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COMPONENT REDUCTION FOR REGULARITY CRITERIA OF
THE THREE-DIMENSIONAL MAGNETOHYDRODYNAMICS

SYSTEMS

KAZUO YAMAZAKI

Abstract. We study the regularity of the three-dimensional magnetohydro-

dynamics system, and obtain criteria in terms of one velocity field component
and two magnetic field components. In contrast to the previous results such as

[22], we have eliminated the condition on the third component of the magnetic

field completely while preserving the same upper bound on the integrability
condition.

1. Introduction and statement of results

We study the three-dimensional magnetohydrodynamics (MHD) system

∂u

∂t
+ (u · ∇)u− (b · ∇)b+∇π = ν∆u,

∂b

∂t
+ (u · ∇)b− (b · ∇)u = η∆b,

∇ · u = ∇ · b = 0, (u, b)(x, 0) = (u0, b0)(x), t ∈ R+ ∪ {0},

(1.1)

where u : R3 × R+ → R3 represents the velocity field, b : R3 × R+ → R3 the
magnetic field, π : R3 × R+ → R the pressure field, ν, η > 0 the viscosity and
diffusivity constants respectively. Hereafter let us assume ν = η = 1 and write
∂
∂t = ∂t and ∂

∂xi
= ∂i and the components of u and b by

u = (u1, u2, u3), b = (b1, b2, b3), bh := (b1, b2, 0).

Due to the works of [22], we know that (1.1) possesses at least one global L2-
weak solution pair for any initial data pair (u0, b0) ∈ L2. However, whether the
local solution pair remains smooth for all time remains open as in the case of the
Navier-Stokes equations (NSE), the system (1.1) at b ≡ 0.

To show that the weak solution pair is actually strong, there has been a large
amount of research conducted by many mathematicians to obtain a sufficient con-
dition on (u, b) so that imposing such conditions lead to the H1-norm bound on
(u, b). We discuss some of them in particular.
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Following the pioneering work by Serrin [23], Beĩrao da Veiga [2] obtained regu-
larity criteria on ∇u. Similar results followed for the MHD system; in particular,
Zhou [34] showed that it suffices to bound only u dropping the conditions on b
completely. For example, the following regularity criteria was obtained by He and
Xin [11]. ∫ T

0

‖u‖rLpdτ <∞,
3
p

+
2
r
≤ 1, 3 < p.

In an accompanying paper [29], the author reduced this criteria to any two compo-
nents of u. For the regularity criteria in terms of other quantities for the NSE such
as vorticity, π, we refer readers to [1, 3, 7, 24, 33, 35].

Results related on the reduction of components appeared for example in Kukavica
and Ziane [16]: ∫ T

0

‖u3‖rLpdτ <∞,
3
p

+
2
r
≤ 5

8
,

24
5
≤ p,

(see also [17, 31, 32]). A few of the most recent results are the following:∫ T

0

‖u3‖rLpdτ <∞,
3
p

+
2
r
<

2(p+ 1)
3p

,
7
2
< p,

for the NSE see Cao and Titi [4] (also [5, 14, 20, 21, 36] followed by many in the
case of the MHD system (e.g. [6, 13, 18, 25]). In particular, Jia and Zhou [12]
showed that if∫ T

0

‖u3‖rLp + ‖b‖rLpdτ <∞,
3
p

+
2
r
≤ 3

4
+

1
2p
,

10
3
< p, (1.2)

then the solution pair (u, b) remains smooth (cf. [37] for the case of the NSE).
More variations of (1.2) were also obtained in [12, 19]; however, in any case, if
condition is given only on u3 and no other component of u, then without a new
idea, it seems we need to impose some integrability condition on every component
of b. This is due to the difficulty in decomposing the four non-linear terms in the
‖∇hu‖2L2 + ‖∇hb‖2L2 -estimates so that every term has either have u3 or bh, where
∇h = (∂1, ∂2, 0) (see the Appendix for details). Now we present our results.

Theorem 1.1. Suppose (u, b) solves (1.1) in time interval [0, T ] and satisfies∫ T

0

‖u3‖8/3L∞ + ‖bh‖rLpdτ <∞, bh = (b1, b2, 0), (1.3)

where 10/3 < p <∞ and 8 ≤ r satisfy
3
p

+
2
r
≤ 3

4
+

1
2p
,

10
3
< p ≤ 5, r = 8, 5 ≤ p <∞. (1.4)

Then there is no singularity up to time T .

The boarder-line case of p = 10/3 may be obtained as well, via a slight modifi-
cation of the proof for Theorem 1.1.

Theorem 1.2. Suppose (u, b) solves (1.1) in time interval [0, T ] and∫ T

0

‖u3‖8/3L∞dτ + sup
τ∈[0,T ]

‖bh(τ)‖L10/3 <∞, bh = (b1, b2, 0).

Then there is no singularity up to time T .
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Theorem 1.3. Suppose (u, b) solves (1.1) in time interval [0, T ] and satisfies∫ T

0

‖u2‖8/3L∞ + ‖u3‖8/3L∞ + ‖b1‖rLpdτ <∞,

where 10/3 < p < ∞, 8 ≤ r satisfy (1.4). Then there is no singularity up to time
T .

Theorem 1.4. Suppose (u, b) solves (1.1) in time interval [0, T ] and∫ T

0

‖u2‖8/3L∞ + ‖u3‖8/3L∞dτ + sup
τ∈[0,T ]

‖b1(τ)‖L10/3 <∞.

Then there is no singularity up to time T .

Remark 1.5. (1) We may replace the role of u3 with any other component of u
as long as the two components of b will be the different two components.

(2) We emphasize that in particular in Theorem 1.1, we have eliminated the
condition on b3 completely while preserving the integrability condition on bh and
p =∞, r = 8/3 also satisfies (1.2). Thus, it is clear that (1.4) is an improvement of
the special case of (1.2). We were also able to obtain results in case when p 6=∞ for
u3 in (1.3); however, the integrability conditions became worse; thus, for simplicity,
we chose not to present those results. We also remark that in contrast to results
from [12], Theorem 1.2 is not a smallness result.

