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BIFURCATION OF LIMIT CYCLES FROM QUARTIC
ISOCHRONOUS SYSTEMS

LINPING PENG, ZHAOSHENG FENG

Abstract. This article concerns the bifurcation of limit cycles for a quartic
system with an isochronous center. By using the averaging theory, it shows

that under any small quartic homogeneous perturbations, at most two limit

cycles bifurcate from the period annulus of the considered system, and this
upper bound can be reached. In addition, we study a family of perturbed

isochronous systems and prove that there are at most three limit cycles bifur-

cating from the period annulus of the unperturbed one, and the upper bound
is sharp.

1. Introduction

There has been a longstanding problem, called the Hilbert 16th problem, whose
second part asks for the maximum H(n) of the number of limit cycles and the
relative positions for all planar polynomial differential systems of degree n. One
of the most remarkable achievements, Ecalle-Ilyashenko Theorem, claims that the
number of limit cycles is finite for any individual vector field [7, 21, 12, 22]. However,
the existence of a uniform upper bound for the number even for quadratic vector
fields is still an open problem.

To attack the Hilbert 16th problem, many researchers investigate the number
of limit cycles of various planar polynomial differential systems. Among them, the
problem of the number of limit cycles by perturbing the periodic orbits of a center
has been extensively studied in the literatures [8, 14, 15, 20, 24, 25, 26] and the
references therein. In general, some useful methods have been proposed based on
the Poincaré map [6, 11, 23], the Poincaré-Pontryagin-Melnikov integrals or the
Abelian integrals [1, 2, 3, 5, 10, 13, 30, 31], the inverse integrating factor [16, 17,
18, 29], and the averaging method which is equivalent to the Abelian integrals in
the plane [4, 9, 19, 24, 25, 26].

Although in the plane the methods based on the Abelian integrals and the av-
eraging theory are equivalent, each has its own advantages. For example, when
the associated Abelian integrals are complicated or we need to study the periodic
orbits of the non-autonomous differential systems, the averaging method displays
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more flexibility. Roughly speaking, the averaging method gives a quantitative rela-
tion between the solutions of a non-autonomous periodic differential system and the
solutions of its averaged differential system, which is autonomous. In particular,
for the averaging method of the first order, the number of hyperbolic equilibrium
points of the averaged differential system can give a lower bound of the maximal
number of limit cycles of the non-autonomous periodic differential system [27, 28].

As mentioned above, by using the averaging method, the problem on the number
of limit cycles of the non-autonomous periodic differential systems is equivalent to
the exploration of the number of hyperbolic equilibrium points of the averaged
differential systems. Hence, the averaging theory has played a crucial role in the
study of limit cycles of differential systems. Now there are quite many important
results on the number of limit cycles of the polynomial differential systems by the
averaging method, such as Llibre [26], Buică and Llibre [4, 5], Gine and Llibre
[19] and so on. It seems that among these results, more are focused on differential
systems of lower degree. As far as we know, for the integrable systems of higher
degree, in some cases the first integrals may have complicated expressions so that
it is out of the reach to study the bifurcation of limit cycles of these systems under
small perturbations.

In this article, we consider the quartic system

ẋ = −y + x3y + xy3,

ẏ = x+ x2y2 + y4,
(1.1)

which has

H(x, y) =
1

3(x2 + y2)3/2
− x

(x2 + y2)1/2
= c

as its first integral with the integrating factor 1/(x2 + y2)5/2 and the unique finite
singularity (0, 0) as its isochronous center. The period annulus, denoted by

{(x, y)|H(x, y) = c, c ∈ (1,+∞)}

starts at the center (0, 0) and terminates with the separatrix passing the infinite
degenerate singularity on the equator. The phase portrait of system (1.1) is shown
in Fig.1.

By using the averaging method, we study the bifurcation of limit cycles from
system (1.1) under any small perturbations, and prove the following main results.

Theorem 1.1. For any sufficiently small parameter |ε|, and any real constants aij
and bij (i, j = 0, 1, 2, 3, 4), the following quartic perturbation of system (1.1),

ẋ = −y + x3y + xy3 + ε
∑
i+j=4

aijx
iyj ,

ẏ = x+ x2y2 + y4 + ε
∑
i+j=4

bijx
iyj ,

(1.2)

has at most two limit cycles bifurcating from the period annulus around the center
(0, 0) of the unperturbed one, and this upper bound is sharp.
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Figure 1. The phase portrait of system (1.1) in the Poincaré disk.

