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WELL-POSEDNESS FOR ONE-DIMENSIONAL ANISOTROPIC
CAHN-HILLIARD AND ALLEN-CAHN SYSTEMS

AHMAD MAKKI, ALAIN MIRANVILLE

Abstract. Our aim is to prove the existence and uniqueness of solutions

for one-dimensional Cahn-Hilliard and Allen-Cahn type equations based on a

modification of the Ginzburg-Landau free energy proposed in [8]. In particular,
the free energy contains an additional term called Willmore regularization and

takes into account strong anisotropy effects.

1. Introduction

The original Ginzburg-Landau free energy

ΨGL =
∫

Ω

(1
2
|∇u|2 + F (u)

)
dx (1.1)

plays a fundamental role in phase separation and transition, see, [4, 2]. Here, u is
the order parameter, Ω is the domain occupied by the material (we assume that it
is a bounded and regular domain of RN ),

F (s) =
1
4

(s2 − 1)2, (1.2)

f(s) = s3 − s. (1.3)

In [7] (also in [13]), the authors proposed the following modification of the
Ginzburg-Landau free energy which takes into account strong anisotropy effects
arising during the growth and coarsening of thin films, namely,

ΨMGL =
∫

Ω

(
γ(n)(

1
2
|∇u|2 + F (u)) +

β

2
ω2
)
dx, (1.4)

where
n =

∇u
|∇u|

, ω = f(u)−∆u, F ′ = f. (1.5)

Here, γ(n) accounts for anisotropy effects (we also refer the reader to, e.g., [6] for
a different approach to account for anisotropy effects in phase-field models) and
G(u) = ω2 is called nonlinear Willmore regularization. Such a regularization is
relevant, e.g., in determining the equilibrium shape of a crystal in its own liquid
matrix, when anisotropy effects are strong. Indeed, in that case, the equilibrium
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interface may not be a smooth curve, but may present facets and corners with slopes
of discontinuities (see, e.g., [12]). In particular, the corresponding Cahn-Hilliard
equation

∂u

∂t
= ∆

DΨMGL

Du

(where D
Du denotes a variational derivative) is an ill-posed problem and requires

regularization. The author in [9] proved the well-posedness for a one-dimensional
Allen-Cahn system based on (1.4).

In [8], the author introduced another modification of the Ginzburg-Landau free
energy, namely,

ΨAMGL =
∫

Ω

[1
2
|γ(n)∇u|2 + F (u) +

1
2
ω2
]
dx. (1.6)

This model describes dendritic pattern formations and plays an important role in
crystal growth.

To the best of our knowledge, there is no mathematical result concerning the
Cahn-Hilliard (resp. Allen-Cahn) model associated with the free energy (1.6).

In this article, we consider the one dimensional case, i.e., taking Ω = (−L,L),
(1.6) reads

Ψ =
∫

Ω

[1
2
|γ(n)ux|2 + F (u) +

1
2
ω2
]
dx, (1.7)

where
n =

ux
|ux|

, ω = f(u)− uxx, F ′ = f. (1.8)

In [7, 14], the authors proposed efficient energy stable schemes for the Cahn-
Hilliard equation based on (1.4) and (1.6); actually, in [7], the authors considered a
slightly different problem and also considered a second regularization, based on the
bi-Laplacian, and, in that case, studied the isotropic case γ(n) = 1 as well. We also
mention that, in [10] (resp. [11]), the Cahn-Hilliard (resp. Allen-Cahn) equation
based on the Willmore regularization is studied in the isotropic case. There, well-
posedness results are obtained.

Our aim in this article is to prove the existence and uniqueness of solutions for
the Cahn-Hilliard and Allen-Cahn systems associated with the Ginzburg-Landau
free energy (1.7).

Assumptions and notation. As far as the nonlinear term f is concerned, we
assume more generally that f is of class C4 and that

f(0) = 0, f ′(s) ≥ −c0, c0 ≥ 0, s ∈ R, (1.9)

f(s)s ≥ c1F (s)− c2 ≥ −c′2, c1 > 0, c2, c
′
2 ≥ 0, s ∈ R, (1.10)

where F (s) =
∫ s

0
f(τ) dτ ,

sf(s)f ′(s)− f(s)2 ≥ c3f(s)2 − c4, c3 > 0, c4 ≥ 0, s ∈ R, (1.11)

|f ′(s)| ≤ ε|f(s)|+ c5, ∀ε > 0, c5 ≥ 0, s ∈ R, (1.12)

sf ′′(s) ≥ 0, s ∈ R. (1.13)

Note that these assumptions are satisfied by the cubic nonlinear term (1.3).
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As far as the bounded function γ is concerned, we introduce the following func-
tions:

g(s) =


γ2(−1)s2 s < 0,
0 s = 0,
γ2(1)s2 s > 0,

(1.14)

g being a C1-function, with g′(0) = 0, and

h(s) =


γ2(−1)s s < 0,
0 s = 0,
γ2(1)s s > 0.

