∑
j=1

|bj |)‖wn‖L∞

≥ ‖w′n‖2L2 − c4‖wn‖H1
T
,

where c3 and c4 are two positive constants. Thus,

‖w′n‖2L2 ≤ (c3 + c4)‖wn‖H1
T
.
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Consequently, using the Wirtinger inequality, we obtain the existence of a positive
constant c5 such that

‖u′n‖2L2 ≤ c5. (3.5)

Now, suppose that ‖un‖H1
T
→ +∞ as n→ +∞. Since (3.5) holds, we have, passing

to subsequence if necessary, that either

Mn := maxun → +∞ as n→ +∞, or
mn := minun → −∞ as n→ +∞.

(i) Assume that the first possibility occurs. In view to the fact that fλ < 0, one
has∫ T

0

[Fλ(un(t))− e(t)un(t)]dt−
p−1∑
j=1

bjun(tj)

=
∫ T

0

[( ∫ Mn

1

fλ(s)ds−
∫ Mn

un(t)

fλ(s)ds
)
− e(t)un(t)

]
dt−Mn

p−1∑
j=1

bj

−
p−1∑
j=1

bj (un(tj)−Mn)

≥
∫ T

0

Fλ(Mn)dt−
∫ T

0

Mne(t)dt− max
t∈[0,T ]

|Mn − un(t)|
∫ T

0

|e(t)|dt−Mn

p−1∑
j=1

bj

− max
t∈[0,T ]

|Mn − un(t)|
p−1∑
j=1

|bj |

≥ TFλ(Mn)−Mn

(∫ T

0

e(t)dt+
p−1∑
j=1

bj

)
−
(
‖e‖L1 +

p−1∑
j=1

|bj |
)
|Mn −mn|

= TFλ(Mn)−Mn

(∫ T

0

e(t)dt+
p−1∑
j=1

bj

)
−
(
‖e‖L1 +

p−1∑
j=1

|bj |
)∣∣∣ ∫ t̂n

t̄n

u′n(t)dt
∣∣∣

≥ TFλ(Mn)−Mn

(∫ T

0

e(t)dt+
p−1∑
j=1

bj

)
−
(
‖e‖L1 +

p−1∑
j=1

|bj |
)∫ t̂n

t̄n

|u′n(t)|dt,

where un(t̂n) = Mn and un(t̄n) = mn. Thus, using the Hölder inequality, one has

−Mn

(∫ T

0

e(t)dt+
p−1∑
j=1

bj

)
+ TFλ(Mn)

≤
∫ T

0

[Fλ(un(t))− e(t)un(t)]dt−
p−1∑
j=1

bjun(tj) +
√
T
(
‖e‖L1 +

p−1∑
j=1

|bj |
)
‖u′n‖L2 .

(3.6)
If α = 1, then Fλ(Mn) = − lnMn. By (3.6) one has

−Mn

(∫ T

0

e(t)dt+
p−1∑
j=1

bj

)
− T lnMn → +∞ as n→ +∞.
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If α > 1, then Fλ(Mn) = − 1
α−1 ( 1

Mα−1
n
− 1). By (3.6) we obtain

−Mn

(∫ T

0

e(t)dt+
p−1∑
j=1

bj

)
− 1
α− 1

(
1

Mα−1
n

− 1)→ +∞ as n→ +∞.

From (3.3) and (3.5), we see that the right hand side of (3.6) is bounded, which is
a contradiction.

(ii) Assume the second possibility occurs; i.e., mn → −∞ as n → +∞. We
replace Mn by −mn in the preceding arguments, and we also get a contradiction.
So {un} is bounded in H1

T .
Since H1

T is a reflexive Banach space, there exists a subsequence of {un}, denoted
again by {un} for simplicity, and u ∈ H1

T such that un ⇀ u in H1
T ; then, by the

Sobolev embedding theorem, we get un → u in C([0, T ]) and un → u in L2([0, T ]).
So ∫ T

0

(fλ(un(t))− fλ(u(t)))(un(t)− u(t))dt→ 0,

p−1∑
j=1

bj(un(tj)− u(tj))→ 0,

∫ T

0

e(t)(un(t)− u(t))dt→ 0,

(Φ′λ(un)− Φ′λ(u))(un − u)→ 0, as n→∞.