Theorem 1.2. For the family of quartic perturbations

ẋ = −y + x3y + xy3 + ε(a10x+ a01y + a11xy + a21x
2y + a03y

3

+ a40x
4 + a31x

3y + a22x
2y2 + a13xy

3 + a04y
4),

ẏ = x+ x2y2 + y4 + ε(b10x+ b01y + b20x
2 + b02y

2 + b30x
3 + b12xy

2

+ b40x
4 + b31x

3y + b22x
2y2 + b13xy

3 + b04y
4),

(1.3)

where |ε| is sufficiently small, ai,j and bi,j (i, j = 0, 1, 2, 3, 4) are any real constants.
Then there are at most three limit cycles bifurcating from the period annulus sur-
rounding the center (0, 0) of the unperturbed system, and this upper bound is sharp.

The rest of this paper is organized as follows. In Section 2, we give an intro-
duction on the averaging theory, including some technical lemmas and methods
employed in the averaging theory. Section 3 is dedicated to the proof of Theorem
1.1 by computing the averaged equations corresponding to the equivalent system
of system (1.2) and exploring the number of its hyperbolic equilibriums. In Section
4, after making a transformation to system (1.3), theorem 1.2 is proven through
analyzing an equivalent system and a corresponding averaged system. In addition,
some examples are illustrated to verify the obtained results.

2. Preliminary results

In this section, we introduce some preliminary results on the averaging theory
that will be used in our quartic polynomial systems.

The following lemma provides a first order approximation for the periodic solu-
tion of a periodic differential equation. For the proof, we refer the reader to [27,
Theorem 2.6.1] and [28, Theorems 11.5 and 11.6].
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Lemma 2.1. Consider the two initial value problems

ẋ = εf(t, x) + ε2h(t, x, ε), x(0) = x0, (2.1)

and
ẏ = εf0(y), y(0) = x0, (2.2)

where x, y, x0 ∈ D, here D is an open subset of R, t ∈ [0,+∞), ε ∈ (0, ε0], f and h
are periodic with period T in t, and

f0(y) =
1
T

∫ T

0

f(t, y)dt. (2.3)

We suppose that
(1) f , ∂f/∂x, ∂2f/∂x2 and ∂h/∂x are continuous and bounded by a constant

independent on ε in [0,+∞)×D and ε ∈ (0, ε0];
(2) T is independent on ε; and
(3) y(t) belongs to D on the time-scale 1/ε.

Then the following statements hold.
(a) On the time-scale 1/ε, we have that

x(t)− y(t) = O(ε), as ε→ 0.

(b) If p is an equilibrium point of the averaged system (2.2) such that

(df0/dy)(p) 6= 0, (2.4)

then there exists a T -periodic solution φ(t, ε) of equation (2.1) which is
close to p such that φ(t, ε)→ p as ε→ 0.

(c) If (2.4) is negative, then the corresponding periodic solution φ(t, ε) in the
plane (t, x) is asymptotically stable for any sufficiently small |ε|. If (2.4)
is positive, then it is unstable.

Let us consider another integrable system of the form

ẋ = P (x, y),

ẏ = Q(x, y),
(2.5)

with a first integral H and a continuous family of ovals

{γh} ⊂ {(x, y)|H(x, y) = h, h1 < h < h2}.

We consider a perturbed system:

ẋ = P (x, y) + εp(x, y),

ẏ = Q(x, y) + εq(x, y).
(2.6)

To study the number of limit cycles for any sufficiently small |ε| by using the
above averaging theory, we need to transform system (2.6) to the canonical form
in Lemma 2.1. The following lemma [4] provides us a useful transformation.