(1.15)

Thus, h is a C0-function, with h′ ∈ L∞(R).

Lemma 1.1. The function h is Lipschitz continuous on (−L,L).

Proof. Let s1 and s2 belong to R. We have two cases, depending on the sign of s1

and s2:
• If s1 and s2 have the same sign (or vanish), then it is clear that

|h(s1)− h(s2)| ≤ max{γ2(1), γ2(−1)}|s1 − s2|.

• If s1 and s2 have opposite signs, then, assuming that s1 > 0 and s2 < 0
(the case s1 < 0 and s2 > 0 is similar),

|h(s1)− h(s2)| = γ2(1)s1 − γ2(−1)s2

≤ max{γ2(1), γ2(−1)}(s1 − s2)

= max{γ2(1), γ2(−1)}|s1 − s2|.

The result follows. �

We denote by ((·, ·)) the usual L2-scalar product, with associated norm ‖ · ‖, and
we set ‖ ·‖−1 = ‖(−∆)−1/2 · ‖, where (−∆)−1 is the inverse minus Laplace operator
associated with Neumann boundary conditions and acting on functions with null
average.

We set, whenever it makes sense, 〈·〉 = 1
Vol(Ω)

∫
Ω
· dx, being understood that, for

ϕ ∈ H−1(Ω), 〈ϕ〉 = 1
Vol(Ω) 〈ϕ, 1〉H−1(Ω),H1(Ω), and we note that

ϕ 7→
(
‖ϕ− 〈ϕ〉2‖2−1 + 〈ϕ〉2

)1/2
is a norm on H−1(Ω) which is equivalent to the usual one.

Throughout this article, the same letter c (and sometimes c′) denotes constants
which may vary from line to line. Similarly, the same letter Q denotes monotone
increasing (with respect to each argument) functions which may vary from line to
line.

Remark 1.2. We can write, formally, for a small variation,

DΨ =
∫ L

−L

[
(γ(n)ux)D(γ(n)ux) + F ′(u)Du+ ωDω

]
dx

=
∫ L

−L

[
γ(n)uxD(γ(n)ux) + f(u)Du+ ωf ′(u)Du− ωxxDu

]
dx.



4 A. MAKKI, A. MIRANVILLE EJDE-2015/04

We then note that (
γ
( s
|s|
)
s
)′

= γ
( s
|s|
)

in D′.

Indeed, we have (
γ
( s
|s|
)
s
)′

= sγ′
( s
|s|
)( s
|s|
)′ + γ

( s
|s|
)

in D′.

Now, it is sufficient to prove that

sγ′
( s
|s|
)( s
|s|
)′ = 0 in D′.

To do so, we let ϕ ∈ D(−L,L) and have

〈
( s
|s|
)′
, ϕ〉D′,D = −〈 s

|s|
, ϕ′〉D′,D = −

∫ L

−L

s

|s|
ϕ′(s) ds

= −
∫ L

0

ϕ′(s) ds+
∫ 0

−L
ϕ′(s) ds

= [ϕ(s)]0−L + [−ϕ(s)]L0
= 2ϕ(0) = 2〈δ0, ϕ〉D′,D,

so that

sγ′
( s
|s|
)( s
|s|
)′ = 2sδ0γ′

( s
|s|
)

in D′.

Since sδ0 = 0 in D′, we obtain(
γ
( s
|s|
)
s
)′

= γ
( s
|s|
)

in D′. (1.16)

Thus, owing to (1.16), we obtain, formally,

DΨ =
∫ L

−L

[
γ2(n)uxD(ux) + f(u)Du+ ωf ′(u)Du− ωxxDu

]
dx

=
∫ L

−L

[
− (γ2(n)ux)x + f(u) + ωf ′(u)− ωxx

]
Dudx

and the variational derivative of Ψ with respect to u reads

DΨ
Du

= − (h(ux))x + f(u) + ωf ′(u)− ωxx.