(3.7)

By (3.6), (3.7) and the fact that un → u in L2([0, T ]), we have ‖un − u‖H1
T
→ 0

as n → ∞. That is, {un} strongly converges to u in H1
T , which means that the

Palais-Smale condition holds for Φλ.
Step 2. Let

Ω =
{
u ∈ H1

T | min
t∈[0,T ]

u(t) > 1
}
,

and

∂Ω = {u ∈ H1
T |u(t) ≥ 1 for all t ∈ (0, T ), ∃tu ∈ (0, T ) : u(tu) = 1}.

We show that there exists d > 0 such that infu∈∂Ω Φλ(u) ≥ −d whenever λ ∈ (0, 1).
For any u ∈ ∂Ω, there exists some tu ∈ (0, T ) such that mint∈[0,T ] u(t) = u(tu) =

1. By (2.2), and extending the functions by T -periodicity, we have

Φλ(u) =
∫ tu+T

tu

[1
2
|u′(t)|2 − Fλ(u(t)) + e(t)u(t)

]
dt+

p−1∑
j=1

bju(tj)

≥ 1
2

∫ tu+T

tu

|u′(t)|2dt+
∫ tu+T

tu

e(t)(u(t)− 1)dt+
∫ tu+T

tu

e(t)dt

+
p−1∑
j=1

bj(u(tj)− 1) +
p−1∑
j=1

bj

≥ 1
2
‖u′‖2L2 −

(
‖e‖L1 +

p−1∑
j=1

|bj |
)

max
t∈[0,T ]

(u(t)− 1)− ‖e‖L1 +
p−1∑
j=1

bj

=
1
2
‖u′‖2L2 −

(
‖e‖L1 +

p−1∑
j=1

|bj |
)∫ ťu

tu

u′(t)dt− ‖e‖L1 +
p−1∑
j=1

bj



EJDE-2014/94 NECESSARY AND SUFFICIENT CONDITIONS 7

≥ 1
2
‖u′‖2L2 −

(
‖e‖L1 +

p−1∑
j=1

|bj |
)∫ tu+T

tu

|u′(t)|dt− ‖e‖L1 +
p−1∑
j=1

bj ,

where ťu ∈ [0, T ] and maxt∈[0,T ] u(t) = u(ťu). Applying the Hölder inequality, we
get

Φλ(u) ≥ 1
2
‖u′‖2L2 −

√
T
(
‖e‖L1 +

p−1∑
j=1

|bj |
)
‖u′‖L2 − ‖e‖L1 +

p−1∑
j=1

bj .

The above inequality shows that

Φλ(u)→ +∞ as‖u′‖L2 → +∞.

For any u ∈ ∂Ω, it is easy to verify the fact that ‖u‖H1
T
→ +∞ is equivalent

to ‖u′‖L2 → +∞. Indeed, when ‖u′‖L2 → +∞, it is clear that ‖u‖H1
T
→ +∞.

When ‖u‖H1
T
→ +∞. Assume that ‖u′‖L2 is bounded, then ‖u‖L2 → +∞. Since

mint∈[0,T ] u(t) = 1, we have

u(t)− 1 =
∫ t

tu

u′(s)ds ≤
∫ T

0

|u′(s)|ds ≤
√
T
(∫ T

0

|u′(t)|2dt
)1/2

.

Therefore, u is bounded in L2(0, T ), which is a contradiction. Hence

Φλ(u)→ +∞ as ‖u‖H1
T
→ +∞, ∀u ∈ ∂Ω,

which shows that Φλ is coercive. Thus it has a minimizing sequence. The weak
lower semi-continuity of Φλ yields

inf
u∈∂Ω

Φλ(u) > −∞.

It follows that there exists d > 0 such that infu∈∂Ω Φλ(u) > −d for all λ ∈ (0, 1).
Step 3. We prove that there exists λ0 ∈ (0, 1) with the property that for every

λ ∈ (0, λ0), any solution u of Problem (2.1) satisfying Φλ(u) > −d is such that
minu∈[0,T ] u(t) ≥ λ0, and hence u is a solution of Problem (1.1).

Assume on the contrary that there are sequences {λn}n∈N and {un}n∈N such
that

(i) λn ≤ 1
n ;

(ii) un is a solution of Problem (2.2) with λ = λn;
(iii) Φλn(un) ≥ −d;
(iv) mint∈[0,T ] un(t) < 1

n .

Since fλn < 0 and
∫ T

0
[fλn(un(t))− e(t)]dt = 0, one has

‖fλn(un(·))‖L1 ≤ c7, for some constant c7 > 0.