(3) We also wish to emphasize that previously when the regularity criteria for
the three-dimensional MHD system was obtained in terms of three terms, they have
always been all from the velocity vector field; e.g. ∂3u1, ∂3u2, ∂3u3 from [6] and [13],
any three partial derivatives of u1, u2, u3 from [15, 18, 25].

(4) The new idea in our proof is to make use of the structure of the magnetic
vector field equation and estimate ‖b3‖Lp and obtain its bound in terms of bh
and u3. Our proof was inspired by the others including [27], in particular [8, 9]
concerning the [26, Theorems 1.3-1.4] and [28, Propositions 3.1-3.2]. Modification of
Propositions 3.1-3.2 are possible indicating that in the future to obtain a regularity
criteria of the MHD system in terms of one component of the velocity vector field,
which has been done for the NSE but not for the MHD system, it suffices to discover
a decomposition of the four non-linear terms that separate u3 and b3, not necessarily
just u3.

(5) After this manuscript was completed, the author discovered in [30] a new
decomposition of the four non-linear terms of (4.1) which led to a regularity criteria
of (1.1) in terms of u3 and j3 where j3 is the third component of the current density
j := ∇× b.

In the Preliminary section, we set notation. Thereafter, we prove two crucial
propositions and then prove Theorems 1.1–1.4.

2. Preliminary

Let us denote a constant that depends on a, b by c(a, b) and A . B when there
exists a constant c ≥ 0 of no significance such that A ≤ cB. We shall also denote∫
f =

∫
R3 f(x)dx,

∇h = (∂1, ∂2, 0), ∆h = ∂2
11 + ∂2

22, X(t) := ‖∇u(t)‖2L2 + ‖∇b(t)‖2L2 ,

Y (t) := ‖∇hu(t)‖2L2 + ‖∇hb(t)‖2L2 , Z(t) := ‖∆u(t)‖2L2 + ‖∆b(t)‖2L2 ,
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M1 :=
∫ T

0

‖u3‖8/3L∞dτ, M2 := ‖b3(0)‖L10/3 + sup
t∈[0,T ]

‖bh(t)‖L10/3 ,

N1 :=
∫ T

0

‖u2,3‖8/3L∞dτ, N2 := ‖b2,3(0)‖L10/3 + sup
t∈[0,T ]

‖b1(t)‖L10/3 ,

where e.g. b2,3 is a two dimensional vector of two entries b2 and b3.
We have the following special case of Troisi inequality (cf. [6, 10])

‖f‖L6 ≤ c‖∂1f‖1/3L2 ‖∂2f‖1/3L2 ‖∂3f‖1/3L2 . (2.1)

Finally, we obtain the basic energy inequality by taking L2-inner products of
(1.1) with (u, b) respectively, integrating by parts and using the incompressibility
of u and b to deduce after integrating in time

sup
t∈[0,T ]

(‖u(t)‖2L2 + ‖b(t)‖2L2) + 2
∫ T

0

X(τ)dτ . 1. (2.2)

3. Two propositions

Proposition 3.1. Suppose (u, b) is the solution to (1.1) in time interval [0, T ].
Then for any p ∈ (2,∞), the following inequality holds: for any distinct choices of
j1, j2, j3 ∈ {1, 2, 3}

sup
t∈[0,T ]

‖bj1(t)‖2Lp ≤ ‖bj1(0)‖2Lpe(p−1)
R T
0 ‖uj1‖

2
L∞dλ

+ 2(p− 1)
∫ T

0

e(p−1)
R T
τ
‖uj1‖

2
L∞dλ‖uj1‖2L∞‖bj2,j3‖2Lpdτ,

(3.1)

where bj2,j3 is a two dimensional vector of two entries bj2 and bj3 .

Remark 3.2. We remark that we cannot obtain an analogous bound for u3 due to
the ∇π-term in the first equation of (1.1). Moreover, we were able to obtain various
modifications of this inequality; however, we emphasize that (3.1) in particular
implies that if we have a sufficient bound on uj1 , then we may bound the Lp-norm
of bj1 by the same Lp-norm of bj2,j3 .

Proof of Proposition 3.1. From the second equation of (1.1), we have the equation
that governs the growth of bj1 in time

∂tbj1 + (u · ∇)bj1 − (b · ∇)uj1 = ∆bj1 . (3.2)

We multiply by |bj1 |p−2bj1 and integrate in space to obtain

1
p
∂t‖bj1‖

p
Lp −

∫
∆bj1 |bj1 |p−2bj1 = −

∫
(u ·∇)bj1 |bj1 |p−2bj1 +

∫
(b ·∇)uj1 |bj1 |p−2bj1 .

By the incompressibility condition, we see that the first term on the right hand
side after integrating by parts equals zero. We compute the diffusive term after
integrating by parts as follows:

−
∫

∆bj1 |bj1 |p−2bj1 = −
3∑
k=1

∫
(∂2
kkbj1)|bj1 |p−2bj1 = (p− 1)

3∑
k=1

∫ ∣∣|∂kbj1 ||bj1 | p−2
2
∣∣2.
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Therefore, we obtain by integrating by parts and using the incompressibility con-
dition of b,

1
p
∂t‖bj1‖

p
Lp + (p− 1)

3∑
k=1

∫ ∣∣|∂kbj1 ||bj1 | p−2
2
∣∣2

= −
3∑
k=1

∫
∂kbkuj1 |bj1 |p−2bj1 + bkuj1∂k(|bj1 |p−2bj1)

= −
3∑
k=1

∫
(p− 1)1/2bkuj1 |bj1 |

p−2
2 (p− 1)1/2|bj1 |

p−2
2 ∂kbj1

≤
(p− 1

2
) 3∑
k=1

∫
|bk|2|uj1 |2|bj1 |p−2 +

(p− 1)
2

3∑
k=1

∫
||∂kbj1 |bj1 |

p−2
2 |2

by Young’s inequality. Absorbing the diffusive term, we have

1
p
∂t‖bj1‖

p
Lp +

(p− 1)
2

3∑
k=1

∫
|(∂kbj1)|bj1 |

p−2
2 |2 ≤

(p− 1
2
) 3∑
k=1

∫
|bk|2|uj1 |2|bj1 |p−2.