2. Cahn-Hilliard system

The Cahn-Hilliard equation is an equation of mathematical physics which de-
scribes the evolution of different material phases via an order parameter (or multiple
order parameters). The equation was initially derived as a model for spinodal de-
composition in solid materials [3, 5] and has since been extended to many other
physical systems.
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Setting of the problem. Writing mass conservation, i.e., ∂u
∂t = −hx, where h

is the mass flux which is related to the chemical potential µ by the constitutive
relation h = −µx, and that the chemical potential is the variational derivative of Ψ
with respect to u, we end up with the following sixth-order Cahn-Hilliard system

∂u

∂t
= µxx, (2.1)

µ = −(h(ux))x + f(u) + ωf ′(u)− ωxx, (2.2)

ω = f(u)− uxx, (2.3)

together with the Neumann boundary conditions

ux
∣∣
±L = µx

∣∣
±L = ωx

∣∣
±L = 0 (2.4)

and the initial condition
u
∣∣
t=0

= u0. (2.5)

2.1. A priori estimates. We first note that, integrating (formally) (2.1) over Ω,
we obtain the conservation of mass, namely,

〈u(t)〉 = 〈u0〉, t ≥ 0. (2.6)

Multiplying (2.1) by (−∆)−1 ∂u
∂t , we have, integrating over Ω and by parts,

‖∂u
∂t
‖2−1 = −((µ,

∂u

∂t
)). (2.7)

We then multiply (2.2) by ∂u
∂t and integrate over Ω to obtain

((µ,
∂u

∂t
))

=
∫

Ω

h(ux)
∂ux
∂t

dx+
d

dt

∫
Ω

F (u) dx+ ((ωf ′(u),
∂u

∂t
))− ((ωxx,

∂u

∂t
)).

(2.8)

Noting that from (2.3) it follows that

((ωf ′(u),
∂u

∂t
))− ((ωxx,

∂u

∂t
)) =

1
2
d

dt
‖ω‖2, (2.9)

we have, owing to (1.14),∫
Ω

h(ux)
∂ux
∂t

dx =
1
2
d

dt

∫
Ω

g(ux) dx. (2.10)

We finally deduce from (2.7)-(2.10) that

d

dt

[ ∫
Ω

g(ux) dx+ 2
∫

Ω

F (u) dx+ ‖ω‖2
]

+ 2‖∂u
∂t
‖2−1 = 0. (2.11)

In particular, (2.11) yields that the free energy decreases along the trajectories, as
expected.

We now multiply (2.1) by (−∆)−1ū, where ū = u − 〈u〉, and integrate over Ω.
We obtain, owing to (2.6),

1
2
d

dt
‖ū‖2−1 = −((µ, u)) + Vol(Ω)〈µ〉〈u0〉, (2.12)

where, owing to (2.2),
〈µ〉 = 〈f(u)〉+ 〈f ′(u)〉. (2.13)
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Multiplying then (2.2) by u and integrating over Ω, we have, owing to (2.3),

((µ, u)) =
∫

Ω

g(ux) dx+ ((f(u), u)) + ((f(u)f ′(u), u))

− ((f ′(u)uxx, u))− ((f(u)xx, u)) + ‖uxx‖2.
(2.14)

Noting that

((f ′(u)uxx, u)) = −((f ′(u)ux, ux))− ((uf ′′(u)ux, ux)),

((f(u)xx, u)) = −((f ′(u)ux, ux)),

we obtain

((µ, u)) =
∫

Ω

g(ux) dx+ ((f(u), u)) + ‖ω‖2 + ((uf ′′(u)ux, ux))

+
∫

Ω

(
f(u)f ′(u)u− f2(u)

)
dx

and finally, owing to (1.10), (1.11), (1.13) and (2.12), we obtain
d

dt
‖ū‖2−1 + c

[ ∫
Ω

g(ux) dx+ 2
∫

Ω

F (u) dx+ ‖ω‖2 + ‖f(u)‖2
]

≤ 2 Vol(Ω)〈µ〉〈u0〉+ c′, c > 0.
(2.15)

We now assume that

|〈u0〉| ≤M (hence, |〈u(t)〉| ≤M , t ≥ 0), M ≥ 0. (2.16)