Hence
‖u′n‖L∞ ≤ c8, for some constant c8 > 0. (3.8)

From Φλn(un) ≥ −d it follows that there must exist two constants l1 and l2, with
0 < l1 < l2 such that

max{un(t); t ∈ [0, T ]} ⊂ [l1, l2].
If not, un would tend uniformly to 0 or +∞. In both cases, by (3.8), we have

Φλn(un)→ −∞ as n→ +∞,

which contradicts Φλn(un) ≥ −d.
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Let τ1
n, τ

2
n be such that, for n large enough

un(τ1
n) =

1
n
< l1 = un(τ2

n).

Multiplying the differential equation in (2.1) by u′n and integrating it on [τ1
n, τ

2
n],

or on [τ2
n, τ

1
n], we get

Ψ :=
∫ τ2

n

τ1
n

u′′n(t)u′n(t)dt+
∫ τ2

n

τ1
n

fλn(un(t))u′n(t)dt =
∫ τ2

n

τ1
n

e(t)u′n(t)dt. (3.9)

It is easy to verify that

Ψ = Ψ1 +
1
2

[u′2n (τ2
n)− u′2n (τ1

n)],

where

Ψ1 =
∫ τ2

n

τ1
n

fλn(un(t))u′n(t)dt.

From (3.5) and (3.9) it follows that Ψ is bounded, and consequently Ψ1 is bounded.
On the other hand, it is easy to see that

fλn(un(t))u′n(t) =
d

dt
[Fλn(un(t))].

Thus, we have

Ψ1 = Fλn(l1)− Fλn
( 1
n

)
.

From the fact that Fλn
(

1
n

)
→ +∞ as n → +∞, we obtain Ψ1 → −∞, i.e., Ψ1 is

unbounded. This is a contradiction.
Step 4. Φ has a mountain-pass geometry for λ ≤ λ0. Fix λ ∈ (0, λ0], one has

Fλ(0) =
∫ 0

1

fλ(s)ds = −
∫ 1

0

fλ(s)ds

= −
∫ λ

0

fλ(s)ds−
∫ 1

λ

fλ(s)ds

=
1

λα−1
−
∫ 1

λ

fλ(s)ds,

(3.10)

which implies that

Fλ(0) > −
∫ 1

λ

fλ(s)ds =
∫ λ

1

fλ(s)ds = Fλ(λ).

Thus we have

Φλ(0) = −TFλ(0) < −TFλ(λ) =

{
T lnλ, if α = 1,
− T
α−1

(
1

λα−1 − 1
)
, if α > 1.

(3.11)

We choose λ ∈ (0, λ0]∩ (0, e−d)∩ (0, [ T
T+d(α−1) ]1/(α−1)), then it follows from (3.11)

that Φλ(0) < −d.
Also, we can choose a constant R > 1 enough large such that

−
( p−1∑
j=1

bj +
∫ T

0

e(t)dt
)
R− T

α− 1
(
1− 1

Rα−1

)
> d,
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and

−
( p−1∑
j=1

bj +
∫ T

0

e(t)dt
)
R− T lnR > d.

Thus, R ∈ H1
T and

Φλ(R) = R

p−1∑
j=1

bj − TFλ(R) +R

∫ T

0

e(t)dt

≤


∑p−1
j=1 bjR+ T lnR+R

∫ T
0
e(t)dt, if α = 1,∑p−1

j=1 bjR+ T
α−1

(
1− 1

Rα−1

)
+R

∫ T
0
e(t)dt, if α > 1.

≤


(∑p−1

j=1 bj +
∫ T

0
e(t)dt

)
R+ T lnR, if α = 1,(∑p−1

j=1 bj +
∫ T

0
e(t)dt

)
R+ T

α−1

(
1− 1

Rα−1

)
, if α > 1.

< −d.
Since Ω is a neighborhood of R, 0 6∈ Ω and

max{Φλ(0),Φλ(R)} < inf
x∈∂Ω

Φλ(u),

Step 1 and Step 2 imply that Φλ has a critical point uλ such that

Φλ(uλ) = inf
h∈Γ

max
s∈[0,1]

Φλ(h(s)) ≥ inf
x∈∂Ω

Φλ(u),

where
Γ = {h ∈ C([0, 1], H1

T ) : h(0) = 0, h(1) = R}.
Since infu∈∂Ω Φλ(uλ) ≥ −d, it follows from Step 3 that uλ is a positive solution of
Problem (1.1). The proof of the main result is complete. �
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