Therefore, Hölder’s inequalities and then dividing by 1
2‖bj1‖

p−2
Lp lead to

∂t‖bj1‖2Lp − (p− 1)‖uj1‖2L∞‖bj1‖2Lp ≤ 2(p− 1)‖uj1‖2L∞‖bj2,j3‖2Lp .
This leads to (3.1) completing the proof of Proposition 3.1. �

The next proposition may be obtained by an identical procedure.

Proposition 3.3. Suppose (u, b) is the solution pair to (1.1) in time interval [0, T ].
Then for any p ∈ (2,∞), the following inequality holds: for any distinct choices of
j1, j2, j3 ∈ {1, 2, 3}

sup
t∈[0,T ]

‖bj1,j2(t)‖2Lp ≤ ‖bj1,j2(0)‖2Lpe2(p−1)
R T
0 ‖uj1,j2‖

2
L∞dλ

+ (p− 1)
∫ T

0

e2(p−1)
R T
τ
‖uj1,j2‖

2
L∞dλ‖uj1,j2‖2L∞‖bj3‖2Lpdτ.

(3.3)

4. Proof of Theorem 1.1

‖∇hu‖L2 +‖∇hb‖2L2-estimate. We now fix p and r that satisfy (1.4), take L2-inner
products of the first equation of (1.1) with −∆hu and the second with −∆hb to
estimate

1
2
∂tY (t) + ‖∇∇hu‖2L2 + ‖∇∇hb‖2L2

=
∫

(u · ∇)u ·∆hu− (b · ∇)b ·∆hu+ (u · ∇)b ·∆hb− (b · ∇)u ·∆hb

:= I1 + I2 + I3 + I4,

(4.1)

where Y (t) := ‖∇hu(t)‖2L2+‖∇hb(t)‖2L2 . The following decomposition was obtained
in [12]; we provide details in the Appendix for convenience of readers:

I1 .
∫
|u3||∇u||∇∇hu|, I2 + I3 + I4 . |b||∇b||∇∇hu|+ |b||∇u||∇∇hb|. (4.2)
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Now by Hölder’s and Young’s inequalities we immediately obtain

I1 . ‖u3‖L∞‖∇u‖L2‖∇∇hu‖L2 ≤ 1
4
‖∇∇hu‖2L2 + c‖u3‖2L∞‖∇u‖2L2 . (4.3)

Next, by Hölder’s inequalities and interpolation inequalities we estimate

I2 + I3 + I4

. ‖b‖Lp‖∇b‖
L

2p
p−2
‖∇∇hu‖L2 + ‖b‖Lp‖∇u‖

L
2p
p−2
‖∇∇hb‖L2

. ‖b‖Lp‖∇b‖
p−3
p

L2 ‖∇b‖3/pL6 ‖∇∇hu‖L2 + ‖b‖Lp‖∇u‖
p−3
p

L2 ‖∇u‖3/pL6 ‖∇∇hb‖L2 .

By (2.1) and Young’s inequalities we have

I2 + I3 + I4 . ‖b‖Lp‖∇b‖
p−3
p

L2 ‖∇∇hb‖2/pL2 ‖∆b‖1/pL2 ‖∇∇hu‖L2

+ ‖b‖Lp‖∇u‖
p−3
p

L2 ‖∇∇hu‖2/pL2 ‖∆u‖1/pL2 ‖∇∇hb‖L2

≤ 1
4
‖∇∇hu‖2L2 +

1
2
‖∇∇hb‖2L2 + c(‖b‖

2p
p−2
Lp ‖∇b‖

2( p−3
p−2 )

L2 ‖∆b‖
2
p−2

L2

+ ‖b‖
2p
p−2
Lp ‖∇u‖

2( p−3
p−2 )

L2 ‖∆u‖
2
p−2

L2 ).

(4.4)

Thus, with (4.3) and (4.4) applied to (4.2), absorbing the dissipative and diffusive
terms, integrating in time we obtain

sup
τ∈[0,t]

Y (τ) +
∫ t

0

‖∇∇hu‖2L2 + ‖∇∇hb‖2L2dτ

. 1 +
∫ t

0

‖u3‖2L∞‖∇u‖2L2 + ‖b‖
2p
p−2
Lp X

p−3
p−2 (τ)Z

1
p−2 (τ)dτ.

(4.5)

‖∇u‖2L2 + ‖∇b‖2L2-estimate. For both equations in (1.1), we take the L2-inner
products with −∆u and −∆b respectively and integrate by parts to obtain

1
2
∂tX(t) + Z(t)

=
∫

(u · ∇)u ·∆u− (b · ∇) ·∆u+ (u · ∇)b ·∆b− (b · ∇)u ·∆b

:=
4∑
i=1

IIi.

(4.6)

For II2 and II4 we have the estimate

II2 + II4 ≤ ‖b‖Lp‖∇b‖
L

2p
p−2
‖∆u‖L2 + ‖b‖Lp‖∇u‖

L
2p
p−2
‖∆b‖L2

≤ c(‖b‖2Lp‖∇b‖2
L

2p
p−2

+ ‖b‖2Lp‖∇u‖2
L

2p
p−2

) +
1
8
Z(t),

by Hölder’s and Young’s inequalities. Now we use a Gagliardo-Nirenberg inequality

‖f‖
L

2p
p−2
. ‖f‖

p−3
p

L2 ‖∇f‖3/pL2 (4.7)
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and Young’s inequalities to obtain

II2 + II4 ≤ c(‖b‖2Lp‖∇b‖
2( p−3

p )

L2 ‖∆b‖
6
p

L2 + ‖b‖2Lp‖∇u‖
2( p−3

p )

L2 ‖∆u‖
6
p

L2) +
1
8
Z(t)

≤ c‖b‖
2p
p−3
Lp X +

1
4
Z(t).

(4.8)
For II3, we integrate by parts twice to deduce

II3 = −
3∑

i,j,k=1

∫
∂kui∂ibj∂kbj + ui∂

2
ikbj∂kbj

= −
3∑

i,j,k=1

∫
∂kui∂ibj∂kbj −

1
2
∂iui(∂kbj)2

=
3∑

i,j,k=1

∫
∂kuibj∂

2
ikbj .