Therefore, owing to (1.12) and (2.13),

|2 Vol(Ω)〈u0〉〈µ〉| ≤ cM (|〈f(u)〉|+ |〈ωf ′(u)〉|)

≤ c

2

(∫
Ω

f(u)2 dx+
∫

Ω

ω2 dx
)

+ c′M ,
(2.17)

where c is the constant appearing in (2.15), and we deduce from (2.15) and (2.17)
that

d

dt
‖ū‖2−1 + c

[ ∫
Ω

g(ux) dx+ 2
∫

Ω

F (u) dx+ ‖ω‖2
]
≤ c′M . (2.18)

Combining (2.11) and (2.18), we have an inequality of the form
dE

dt
+ c(E + ‖∂u

∂t
‖2−1) ≤ c′M , (2.19)

where
E = ‖ū‖2−1 + 〈u〉2 +

∫
Ω

g(ux) dx+ 2
∫

Ω

F (u) dx+ ‖ω‖2. (2.20)

In particular, we deduce from (2.19) and Gronwall’s Lemma that

E(t) ≤ E(0)e−ct + c′M , c > 0, t ≥ 0. (2.21)

Noting that, owing to (1.9),

‖ω‖2 ≥ ‖f(u)‖2 + ‖uxx‖2 − 2c0‖ux‖2, (2.22)

we finally deduce from (2.20)-(2.22) and the boundedness of γ(n) that

‖u‖2H2(Ω) + ‖f(u)‖2 ≤ Q(‖u0‖H2(Ω))e−ct + c′M . (2.23)

Rewriting (2.1) in the equivalent form

µ = 〈µ〉 − (−∆)−1 ∂u

∂t
, (2.24)
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we obtain

‖µx‖ ≤ c‖
∂u

∂t
‖−1. (2.25)

Noting that, proceeding as in (2.17),

|〈µ〉| ≤ c
(
‖u‖2H2(Ω) + ‖f(u)‖2 + 1

)
,

we finally find

‖µ‖H1(Ω) ≤ c
(
‖∂u
∂t
‖−1 + ‖u‖2H2(Ω) + ‖f(u)‖2 + 1

)
. (2.26)

Now, owing to (2.2), we have

ωxx = −(h(ux))x − µ+ f(u) + ωf ′(u)

and, owing to (1.12), there holds

‖ωxx‖ ≤ c
(
‖(h(ux))x‖+ ‖f(u)‖2 + ‖ω‖2 + ‖µ‖

)
≤ c

(
‖h(ux)‖H1(Ω) + ‖f(u)‖2 + ‖ω‖2 + ‖µ‖

)
,

(2.27)

where we have used the fact that{
h(ux) = γ2(n)ux ∈ L2(Ω)

(h(ux))′ = h′(ux)uxx ∈ L2(Ω)

}
⇒ h(ux) ∈ H1(Ω).

Recall that h is Lipschitz continuous, with h(0) = 0, and note that

‖h(ux)‖H1(Ω) ≤ c‖u‖H2(Ω).

We then have, owing to (1.14) and (2.26)-(2.27),

‖ω‖H2(Ω) ≤ c
(
‖∂u
∂t
‖−1 + ‖u‖2H2(Ω) + ‖f(u)‖2 + 1

)
. (2.28)

We now multiply (2.1) by u and integrate over Ω to get

1
2
d

dt
‖u‖2 = −((µx, ux)). (2.29)

Multiplying then (2.2) by −uxx and integrating over Ω, we obtain, in view of (2.3),

((µx, ux)) =
∫

Ω

h(ux)uxxx dx+ ((f ′(u)ux, ux))− ((ωf ′(u), uxx))

− ((f(u)xx, uxx)) + ‖uxxx‖2.
(2.30)

We note that
|((ωf ′(u), uxx))| ≤ ‖f ′(u)‖L∞(Ω)‖ω‖‖uxx‖

≤ 1
2
‖uxx‖2 +Q

(
‖u‖H2(Ω)

)
‖ω‖2,

(2.31)

where Q is continuous (here, we have used the fact that H2(Ω) is continuously
embedded into C(Ω̄)), and, proceeding similarly,∣∣((f(u)xx, uxx))

∣∣ =
∣∣((f ′(u)ux, uxxx))

∣∣
≤ 1

2
‖uxxx‖2 +Q

(
‖u‖H2(Ω)

)
‖ux‖2.