Lemma 2.2. For system (2.5), assume xQ(x, y) − yP (x, y) 6= 0 for all (x, y) in
the period annulus formed by the ovals γh. Let

ρ : (
√
h1,
√
h2)× [0, 2π)→ [0,+∞)

be a continuous function such that

H(ρ(R,ϕ) cosϕ, ρ(R,ϕ) sinϕ) = R2,
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for all R ∈ (
√
h1,
√
h2) and ϕ ∈ [0, 2π). Then the differential equation which

describes the dependence between the square root of energy, R =
√
h, and the angle

ϕ for system (2.6) is

dR

dϕ
= ε

µ(x2 + y2)(Qp− Pq)
2R(Qx− Py)

(
1− ε qx− py

Qx− Py

)
+O(ε3), (2.7)

where x = ρ(R,ϕ) cosϕ and y = ρ(R,ϕ) sinϕ.

The following lemma presents the version of the formula of the first order Mel-
nikov integral associated with system (2.6) in the polar coordinates [4].

Lemma 2.3. Under the conditions of Lemma 2.2, we define

d(R, ε) =
∫ 2π

0

[
ε
µ(x2 + y2)(Qp− Pq)

2R(Qx− Py)

(
1− ε qx− py

Qx− Py

)
+O(ε3)

]
dϕ,

M1(R) =
∫ 2π

0

µ(x2 + y2)(Qp− Pq)
2R(Qx− Py)

dϕ,

(2.8)

for system (2.6), where µ = µ(x, y) is the integrating factor of system (2.5) corre-
sponding to the first integral H, and x = ρ cosϕ and y = ρ sinϕ. Then d(R, ε) and
M1(R) expressed by (2.8) are the displacement function and the first order Melnikov
integral of system (2.6), respectively.

Based on Lemmas 2.1, 2.2 and 2.3, we can obtain

Corollary 2.4. If d0(R) represents the averaged function of the first approximation
in ε of the right side of system (2.7), then the following relation holds,

2πd0(R) = M1(R),

where M1(R) is defined by (2.8).

Corollary 2.4 provides a relation between the averaged function and the first
order Melnikov integral associated with the same differential system, which enables
us to explore the maximal number of limit cycles of system (2.6) bifurcating from
the period annulus of system (2.5) via the averaging method.

3. Proof of Theorem 1.1

For

H(x, y) =
1

3(x2 + y2)3/2
− x

(x2 + y2)1/2
,

we choose the function

ρ(R,ϕ) =
1

(R2 + 3 cosϕ)1/3
(3.1)

such that H(ρ cosϕ, ρ sinϕ) = R2/3. Let

x = ρ(R,ϕ) cosϕ,

y = ρ(R,ϕ) sinϕ,
(3.2)
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for ϕ ∈ [0, 2π) and R >
√

3. By using Lemma 2.2, we can transform system (1.2)
as

dR

dϕ
=
(
ε

3(Qp− Pq)
2R(x2 + y2)5/2

− ε2 3(Qp− Pq)(qx− py)
2R(x2 + y2)7/2

)∣∣∣
x=ρ(R,ϕ) cosϕ,y=ρ(R,ϕ) sinϕ

+O(ε3),
(3.3)

where

Qp− Pq = −b40x7y + (a40 − b31)x6y2 + (a31 − b40 − b22)x5y3

+ (a40 + a22 − b31 − b13)x4y4 + (a31 + a13 − b22 − b04)x3y5

+ (a22 + a04 − b13)x2y6 + (a13 − b04)xy7 + a04y
8

+ a40x
5 + (a31 + b40)x4y + (a22 + b31)x3y2

+ (a13 + b22)x2y3 + (a04 + b13)xy4 + b04y
5,

qx− py = b40x
4 + (b31 − a40)x4y + (b22 − a31)x3y2 + (b13 − a22)x2y3

+ (b04 − a13)xy4 − a04y
5.

The averaged equation corresponding to system (3.3) is

Ṙ = εf0(R), (3.4)

where

f0(R) =
1

2π

∫ 2π

0

( 3(Qp− Pq)
2R(x2 + y2)5/2

)∣∣∣
x=ρ(R,ϕ) cosϕ,y=ρ(R,ϕ) sinϕ

dϕ

=
1

4πR

[
M1

∫ 2π

0

cos6 ϕ
cosϕ+ R2

3

dϕ+M2

∫ 2π

0

cos4 ϕ
cosϕ+ R2

3

dϕ

+M3

∫ 2π

0

cos2 ϕ
cosϕ+ R2

3

dϕ− (M1 +M2 +M3)
∫ 2π

0

1
cosϕ+ R2

3

dϕ
]
,

(3.5)

and
M1 = −a40 + a22 − a04 + b31 − b13,
M2 = a40 − 2a22 + 3a04 − b31 + 2b13,

M3 = a22 − 3a04 − b13.
(3.6)