∫
|∇u||b||∇∇b|

so that similarly as before, Hölder’s and Young’s inequalities, (4.7) and another
Young’s inequality lead to

II3 . ‖b‖Lp‖∇u‖
L

2p
p−2
‖∆b‖L2

≤ c‖b‖2Lp‖∇u‖
2( p−3

p )

L2 ‖∆u‖
6
p

L2 +
1
4
‖∆b‖2L2

≤ c‖b‖
2p
p−3
Lp X(t) +

1
4
Z(t).

(4.9)

Finally, on II1, we write

II1 =
2∑
i=1

∫
ui∂iu ·∆u+ u3∂3u ·∆hu+

1
2
u3∂3(∂3u)2

and then integrate by parts on each to obtain

II1 = −
2∑
i=1

3∑
k=1

∫
∂kui∂iu · ∂ku+ ui∂

2
iku · ∂ku

+
2∑
k=1

∂ku3∂3u · ∂ku+ u3∂
2
3ku · ∂ku+

1
2
∂3u3(∂3u)2

= −
2∑
i=1

3∑
k=1

∫
∂kui∂iu · ∂ku−

1
2
∂iui(∂ku)2 +

2∑
k=1

∂ku3∂3u · ∂ku

− 1
2
∂3u3(∂ku)2 − 1

2
(∂1u1 + ∂2u2)(∂3u)2

.
∫
|∇hu||∇u|2.

Now Hölder’s, interpolation inequalities, and (2.1) lead to

II1 . ‖∇hu‖L2‖∇u‖2L4

. ‖∇hu‖L2‖∇u‖1/2L2 ‖∇u‖3/2L6 . ‖∇hu‖L2‖∇u‖1/2L2 ‖∇∇hu‖L2‖∆u‖1/2L2 .
(4.10)
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We apply the bounds of (4.8)–(4.10) into (4.6) to obtain, after absorbing the dissi-
pative and diffusive terms,

∂tX(t) + Z(t) . ‖b‖
2p
p−3
Lp X(t) + ‖∇hu‖L2‖∇u‖1/2L2 ‖∇∇hu‖L2‖∆u‖1/2L2 . (4.11)

Integrating in time, we obtain

X(t) +
∫ t

0

Z(τ)dτ

≤ X(0) + c

∫ t

0

‖b‖
2p
p−3
Lp X(τ)dτ + c

∫ t

0

‖∇hu‖L2‖∇u‖1/2L2 ‖∇∇hu‖L2‖∆u‖1/2L2 dτ

. 1 +
∫ t

0

‖b‖
2p
p−3
Lp X(τ)dτ

+ sup
τ∈[0,t]

‖∇hu(τ)‖L2

(∫ t

0

‖∇∇hu‖2L2dτ
)1/2(∫ t

0

X(τ)dτ
)1/4(∫ t

0

Z(τ)dτ
)1/4

by Hölder’s inequality. By (4.5) and (2.2) we obtain

X(t) +
∫ t

0

Z(τ)dτ

. 1 +
∫ t

0

‖b‖
2p
p−3
Lp X(τ)dτ

+
(

1 +
∫ t

0

‖u3‖2L∞‖∇u‖2L2 + ‖b‖
2p
p−2
Lp X

p−3
p−2 (τ)Z

1
p−2 (τ)dτ

)(∫ t

0

Z(τ)dτ
)1/4

≤ c0 +
4∑
i=1

IIIi,

(4.12)
where

III1 = c0

∫ t

0

‖b‖
2p
p−3
Lp X(τ)dτ, III2 = c0

(∫ t

0

Z(τ)dτ
)1/4

,

III3 = c0

(∫ t

0

‖u3‖2L∞‖∇u‖2L2dτ
)(∫ t

0

Z(τ)dτ
)1/4

,

III4 = c0

(∫ t

0

‖b‖
2p
p−2
Lp X

p−3
p−2 (τ)Z

1
p−2 (τ)dτ

)(∫ t

0

Z(τ)dτ
)1/4

,

and c0 does not depend on t. By (3.1) with j1 = 3, j2 = 1, j3 = 2, we have

sup
t∈[0,T ]

‖b3(t)‖2Lp ≤ c(p)ec
R T
0 ‖u3(λ)‖2L∞dλ

(
1 +

∫ T

0

‖u3(λ)‖2L∞‖bh(λ)‖2Lpdλ
)
.

Using the elementary inequality

(a+ b)p ≤ 2p(ap + bp) p ≥ 0, a, b ≥ 0, (4.13)

we obtain

‖b(τ)‖
2p
p−3
Lp ≤ c(p)

(
‖bh(τ)‖

2p
p−3
Lp + ‖b3(τ)‖

2p
p−3
Lp

)
≤ c(p)‖bh‖

2p
p−3
Lp + ec(p)

R T
0 ‖u3‖2L∞dλ

(
1 +

(∫ T

0

‖u3‖2L∞‖bh‖2Lpdλ
) p
p−3
)
.

(4.14)
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Thus, by (2.2),

III1 ≤ c(p)
∫ t

0

‖bh(τ)‖
2p
p−3
Lp X(τ)dτ

+ ec(p)
R T
0 ‖u3(λ)‖2L∞dλ

(
1 +

(∫ T

0

‖u3(λ)‖2L∞‖bh(λ)‖2Lpdλ
) p
p−3
)
.