(2.32)

Finally, ∣∣ ∫
Ω

h(ux)uxxx dx
∣∣ ≤ c[‖ux‖2 + ‖uxxx‖2]. (2.33)
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It thus follows from (1.9) and (2.29)-(2.33) that
d

dt
‖u‖2 + ‖u‖2H3(Ω) ≤ Q(‖u‖H2(Ω))

(
‖u‖2H1(Ω) + ‖ω‖2

)
, (2.34)

where Q is continuous.

2.2. Existence and uniqueness of solutions.

Theorem 2.1. Assume that (2.16) holds and that u0 ∈ H2(Ω), with ∂u0
∂x

∣∣
±L = 0.

Then (2.1)-(2.5) admits a unique (variational) solution such that

u ∈ L∞(R+;H2(Ω)) ∩ L2(0, T ;H3(Ω)),
∂u

∂t
∈ L2(0, T ;H−1(Ω)),

µ ∈ L2(0, T ;H1(Ω)), ω ∈ L∞(R+;L2(Ω)) ∩ L2(0, T ;H2(Ω))

for all T > 0.

Proof. (a) Existence: The proof of existence is based on a classical Galerkin scheme
and on the a priori estimates derived in the previous section. We can note that a
weak (variational) formulation of (2.1)-(2.5) reads

((
∂u

∂t
, v)) = ((µxx, v)), ∀v ∈ H1(Ω), (2.35)

((µ, v)) = ((h(ux), vx)) + ((ωf ′(u), v)) + ((f(u), v))− ((ωxx, v)),

∀v ∈ H1(Ω),
(2.36)

((ω, v)) = ((f(u), v))− ((uxx, v)), ∀v ∈ H1(Ω), (2.37)

u
∣∣
t=0

= u0. (2.38)

Let v0, v1, . . . be an orthonormal (in L2(Ω)) and orthogonal (in H1(Ω)) family
associated with the eigenvalues 0 = λ0 < λ1 ≤ · · · of the operator −∆ associated
with Neumann boundary conditions (note that v0 is a constant). We set

Vm = Span{v0, v1, . . . , vm}
and consider the approximate problem:

Find (um, µm, ωm) : [0, T ]→ Vm × Vm × Vm such that

((
∂um
∂t

, v)) = −((µmx, v)), ∀v ∈ Vm, (2.39)

((µm, v)) = ((h(umx), vx)) + ((ωf ′(um), v))

+ ((f(um), v))− ((ωmxx, v)), ∀v ∈ Vm,
(2.40)

((ωm, v)) = ((f(um), v))− ((umxx, v)), ∀v ∈ Vm, (2.41)

um
∣∣
t=0

= u0,m, (2.42)

where u0,m = Pmu0, Pm being the orthogonal projector from L2(Ω) onto Vm.
The existence of a local (in time) solution to (2.39)-(2.42) is standard. Indeed,

we have to solve a Lipschitz continuous finite-dimensional system of ODE’s to find
um, which yields ωm and then µm.

The a priori estimates derived in the previous section, which are now justi-
fied within the Galerkin approximation, yield that the solution is global and that,
up to a subsequence which we do not relabel and owing to classical Aubin-Lions
compacteness results,

um → u weak star in L∞(0, T ;H2(Ω)), strongly in C([0, T ];H2−ε(Ω)), and a.e.,
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∂um
∂t
→ ∂u

∂t
weakly in L2(0, T ;H−1(Ω)),

µm → µ weakly in L2(0, T ;H1(Ω)),

ωm → ω weak star in L∞(0, T ;L2(Ω)) and weakly in L2(0, T ;H2(Ω)),

as m→ +∞,∀T > 0.
Note that, owing to (2.19), (2.21) and (2.23), we have u ∈ L∞(R+;H2(Ω)) and,

consequently, ω ∈ L∞(R+;L2(Ω)).
As far as the passage to the limit is concerned, the most delicate part is to prove

that ∫ T

0

∫
Ω

(ωmf ′(um)− ωf ′(u))ϕdx dt→ 0 as m→ +∞,∫ T

0

∫
Ω

(h(umx)− h(ux))ϕx dx dt→ 0 as m→ +∞,

for ϕ regular enough.
We have, say, for ϕ ∈ C2([0, T ]× Ω̄) such that ϕ(T ) = ϕ(0) = 0,∫ T

0

∫
Ω

(ωmf ′(um)− ωf ′(u))ϕdx dt

=
∫ T

0

∫
Ω

(ωm − ω)f ′(u)ϕdx dt+
∫ T

0

∫
Ω

ωm (f ′(um)− f ′(u))ϕdx dt.