Straightforward computations give∫ 2π

0

cos6 ϕ
cosϕ+ R2

3

dϕ = −πR
2

4
− πR6

27
− 2πR10

243
+

2πR12

243
√
R4 − 9

,∫ 2π

0

cos4 ϕ
cosϕ+ R2

3

dϕ = −πR
2

3
− 2πR6

27
+

2πR8

27
√
R4 − 9

,∫ 2π

0

cos2 ϕ
cosϕ+ R2

3

dϕ = −2πR2

3
+

2πR4

3
√
R4 − 9

.
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From these expressions, we obtain

f0(R) =
1

4R

{[
− 2M1

243
R10 − M1 + 2M2

27
R6 − 3M1 + 4M2 + 8M3

12
R2
]

+
[2M1

243
R12 +

2M2

27
R8 +

2M3

3
R4 − 6(M1 +M2 +M3)

] 1√
R4 − 9

}
=

1
4R

{[
− 2M1

243
S5 − M1 + 2M2

27
S3 − 3M1 + 4M2 + 8M3

12
S
]

+
[2M1

243
S6 +

2M2

27
S4 +

2M3

3
S2 − 6(M1 +M2 +M3)

] 1√
S2 − 9

}
,

(3.7)

where S = R2. Let

S =
3(1 + w2)

1− w2
.

For 0 < w < 1, formula (3.7) becomes

f0(R) =
(w − 1)

16R(w + 1)5
g(w)

= −
√

3(1− w)3/2

48(1 + w2)1/2(1 + w)9/2
[N1w

4 +N2w
3 +N3w

2 +N2w +N1],

where

g(w) = N1w
4 +N2w

3 +N3w
2 +N2w +N1,

N1 = 15M1 + 12M2 + 8M3, N2 = 42M1 + 40M2 + 32M3,

N3 = 62M1 + 56M2 + 48M3.

As a result of the symmetry of coefficients of g(w), we know that if w0 6= 0 is one
root of g(w) = 0, so is 1/w0. Hence, the fact that g(w) has at most two zeros in
w ∈ (0, 1) implies that there exist at most two zeros for f0(R) in R ∈ (

√
3,+∞). By

Lemma 2.1 and Corollary 2.4, we get that system (3.3) has at most two periodic
solutions which tend to the corresponding hyperbolic equilibriums, respectively.
That is, for system (1.2) with any sufficiently small |ε|, at most two limit cycles
bifurcate from the period annulus around the center (0, 0) of system (1.1).

In fact, there exist many systems expressed like (1.2) which have exactly two
limit cycles emerging from the period annulus of the unperturbed system. In the
following, we not only provide some examples satisfying this property, but also
introduce a method to construct such systems.

Suppose that

g̃(w) =
(
w − 1

10
)(
w − 1

5
)
(w − 10)(w − 5)

= w4 − 153
10

w3 +
1363
25

w2 − 153
10

w + 1.

Take the constants

C1 = 1, C2 = −153
10

, C3 =
1363
25

,

then we can choose

M1 =
1089
100

, M2 = −2209
100

, M3 =
10273
800

, (3.8)
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such that

15M1 + 12M2 + 8M3 = 1,

42M1 + 40M2 + 32M3 = −153
10

,

62M1 + 56M2 + 48M3 =
1363
25

.

From (3.6) and (3.8), we have

a40 = b31 −
213
160

, a22 = b13 +
3167
400

, a04 = −1313
800

.