(4.15)

The estimate on III2 is immediate by Young’s inequality

III2 = c0

(∫ t

0

Z(τ)dτ
)1/4

≤ c+
1
8

∫ t

0

Z(τ)dτ. (4.16)

Next, by Young’s and Hölder’s inequalities and (2.2),

III3 ≤ c
∫ t

0

‖u3(τ)‖8/3L∞‖∇u(τ)‖2L2dτ +
1
8

∫ t

0

Z(τ)dτ. (4.17)

Finally, by successive applications of Hölder’s and Young’s inequalities,

III4 .
(∫ t

0

‖b‖
2p
p−3
Lp X(τ)dτ

) p−3
p−2
(∫ t

0

Z(τ)dτ
) p+2

4(p−2)

≤ c
(∫ t

0

‖b‖
2p
p−3
Lp X(τ)dτ

)(
4(p−3)
3p−10 )

+
1
8

∫ t

0

Z(τ)dτ

≤ c
(∫ t

0

‖b‖
8p

3p−10
Lp X(τ)dτ

)
+

1
8

∫ t

0

Z(τ)dτ,

(4.18)

where using (4.14), we may obtain

‖b(τ)‖
8p

3p−10
Lp =

(
‖b(τ)‖

2p
p−3
Lp

) 4(p−3)
3p−10

≤ c(p)‖bh‖
8p

3p−10
Lp + ec(p)

R T
0 ‖u3‖2L∞dλ

×
(

1 +
(∫ T

0

‖u3‖2L∞‖bh‖2Lpdλ
) 4p

3p−10
)

and therefore,∫ t

0

‖b(τ)‖
8p

3p−10
Lp X(τ)dτ ≤ c(p)

∫ t

0

‖bh‖
8p

3p−10
Lp Xdτ + ec(p)

R T
0 ‖u3‖2L∞dλ

×
(

1 +
(∫ T

0

‖u3‖2L∞‖bh‖2Lpdλ
) 4p

3p−10
) (4.19)

due to (2.2). We apply (4.19) into (4.18) and along with (4.15)-(4.17) applied to
(4.12), obtain after absorbing dissipative and diffusive terms

X(t) +
∫ t

0

Z(τ)dτ

. 1 +
∫ t

0

‖bh‖
2p
p−3
Lp Xdτ + ec(p)

R T
0 ‖u3‖2L∞dλ

(
1 +

(∫ T

0

‖u3‖2L∞‖bh‖2Lpdλ
) p
p−3
)

+
∫ t

0

‖u3‖8/3L∞‖∇u‖
2
L2dτ +

∫ t

0

‖bh‖
8p

3p−10
Lp Xdτ

+ ec(p)
R T
0 ‖u3‖2L∞dλ

(
1 +

(∫ T

0

‖u3‖2L∞‖bh‖2Lpdλ
) 4p

3p−10
)
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. 1 +
∫ t

0

(1 + ‖bh‖
( 2p
p−3 )(

4(p−3)
3p−10 )

Lp )Xdτ

+ ec(p)
R T
0 ‖u3‖2L∞dλ

(
1 +

(∫ T

0

‖u3‖2L∞‖bh‖2Lpdλ
)( p

p−3 )(
4(p−3)
3p−10 ))

+
∫ t

0

‖u3‖8/3L∞‖∇u‖
2
L2dτ

. 1 +
∫ t

0

(‖bh‖
8p

3p−10
Lp + ‖u3‖8/3L∞)Xdτ

+ ec(p)T
1/4(

R T
0 ‖u3‖8/3L∞dλ)3/4

(
1 +

(∫ T

0

‖u3‖2L∞‖bh‖2Lpdλ
) 4p

3p−10
)

. 1 +
∫ t

0

(‖bh‖
8p

3p−10
Lp + ‖u3‖8/3L∞)Xdτ + ec(p)T

1/4(
R T
0 ‖u3‖8/3L∞dλ)3/4

×
(

1 +
((∫ T

0

‖u3‖8/3L∞dλ
)3/4(∫ T

0

‖bh‖8Lpdλ
)1/4) 4p

3p−10
)

≈
∫ t

0

(‖bh‖
8p

3p−10
Lp + ‖u3‖8/3L∞)Xdτ + c(p,M1)

(
1 +

(∫ T

0

‖bh‖8Lpdλ
) p

3p−10
)
.

By Gronwall’s inequality, the proof of Theorem 1.1 is complete if∫ T

0

‖bh(τ)‖
8p

3p−10
Lp + ‖u3(τ)‖8/3L∞ + ‖bh(τ)‖8Lpdτ <∞.

For p ∈ (10/3, 5), we use Hölder’s inequality to obtain∫ T

0

‖bh(τ)‖8Lpdτ ≤ T
10−2p
p

(∫ T

0

‖bh(τ)‖
8p

3p−10
Lp dτ

) 3p−10
p

<∞

by (1.4) whereas if p ∈ (5,∞), Hölder’s inequality again by (1.4) implies∫ T

0

‖bh(τ)‖
8p

3p−10
Lp dτ ≤ T

2p−10
3p−10

(∫ T

0

‖bh(τ)‖8Lpdτ
) p

3p−10
<∞.

5. Proof of Theorem 1.2

‖∇hu‖2L2 +‖∇hb‖2L2-estimate. For fixed T > 0, firstly, from (3.1) with j1 = 3, j2 =
1, j2 = 2, by Hölder’s inequalities we have

sup
t∈[0,T ]

‖b3(t)‖2L10/3

≤ ‖b3(0)‖2L10/3e
7
3T

1/4
( R T

0 ‖u3(λ)‖8/3
L∞dτ

)3/4
+
(14

3
)
e

7
3T

1/4
( R T

0 ‖u3(λ)‖8/3
L∞dτ

)3/4
sup
t∈[0,T ]

‖bh(t)‖2L10/3T
1/4
(∫ T

0

‖u3(τ)‖8/3L∞dτ
)3/4

≤M2
2 e

7
3T

1/4M
3/4
1 +

(14
3
)
e

7
3T

1/4M
3/4
1 M2

2T
1/4M

3/4
1 .
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Thus, using (4.13), we compute

sup
t∈[0,T ]

‖b(t)‖2L10/3 ≤ 28/5
(

sup
t∈[0,T ]

‖bh(t)‖2L10/3 + sup
t∈[0,T ]

‖b3(t)‖2L10/3

)
≤ 28/5

(
M2

2 +M2
2 e

7
3T

1/4M
3/4
1 +

(14
3
)
e

7
3T

1/4M
3/4
1 M2

2T
1/4M

3/4
1

)
.