(2.43)

The passage to the limit in the first integral in the right-hand side of (2.43) is
straightforward, while the passage to the limit in the second one follows from the
above convergences which yield, in particular, the inequality∣∣ ∫ T

0

∫
Ω

ωm (f ′(um)− f ′(u))ϕdx dt
∣∣ ≤ c‖um − u‖L2((0,T )×Ω).

Finally, recalling that h is Lipschitz continuous, we have∣∣ ∫ T

0

∫
Ω

(
h(umx)− h(ux)

)
ϕx dx dt

∣∣ ≤ c‖umx − ux‖L2((0,T )×Ω).

(b) Uniqueness: Let (u1, µ1, ω1) and (u2, µ2, ω2) be two solutions to (2.1)-(2.4) with
initial data u1,0 and u2,0, respectively, such that

|〈ui,0〉| ≤M, i = 1, 2. (2.44)

We set (u, µ, ω) = (u1, µ1, ω1)− (u2, µ2, ω2) and u0 = u1,0 − u2,0 and have

∂u

∂t
= µxx, (2.45)

µ = −
(
h(u1x)

)
x

+
(
h(u2x)

)
x

+ f(u1)− f(u2)

+ ω1f
′(u1)− ω2f

′(u2)− ωxx,
(2.46)

ω = f(u1)− f(u2)− uxx, (2.47)

ux
∣∣
±L = µx

∣∣
±L = ωx

∣∣
±L = 0, (2.48)

u
∣∣
t=0

= u0. (2.49)
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We multiply (2.45) by (−∆)−1ū and obtain, integrating over Ω and by parts,

1
2
d

dt
‖ū‖2−1 = −((µ, u)) + Vol(Ω)〈µ〉〈u〉, (2.50)

where, owing to (2.46),

〈µ〉 = 〈f(u1)− f(u2)〉+ 〈ω1f
′(u1)− ω2f

′(u2)〉. (2.51)

We then multiply (2.46) by u and find, in view of (2.47),

((µ, u)) =
∫

Ω

h(u1x)ux dx−
∫

Ω

h(u2x)ux dx

+ ((f(u1)− f(u2), u)) + ((ω1f
′(u1)− ω2f

′(u2), u))

− ((f(u1)− f(u2), uxx)) + ‖uxx‖2.

(2.52)

We have, owing to (1.9),

((f(u1)− f(u2), u)) = ((f ′(u)u, u)) ≥ −c0‖u‖2. (2.53)

Furthermore,

|((f(u1)− f(u2), uxx))| ≤ 1
8
‖uxx‖2 +Q(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω))‖u‖2 (2.54)

and ∣∣((ω1f
′(u1)− ω2f

′(u2), u))
∣∣

≤ |((ω1(f ′(u1)− f ′(u2)), u))|+ |((ωf ′(u2), u))|
≤ Q(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω))‖ω1‖H2(Ω)‖u‖2

+ |((f ′(u2)uxx, u))|+ |((f ′(u2)(f(u1)− f(u2)), u))|

≤ 1
8
‖uxx‖2 +Q(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω))(‖ω1‖H2(Ω) + 1)‖u‖2.

(2.55)

Similarly,

|Vol(Ω)〈u〉〈µ〉|

≤ c(
∫

Ω

|f(u1)− f(u2)| dx+
∫

Ω

|ω1f
′(u1)− ω2f

′(u2)| dx)|〈u〉|

≤
(∫

Ω

|f(u1)− f(u2)||f ′(u2)| dx
)
|〈u〉|

+ (
∫

Ω

|ω1||f ′(u1)− f ′(u2)| dx+
∫

Ω

|uxx||f ′(u2)| dx)|〈u〉|

+Q(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω))‖u‖|〈u〉|

≤ 1
8
‖uxx‖2 +Q(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω))(‖ω1‖+ 1)(‖u‖2 + |〈u〉|2).