Hence, for the sufficiently small |ε|, we obtain a family of systems

ẋ = −y + x3y + xy3 + ε
[(
b31 −

213
160

)
x4 + a31x

3y

+
(
b13 +

3167
400

)
x2y2 + a13xy

3 − 1313
800

y4
]
,

ẏ = x+ x2y2 + y4 + ε
[
b40x

4 + b31x
3y + b22x

2y2 + b13xy
3 + b04y

4
]
,

(3.9)

where a13, a31 and bij (i, j = 0, 1, 2, 3, 4) are any real constants.
By using polar coordinates x = ρ cosϕ and y = ρ sinϕ, system (3.9) can be

rewritten as

dR

dϕ
= εF (ϕ,R) +O(ε2), (3.10)

where

F (ϕ,R) = ρ3
[
− b40 cos7 ϕ sinϕ− 213

160
cos6 ϕ sin2 ϕ+ (a31 − b40 − b22) cos5 ϕ sin3 ϕ

+
5269
800

cos4 ϕ sin4 ϕ+ (a31 + a13 − b22 − b04) cos3 ϕ sin5 ϕ

+
5021
800

cos2 ϕ sin6 ϕ+ (a13 − b04) cosϕ sin7 ϕ− 1313
800

sin8ϕ
]

+
[(
b31 −

213
160

)
cos5 ϕ+ (a31 + b40) cos4 ϕ sinϕ

+
(
b31 + b13 +

3167
400

)
cos3 ϕ sin2 ϕ+

(
a13 + b22

)
cos2 ϕ sin3 ϕ

+
(
b13 −

1313
800

)
cosϕ sin4 ϕ+ b04 sin5 ϕ

]
.

The averaged equation of system (3.10) is given by

dR

dϕ
= εf0

∗ (R) +O(ε2), (3.11)
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where

f0
∗ (R) =

1
2π

∫ 2π

0

F (ϕ,R)dϕ

=
1

4πR

[1089
100

∫ 2π

0

cos6 ϕ
cosϕ+ R2

3

dϕ− 2209
100

∫ 2π

0

cos4 ϕ
cosϕ+ R2

3

dϕ

+
10273
800

∫ 2π

0

cos2 ϕ
cosϕ+ R2

3

dϕ− 1313
800

∫ 2π

0

1
cosϕ+ R2

3

dϕ
]

= −
√

3(1− w)3/2

48(1 + w2)1/2(1 + w)9/2
(w − 1

10
)(w − 1

5
)(w − 10)(w − 5).

(3.12)

Apparently, f0
∗ (R) has exactly two positive zeros, denoted by

R1 =
√

29997
99

≈ 1.749458791, R2 =
√

1872
24

≈ 1.802775638,

corresponding to w1 = 1/10 and w2 = 1/5 in R ∈ (
√

3,+∞). Moreover, we have

df0
∗ (R1)
dR

=
107163
387200

≈ 0.5260835926 > 0,

df0
∗ (R2)
dR

= − 49
675
≈ −0.07259259259 < 0.

It follows from Lemma 2.1 and Corollary 2.4 that for the sufficiently small |ε|,
system (3.9) has just two limit cycles emerging from the period annulus of the
corresponding unperturbed system: one is unstable and the other is stable. This
completes the proof of Theorem 1.1.

As a byproduct, we obtain

Theorem 3.1. For the sufficiently small |ε|, system (3.10) has exactly two periodic
solutions, denoted by l1 and l2 respectively, such that l1 shrinks to R1 and l2 shrinks
to R2 as ε goes to 0. Moreover, l1 is unstable while l2 is stable.

4. Proof of Theorem 1.2

After using the transformation (3.2), system (1.3) can be re-expressed as
dR

dϕ
= ε
( 3

2R
Qp̃− P q̃

ρ5

)∣∣∣
x=ρ cosϕ,y=ρ sinϕ

+O(ε2), (4.1)

where ρ is defined as (3.1), and

Qp̃− P q̃
= [a10x

2 + (a01 + b10)xy + b01y
2] + [(a11 + b20)x2y + b02y

3]

+ [(a21 + b30)x3y + (a03 + b12)xy3] + [a40x
5 + (a31 + b40 − b10)x4y

+ (a22 + a10 + b31 − b01)x3y2 + (a13 + a01 + b22 − b10)x2y3

+ (a04 + a10 + b13 − b01)xy4 + (a01 + b04)y5]

+ [−b20x5y + (a11 − b20 − b02)x3y3 + (a11 − b02)xy5]

+ [−b30x6y + (a21 − b30 − b12)x4y3 + (a21 + a03 − b12)x2y5 + a03y
7]

+ [−b40x7y + (a40 − b31)x6y2 + (a31 − b40 − b22)x5y3

+ (a40 + a22 − b31 − b13)x4y4 + (a31 + a13 − b22 − b04)x3y5
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+ (a22 + a04 − b13)x2y6 + (a13 − b04)xy7 + a04y
8].