(5.1)
Next, we choose t1 ∈ [0, T ] to be specified subsequently and as before, we may
obtain by (4.1)-(4.4) which only required p > 3 and integrating in time over [0, t1]
as in (4.5)

sup
t∈[0,t1]

Y (t) +
∫ t1

0

‖∇∇hu‖2L2 + ‖∇∇hb‖2L2dτ

. 1 +
∫ t1

0

‖u3‖2L∞‖∇u‖2L2 + ‖b‖5L10/3X
1/4(τ)Z3/4(τ)dτ.

‖∇u‖2L2 + ‖∇b‖2L2-estimate. By (4.8)–(4.10), all of which only required p > 3,
applied to (4.6) we have

∂tX(t) + Z(t) . ‖b‖20L10/3X(t) + ‖∇hu‖L2‖∇u‖1/2L2 ‖∇∇hu‖L2‖∆u‖1/2L2

as in (4.11). Integrating in time and by Hölder’s inequality as before in (4.12), we
have

sup
t∈[0,t1]

X(t) +
∫ t1

0

Z(τ)dτ

≤ X(0) + c

∫ t1

0

‖b‖20L10/3X(τ)dτ + sup
t∈[0,t1]

‖∇hu(τ)‖L2

(∫ t1

0

‖∇∇hu‖2L2dτ
)1/2

×
(∫ t1

0

X(τ)dτ
)1/4(∫ t1

0

‖∆u‖2L2dτ
)1/4

. 1 + sup
t∈[0,t1]

‖b(t)‖20L10/3

∫ t1

0

X(τ)dτ

+
(

1 +
∫ t1

0

‖u3‖2L∞‖∇u‖2L2 + ‖b‖5L10/3X
1/4(τ)Z3/4(τ)dτ

)(∫ t1

0

Z(τ)dτ
)1/4

. 1 +
4∑
i=1

IIIIi,

(5.2)
where

IIII1 = c1 sup
t∈[0,t1]

‖b(t)‖20L10/3 , IIII2 = c1

(∫ t1

0

Z(τ)dτ
)1/4

,

IIII3 = c1

(∫ t1

0

‖u3‖2L∞‖∇u‖2L2dτ
)(∫ t1

0

Z(τ)dτ
)1/4

,

IIII4 = c1

(∫ t1

0

‖b‖5L10/3X
1/4(τ)Z3/4(τ)dτ

)(∫ t1

0

Z(τ)dτ
)1/4

,
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for c1 ≥ 0 independent of time t1. Now due to (2.2), we can choose t1 ∈ [0, T ] so
that

c1

(
28/5

(
M2

2 +M2
2 e

7
3T

1/4M
3/4
1 +

(14
3
)
e

7
3T

1/4M
3/4
1 M2

2T
1/4M

3/4
1

))5/2

×
(∫ t1

0

X(τ)dτ
)1/4

≤ 1
8
.

(5.3)

Then, by (5.1),

IIII1 ≤ c1
(

28/5
(
M2

2 +M2
2 e

7
3T

1/4M
3/4
1 +

(14
3
)
e

7
3T

1/4M
3/4
1 M2

2T
1/4M

3/4
1

))10

. 1.

(5.4)
The estimate of IIII2 is same as before in (4.16) and the estimate of IIII3 is also
same as (4.17). Finally,

IIII4

≤ c1
(∫ t1

0

‖b‖20L10/3X(τ)dτ
)1/4(∫ t1

0

Z(τ)dτ
)

≤ c1 sup
t∈[0,t1]

‖b(t)‖5L10/3

(∫ t1

0

X(τ)dτ
)1/4(∫ t1

0

Z(τ)dτ
)

≤ c1
(

28/5
(
M2

2 +M2
2 e

7
3T

1/4M
3/4
1 +

(14
3
)
e

7
3T

1/4M
3/4
1 M2

2T
1/4M

3/4
1

))5/2

×
(∫ t1

0

Z(τ)dτ
)

≤ 1
8

∫ t1

0

Z(τ)dτ,

(5.5)

by Hölder’s inequality, (5.1) and (5.3). Using (5.4) and (5.5) in (5.2), absorbing the
dissipative and diffusive terms, we have

sup
t∈[0,t1]

X(t) +
1
2

∫ t1

0

Z(τ)dτ . 1 +
∫ t1

0

‖u3‖8/3L∞‖∇u‖
2
L2dτ.

By Gronwall’s inequality, we have the bound

sup
t∈[0,t1]

X(t) +
1
2

∫ t1

0

Z(τ)dτ.

We restart on time interval [t1, 2t1] and after finite number of repetitions obtain
the same bound on [0, T ]. This completes the proof of Theorem 1.2.

6. Proof of Theorem 1.3

This proof is similar to that of Theorem 1.1. We sketch it for completeness.

‖∇hu‖2L2 + ‖∇hb‖2L2 - estimate. As before, from (4.1)–(4.4) which only required
p > 3 leading to (4.5), we have

sup
τ∈[0,t]

Y (τ) +
∫ t

0

‖∇∇hu‖2L2 + ‖∇∇hb‖2L2dτ
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. 1 +
∫ t

0

‖u3‖2L∞‖∇u‖2L2 + ‖b‖
2p
p−2
Lp X

p−3
p−2 (τ)Z

1
p−2 (τ)dτ.

‖∇u‖2L2 + ‖∇b‖2L2-estimate. As in the proof of Theorem 1.1, from (4.6), (4.8)–
(4.10) and using ‖∇hu‖2L2 + ‖∇hb‖2L2-estimate leading to (4.12), we have

X(t) +
∫ t

0

Z(τ)dτ ≤ c0 +
4∑
i=1

IIIi. (6.1)

By (3.3) with j1 = 2, j2 = 3, j3 = 1, we have

sup
t∈[0,T ]

‖b2,3(t)‖2Lp ≤ ec(p)
R T
0 ‖u2,3(λ)‖2L∞dλ

(
1 +

∫ T

0

‖u2,3(λ)‖2L∞‖b1(λ)‖2Lpdλ
)
.

so that by (4.13), similarly to (4.14),

‖b(τ)‖
2p
p−3
Lp ≤ c(p)‖b1(τ)‖

2p
p−3
Lp +ec(p)