(2.56)

Recalling that h is Lipschitz continuous, we have

|((h(u1x)− h(u2x), ux))| ≤
∫

Ω

|h(u1x)− h(u2x)||ux| dx ≤ c‖ux‖2. (2.57)

We finally deduce from (2.50), (2.52)-(2.57) and the interpolation inequality

‖ū‖ ≤ c‖ū‖1/2−1 ‖∇ū‖1/2 ≤ c′‖ū‖
1/2
−1 ‖∆ū‖1/2 (2.58)
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that
d

dt
(‖ū‖2−1 + 〈u〉2) + ‖uxx‖2

≤ Q(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω))(1 + ‖ω1‖+ ‖ω1‖H2(Ω))(‖ū‖2−1 + |〈u〉|2).
(2.59)

Gronwall’s Lemma then yields, owing to (2.19), (2.23) and (2.28) (written for
(u1, µ1, ω1)),

‖u(t)‖H−1(Ω) ≤ ceQ(‖u1,0‖H2(Ω),‖u2,0‖H2(Ω))t‖u0‖H−1(Ω), (2.60)

hence the uniqueness, as well as the continuous dependence with respect to the
initial data in the H−1-norm.

It follows from Theorem 2.1 that we can define the continuous (for the H−1-
norm) semigroup

S(t) : ΦM → ΦM , u0 → u(t), t ≥ 0

(i.e., S(0) = Id and S(t+ s) = S(t) ◦ S(s), t, s ≥ 0), where

ΦM =
{
v ∈ H2(Ω),

∂v

∂x

∣∣
±L = 0, |〈v〉| ≤M

}
, M ≥ 0.

We then deduce from (2.23) that S(t) is dissipative, i.e., it possesses a bounded
absorbing set B0 ⊂ ΦM (in the sense that, for all B ⊂ ΦM bounded, there exists
t0 = t0(B) such that t ≥ t0 ⇒ S(t)B ⊂ B0). �

3. Allen-Cahn system

The Allen-Cahn equation describes important processes related with phase sep-
aration in binary alloys, namely, the ordering of atoms in a lattice (see [1]).

Assuming the relaxation dynamics ∂u
∂t = −DψDu , we obtain the Allen-Cahn system

∂u

∂t
− (h(ux))x + f(u) + ωf ′(u)− ωxx = 0, (3.1)

ω = f(u)− uxx, (3.2)

together with the Neumann boundary conditions

ux
∣∣
±L = ωx

∣∣
±L = 0 (3.3)

and the initial condition
u
∣∣
t=0

= u0. (3.4)

3.1. A priori estimates. We Multiply (3.1) by ∂u
∂t and have, integrating over Ω

and by parts,

‖∂u
∂t
‖2 +

∫
Ω

h(ux)
∂ux
∂t

dx+
d

dt

∫
Ω

F (u) dx+ ((ωf ′(u)− ωxx,
∂u

∂t
)) = 0,

which yields, noting that it follows from (3.2) that

((ωf ′(u),
∂u

∂t
))− ((ωxx,

∂u

∂t
)) =

1
2
d

dt
‖ω‖2

and from (1.14) that ∫
Ω

h(ux)
∂ux
∂t

dx =
1
2
d

dt

∫
Ω

g(ux) dx,
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the differential equality

d

dt

[ ∫
Ω

g(ux) dx+ 2
∫

Ω

F (u) dx+ ‖ω‖2
]

+ 2‖∂u
∂t
‖2 = 0. (3.5)

In particular, it follows from (3.5) that the energy decreases along the trajectories,
as expected.

We then multiply (3.1) by u and obtain, owing to (3.2),

1
2
d

dt
‖u‖2 +

∫
Ω

g(ux) dx+ ((f(u), u)) +
∫

Ω

uf(u)f ′(u) dx

+ 2((f ′(u)ux, ux)) + ((uf ′′(u)ux, ux)) + ‖uxx‖2 = 0,

which yields, owing to (3.2),

1
2
d

dt
‖u‖2 +

∫
Ω

g(ux) dx+ ((f(u), u)) + ‖w‖2

+
∫

Ω

(uf(u)f ′(u)− f2(u)) dx+ ((uf ′′(u)ux, ux)) = 0,

hence, in view of (1.10), (1.11) and (1.13),

d

dt
‖u‖2 + c

[ ∫
Ω

g(ux) dx+ 2
∫

Ω

F (u) dx+ ‖ω‖2
]
≤ c′, c > 0. (3.6)

Summing (3.5) and (3.6), we find an inequality of the form

dE1

dt
+ c
(
E1 + ‖∂u

∂t
‖2
)
≤ c′, c > 0, (3.7)

where

E1 = ‖u‖2 +
∫

Ω

g(ux) dx+ 2
∫

Ω

F (u) dx+ ‖ω‖2. (3.8)