The averaged equation associated with system (4.1) is
dR

dϕ
= εg0(R) +O(ε2), (4.2)

where

g0(R) =
1

2π

∫ 2π

0

3
2R
(Qp̃− P q̃

ρ5

)∣∣∣
x=ρ cosϕ,y=ρ sinϕ

dϕ

=
3

4πR

∫ 2π

0

{a10 cos2 ϕ+ b01 sin2 ϕ

ρ3

+
[
a40 cos5 ϕ+ (a22 + a10 + b31 − b01) cos3 ϕ sin2 ϕ

+ (a04 + a10 + b13 − b01) cosϕ sin4 ϕ
]

+ ρ3
[
(a40 − b31) cos6 ϕ sin2 ϕ+ (a40 + a22 − b31 − b13) cos4 ϕ sin4 ϕ

+ (a22 + a04 − b13) cos2 ϕ sin6 ϕ+ a04 sin8 ϕ
]}
dϕ.

(4.3)

Using a similar transformation as in the preceding section to (4.3), the function
g0(R) can be simplified as

g0(R) =
3

4R

[
− 2M1

729
R10 − M1 + 2M2

81
R6 +

(
− 3M1 + 4M2 + 8M3

36
+M4

)
R2

+
(2M1

729
R12 +

2M2

81
R8 +

2M3

9
R4 − 2(M1 +M2 +M3)

) 1√
R4 − 9

]
=

3
4R

[
− 2M1

729
S5 − M1 + 2M2

81
S3 +

(
− 3M1 + 4M2 + 8M3

36
+M4

)
S

+
(2M1

729
S6 +

2M2

81
S4 +

2M3

9
S2 − 2(M1 +M2 +M3)

) 1√
S2 − 9

]
= −

√
3

48(1− w2)1/2(1 + w2)1/2(1 + w)4

× [Ñ1w
6 + Ñ2w

5 + Ñ3w
4 + Ñ4w

3 + Ñ3w
2 + Ñ2w + Ñ1],

(4.4)

where Mi (i = 1, 2, 3) are defined as (3.6), and

M4 = a10 + b01,

Ñ1 = 15M1 + 12M2 + 8M3 − 36M4,

Ñ2 = 12M1 + 16M2 + 16M3 − 144M4,

Ñ3 = −7M1 − 12M2 − 8M3 − 252M4,

Ñ4 = −40M1 − 32M2 − 32M3 − 288M4.

Similarly, from (4.4), we get that g0(R) has at most three zeros in R ∈ (
√

3,+∞).
Using this fact together with Lemma 2.1 and Corollary 2.4, it follows that system
(4.1) has at most three periodic solutions tending to the corresponding hyperbolic
equilibriums, respectively. This means that the maximal number of limit cycles of
system (1.3) emerging from the period annulus of the unperturbed one is three.
Moreover, the upper bound can be reached.
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As an example, we consider the system

ẋ = −y + x3y + xy3 + ε
[(
− b01 +

9
800

)
x+ a01y + a11xy + a21x

2y + a03y
3

+
(
b31 −

109
80
)
x4 + a31x

3y +
(
b13 +

28279
3200

)
x2y2 + a13xy

3 − 1313
640

y4
]
,

ẏ = x+ x2y2 + y4 + ε
[
b10x+ b01y + b20x

2 + b02y
2 + b30x

3 + b12xy
2 + b40x

4

+ b31x
3y + b22x

2y2 + b13xy
3 + b04y

4
]
,

(4.5)

where |ε| is sufficiently small, aij (i = 0, 1, 2, 3, j = 1, 3) and bij (i, j = 0, 1, 2, 3, 4)
are any real constants.