R T
0 ‖u2,3‖2L∞dλ

(
1+
(∫ T

0

‖u2,3‖2L∞‖b1‖2Lpdλ
) p
p−3
)

(6.2)
and hence

III1 ≤ c(p)
∫ t

0

‖b1(τ)‖
2p
p−3
Lp X(τ)dτ

+ ec(p)
R T
0 ‖u2,3(λ)‖2L∞dλ

(
1 +

(∫ T

0

‖u2,3(λ)‖2L∞‖b1(λ)‖2Lpdλ
) p
p−3
) (6.3)

by (6.2) and (2.2). We take the identically same estimates on III2 and III3 as
before from (4.16) and (4.17). On III4, from (4.18), we have

III4 ≤ c
(∫ t

0

‖b‖
8p

3p−10
Lp X(τ)dτ

)
+

1
8

∫ t

0

Z(τ)dτ, (6.4)

where due to (6.2) and (4.13) we have

‖b(τ)‖
8p

3p−10
Lp

≤ c(p)‖b1(τ)‖
8p

3p−10
Lp + ec(p)

R T
0 ‖u2,3‖2L∞dλ

(
1 +

(∫ T

0

‖u2,3‖2L∞‖b1‖2Lpdλ
) 4p

3p−10
)
.

Thus, by (2.2) similarly to (4.19),∫ t

0

‖b(τ)‖
8p

3p−10
Lp X(τ)dτ ≤ c(p)

∫ t

0

‖b1‖
8p

3p−10
Lp Xdτ + ec(p)

R T
0 ‖u2,3‖2L∞dλ

×
(

1 +
(∫ T

0

‖u2,3‖2L∞‖b1‖2Lpdλ
) 4p

3p−10
)
.

(6.5)

With (6.5) applied to (6.4), along with (4.16), (4.17) and (6.3) applied to (6.1),
absorbing dissipative and diffusive terms, we have by Hölder’s inequalities

X(t) +
∫ t

0

Z(τ)dτ

. 1 +
∫ t

0

‖b1‖
2p
p−3
Lp Xdτ + ec(p)

R T
0 ‖u2,3‖2L∞dλ

(
1 +

(∫ T

0

‖u2,3‖2L∞‖b1‖2Lpdλ
) p
p−3
)

+
∫ t

0

‖u3‖8/3L∞‖∇u‖
2
L2dτ +

∫ t

0

‖b1‖
8p

3p−10
Lp Xdτ
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+ ec(p)
R T
0 ‖u2,3‖2L∞dλ

(
1 +

(∫ T

0

‖u2,3‖2L∞‖b1‖2Lpdλ
) 4p

3p−10
)

. 1 +
∫ t

0

(
‖b1‖

8p
3p−10
Lp + ‖u3‖8/3L∞

)
Xdτ

+ ec(p)T
1/4(

R T
0 ‖u2,3‖8/3L∞dλ)3/4

(
1 +

((∫ T

0

‖u2,3‖8/3L∞dλ
)3/4

×
(∫ T

0

‖b1‖8Lpdλ
)1/4) 4p

3p−10
)

. 1 +
∫ t

0

(
‖b1‖

8p
3p−10
Lp + ‖u3‖8/3L∞

)
Xdτ + c(p,N1)

(
1 +

(∫ T

0

‖b1‖8Lpdλ
) p

3p−10
)
.

Thus, the proof of Theorem 1.3 is complete because by Hölder’s inequalities as in
the proof of Theorem 1.1, we have∫ T

0

‖b1(τ)‖
8p

3p−10
Lp + ‖u3(τ)‖8/3L∞ + ‖b1(τ)‖8Lpdλ <∞.

7. Proof of Theorem 1.4

The proof is similar to that of Theorem 1.2; we sketch it for completeness. For
fixed T > 0, firstly, from (3.3) with j1 = 2, j2 = 3, j3 = 1, we obtain by Hölder’s
inequality

sup
t∈[0,T ]

‖b2,3(t)‖2L10/3 ≤ N2
2 e

14
3 T

1/4N
3/4
1 +

(7
3
)
e

14
3 T

1/4N
3/4
1 N2

2T
1/4N

3/4
1

so that by (4.13),

sup
t∈[0,T ]

‖b(t)‖2L10/3 ≤ sup
t∈[0,T ]

28/5
(
‖b1‖2L10/3 + ‖b2,3‖2L10/3

)
≤ 28/5

(
N2

2 +N2
2 e

14
3 T

1/4N
3/4
1 +

(7
3
)
e

14
3 T

1/4N
3/4
1 N2

2T
1/4N

3/4
1

)
(7.1)

similarly to (5.1). Now as in the proof of Theorem 1.2, we choose t1 ∈ [0, T ] to be
specified subsequently and use the previous estimate of

sup
t∈[0,t1]

X(t) +
∫ t1

0

Z(τ)dτ . 1 +
4∑
i=1

IIIIi (7.2)

from (5.2). By (2.2), we can choose t1 ∈ [0, T ] so that

c1

(
28/5

(
N2

2 +N2
2 e

14
3 T

1/4N
3/4
1 +

(7
3
)
e

14
3 T

1/4N
3/4
1 N2

2T
1/4N

3/4
1

))5/2

×
(∫ t1

0

X(τ)dτ
)1/4

≤ 1
8
.

(7.3)

Firstly, by (7.1),

IIII1 ≤ c1
(

28/5
(
N2

2 +N2
2 e

14
3 T

1/4N
3/4
1 +

(7
3
)
e

7
3T

1/4N
3/4
1 N2

2T
1/4N

3/4
1

))10

. (7.4)



EJDE-2014/98 COMPONENT REDUCTION 15

We use the same estimates of (4.16) and (4.17) for IIII2 and IIII3 as before.
Finally, from (2.2), (7.1) and (7.3) and Hölder’s inequality,

IIII4 ≤ c1
(∫ t1

0

‖b‖20L10/3X(τ)dτ
)1/4(∫ t1

0

Z(τ)dτ
)

≤ c1
(

sup
t∈[0,T ]

‖b(t)‖2L10/3

)5/2(∫ t1

0

X(τ)dτ
)1/4(∫ t1

0

Z(τ)dτ
)

≤ c1
(

28/5
(
N2

2 +N2
2 e

14
3 T

1/4N
3/4
1 +

(7
3
)
e

14
3 T

1/4N
3/4
1 N2

2T
1/4N

3/4
1

))5/2

×
(∫ t1

0

Z(τ)dτ
)

≤ 1
8

∫ t1

0

Z(τ)dτ.

(7.5)

After absorbing dissipative and diffusive terms, due to (4.16), (4.17), (7.4) and (7.5)
applied to (7.2), Gronwall’s inequality gives the bound on

sup
t∈[0,t1]

X(t) +
1
2

∫ t1

0

Z(τ)dτ.

Reiterating on [t, 2t1], after finite times we obtain the bound on the whole interval
[0, T ] completing the proof of Theorem 1.4.

8. Appendix

In this section we give details of the decomposition in the ‖∇hu‖2L2 + ‖∇hb‖2L2 -
estimate, namely (4.2) (cf. [5, 12]). The following lemma is useful:

Lemma 8.1 ([17]). Assume that u ∈ H2(R3) is smooth and ∇ · u = 0. Then
2∑

i,j=1

∫
ui∂iuj∆huj =

2∑
i,j=1

1
2

∫
∂iuj∂iuj∂3u3−

∫
∂1u1∂2u2∂3u3 +

∫
∂1u2∂2u1∂3u3

Firstly, for I1 applying this Lemma and integrating by parts, we have
2∑

i,j=1

∫
ui∂iuj∆huj .

∫
|u3||∇hu||∇∇hu|.

Thus,

I1 =
2∑

i,j=1

∫
ui∂iuj∆huj +

2∑
j=1

∫
u3∂3uj∆huj +

3∑
i=1

ui∂iu3∆hu3

.
∫
|u3||∇u||∇∇hu|.

Next, we decompose I2: integrating by parts

I2 = −
2∑

i,j,k=1

∫
bi∂ibj∂

2
kkuj −

2∑
i,k=1

∫
bi∂ib3∂

2
kku3 −

3∑
j=1

2∑
k=1

∫
b3∂3bj∂

2
kkuj

= −
2∑

i,j,k=1

∫
bi∂ibj∂

2
kkuj −

2∑
i,k=1

∫
bi∂ib3∂

2
kku3
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+
3∑
j=1

2∑
k=1

∫
∂kb3∂3bj∂kuj + b3∂

2
k3bj∂kuj

= −
2∑

i,j,k=1

∫
bi∂ibj∂

2
kkuj −

2∑
i,k=1

∫
bi∂ib3∂

2
kku3

+
3∑
j=1

2∑
k=1

∫
−∂2

3kb3bj∂kuj − ∂kb3bj∂2
3kuj + b3∂

2
k3bj∂kuj

.
∫
|b||∇hb||∇∇hu|+ |b||∇hu||∇∇hb|.

Next, we write

I3 =
2∑

i,j,k=1

∫
ui∂ibj∂

2
kkbj +

2∑
i,k=1

∫
ui∂ib3∂

2
kkb3 +

3∑
j=1

2∑
k=1

u3∂3bj∂
2
kkbj

= I31 + I32 + I33.

Integrating by parts,

I31 = −
2∑

i,j,k=1

∫
∂kui∂ibj∂kbj + ui∂

2
ikbj∂kbj

=
2∑

i,j,k=1

∫
∂2
kkui∂ibjbj + ∂kui∂

2
ikbjbj +

1
2
∂iui∂kbj∂kbj

=
2∑

i,j,k=1

∫
∂2
kkui∂ibjbj + ∂kui∂

2
ikbjbj −

1
2

(∂2
ikui∂kbjbj + ∂iui∂

2
kkbjbj)

.
∫
|b||∇hb||∇∇hu|+ |b||∇hu||∇∇hb|,

I32 = −
2∑

i,k=1

∫
∂kui∂ib3∂kb3 +

1
2
ui∂i(∂kb3)2

=
2∑

i,k=1

∫
∂2
kkui∂ib3b3 + ∂kui∂

2
ikb3b3 +

1
2
∂iui∂kb3∂kb3

=
2∑

i,k=1

∫
∂2
kkui∂ib3b3 + ∂kui∂

2
ikb3b3 −

1
2

(∂2
ikui∂kb3b3 + ∂iui∂

2
kkb3b3)

.
∫
|b||∇hb||∇∇hu|+ |b||∇hu||∇∇hb|,

I33 = −
3∑
j=1

2∑
k=1

∫
∂ku3∂3bj∂kbj +

1
2
u3∂3(∂kbj)2

=
3∑
j=1

2∑
k=1

∫
∂2
3ku3bj∂kbj + ∂ku3bj∂

2
3kbj +

1
2
∂3u3∂kbj∂kbj
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=
3∑
j=1

2∑
k=1

∫
∂2
3ku3bj∂kbj + ∂ku3bj∂

2
3kbj −

1
2

2∑
i=1

∂iui∂kbj∂kbj

=
3∑
j=1

2∑
k=1

∫
∂2
3ku3bj∂kbj + ∂ku3bj∂

2
3kbj +

1
2

2∑
i=1

(∂2
ikui∂kbjbj + ∂iui∂

2
kkbjbj)

.
∫
|b||∇hb||∇∇hu|+ |b||∇hu||∇∇hb|.

Therefore,

I3 .
∫
|b||∇hb||∇∇hu|+ |b||∇hu||∇∇hb|.

Finally,

I4 = −
2∑

i,j,k=1

∫
bi∂iuj∂

2
kkbj −

2∑
i,k=1

bi∂iu3∂
2
kkb3 −

3∑
j=1

2∑
k=1

b3∂3uj∂
2
kkbj

.
∫
|b||∇hb||∇∇hu|+ |b||∇u||∇∇hb|.

Hence,
I2 + I3 + I4 . |b||∇b||∇∇hu|+ |b||∇u||∇∇hb|.

This completes the decomposition claimed.
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[20] P. Penel, M. Pokorný; On anisotropic regularity criteria for the solutions to 3D Navier-Stokes

equations, J. Math. Fluid Mech., 13 (2011), 341-353.
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