By polar coordinates in (3.2), system (4.5) is equivalent to

dR

dϕ
= εG(ϕ,R) +O(ε2), (4.6)

where

G(ϕ,R)

=

(
− b01 + 9

800

)
cos2 ϕ+ (a01 + b10) cosϕ sinϕ+ b01 sin2 ϕ

ρ3

+
(a11 + b20) cos2 ϕ sinϕ+ b02 sin3 ϕ

ρ2

+
(a21 + b30) cos3 ϕ sinϕ+ (a03 + b12) cosϕ sin3 ϕ

ρ

+
[(
b31 −

109
80
)

cos5 ϕ+ (a31 + b40 − b10) cos4 ϕ sinϕ

+
(
b31 + b13 − 2b01 +

5663
640

)
cos3 ϕ sin2 ϕ

+ (a13 + a01 + b22 − b10) cos2 ϕ sin3 ϕ

+
(
b13 − 2b01 −

6529
3200

)
cosϕ sin4 ϕ+ (a01 + b04) sin5 ϕ

]
+ ρ
[
− b20 cos5 ϕ sinϕ+ (a11 − b02) cosϕ sin5 ϕ

+ (a11 − b20 − b02) cos3 ϕ sin3 ϕ
]

+ ρ2
[
− b30 cos6 ϕ sinϕ+ (a21 − b30 − b12) cos4 ϕ sin3 ϕ

+ (a21 + a03 − b12) cos2 ϕ sin5 ϕ+ a03 sin7 ϕ
]

+ ρ3
[
− b40 cos7 ϕ sinϕ− 109

80
cos6 ϕ sin2 ϕ+ (a31 − b40 − b22) cos5 ϕ sin3 ϕ

+
23919
3200

cos4 ϕ sin4 ϕ+ (a31 + a13 − b22 − b04) cos3 ϕ sin5 ϕ

+
10857
1600

cos2 ϕ sin6 ϕ+ (a13 − b04) cosϕ sin7 ϕ− 1313
640

sin8 ϕ
]
.
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The averaged equation of system (4.6) is

dR

dϕ
= εg0

∗(R) +O(ε2), (4.7)

where

g0
∗(R) =

1
2π

∫ 2π

0

G(ϕ,R)dϕ

=
3

4πR

∫ 2π

0

{
ρ3
[
− 109

80
cos6 ϕ sin2 ϕ+

23919
3200

cos4 ϕ sin4 ϕ

+
10857
1600

cos2 ϕ sin6 ϕ− 1313
640

sin8 ϕ
]

+
[(
b31 −

109
80
)

cos5 ϕ+
(
b31 + b13 − 2b01 +

5663
640

)
cos3 ϕ sin2 ϕ

+
(
b13 − 2b01 −

6529
3200

)
cosϕ sin4 ϕ

]
+

1
ρ3

[(
− b01 +

9
800

)
cos2 ϕ+ b01 sin2 ϕ

]}
dϕ

= −
√

3
48(1− w2)1/2(1 + w2)1/2(1 + w)4

× (w − 1
10

)(w − 1
5

)(w − 1
2

)(w − 10)(w − 5)(w − 2).

(4.8)

Hence, g0
∗(R) has exactly three positive zeros, denoted by

R̃1 =
√

29997
99

≈ 1.749458791, R̃2 =
√

1872
24

≈ 1.802775638,

R̃3 =
√

5 ≈ 2.236067977,

which correspond to

w̃1 =
1
10
, w̃2 =

1
5
, w̃3 =

1
2

in R ∈ (
√

3,+∞), respectively. Moreover, we have

dg0
∗(R̃1)
dR

=
25137
96800

≈ 0.2596797521 > 0,

dg0
∗(R̃2)
dR

= − 49
800
≈ −0.06125 < 0,

dg0
∗(R̃3)
dR

=
19
800
≈ 0.02375 > 0.

According to Lemma 2.1 and Corollary 2.4, we obtain that for the sufficiently small
|ε|, system (4.5) has exactly three limit cycles emerging from the period annulus of
the unperturbed system. Hence, we completes the proof of Theorem 1.2.

Theorem 4.1. For the sufficiently small |ε|, system (4.6) has just three periodic
solutions, denoted by l̃1, l̃2 and l̃3 respectively, such that l̃1 shrinks to R̃1, l̃2 shrinks
to R̃2 and l̃3 shrinks to R̃3 as ε goes to 0. Moreover, l̃1 and l̃3 are unstable while
l̃2 is stable.
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