In particular, it follows from (3.7) and Gronwall’s Lemma that

E1(t) ≤ E1(0)e−ct + c′, c > 0, (3.9)

hence, in view of (1.9) (which yields that ‖ω‖2 ≥ ‖uxx‖2 + ‖f(u)‖2 − 2c0‖ux‖2),
(3.8) and classical elliptic regularity results,

‖u(t)‖H2(Ω) ≤ Q(‖u0‖H2(Ω))e−ct + c′, c > 0, t ≥ 0. (3.10)

Next, we multiply (3.1) by −uxx to have

−
∫

Ω

∂u

∂t
uxx dx−

∫
Ω

h(ux)uxxx dx−
∫

Ω

f(u)uxx dx

−
∫

Ω

ωf ′(u)uxx dx+
∫

Ω

ωxxuxx dx = 0.
(3.11)

It follows from (3.2) that

1
2
d

dt
‖ux‖2 −

∫
Ω

h(ux)uxxx dx+ ((f ′(u)ux, ux))

− ((ωf ′(u), uxx)) + (((f(u))xx, uxx)) + ‖uxxx‖2 = 0.
(3.12)

Now, owing to the continuous embedding H2(Ω) ⊂ C(Ω̄) and (3.2), there holds∣∣((f ′(u)ux, ux))
∣∣+
∣∣((ωf ′(u), uxx))

∣∣+
∣∣(((f(u))xx, uxx))

∣∣ ≤ Q(‖u‖H2(Ω))
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(indeed, it follows from (3.2) that ‖ω‖ ≤ Q(‖u‖H2(Ω))) and∣∣ ∫
Ω

h(ux)uxxx dx
∣∣ ≤ c[‖ux‖2 + ‖uxxx‖2],

hence
d

dt
‖ux‖2 + ‖u‖2H3(Ω) ≤ Q(‖u‖H2(Ω)). (3.13)

3.2. Existence and uniqueness of solutions.

Theorem 3.1. Let u0 ∈ H2(Ω)∩H1
0 (Ω). Then, (3.1)-(3.4) admits a unique (vari-

ational) solution such that u ∈ L∞(R+;H2(Ω)∩H1
0 (Ω)) and ∂u

∂t ∈ L
2(0, T ;L2(Ω)).

Furthermore, ω ∈ L∞(R+;L2(Ω))∩L2(0, T ;H2(Ω)∩H1
0 (Ω)) for all T > 0. Finally,

the associated semigroup is dissipative in H2(Ω) ∩H1
0 (Ω).

Proof. (a) Uniqueness: Let u1 and u2 be two solutions to (3.1)-(3.3) with initial
data u1,0 and u2,0 respectively, where ω1 and ω2 are defined from (3.2). We set
u = u1 − u2, ω = ω1 − ω2, u0 = u1,0 − u2,0 and have

∂u

∂t
− (h(u1x))x + (h(u2x))x + f(u1)− f(u2)

+ ω1f
′(u1)− ω2f

′(u2)− ωxx = 0,
(3.14)

ω = f(u1)− f(u2)− uxx, (3.15)

ux
∣∣
±L = ωx

∣∣
±L = 0, (3.16)

u
∣∣
t=0

= u0. (3.17)

We multiply (3.14) by u and integrating over Ω, we obtain

1
2
d

dt
‖u‖2 + ((h(u1x)− h(u2x), ux)) + ((f(u1)− f(u2), u))

+ ((ω1f
′(u1)− ω2f

′(u2), u))− ((f(u1)− f(u2), uxx)) + ‖uxx‖2 = 0.
(3.18)

We note that, by (1.9),

((f(u1)− f(u2), u)) ≥ c0‖u‖2

and that, owing to (3.15),

|((ω1f
′(u1)− ω2f

′(u2), u))|
≤ |((ωf ′(u1), u))|+ |((ω2(f ′(u1)− f ′(u2)), u))|
≤ Q(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω))(‖ω‖‖u‖+ ‖ω2‖‖u‖2L4(Ω))

≤ Q(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω))(‖uxx‖2‖u‖+ ‖ux‖2)

≤ 1
4
‖uxx‖2 +Q(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω))‖ux‖2

(3.19)

and

|((f(u1)− f(u2), uxx))| ≤ 1
8
‖uxx‖2 +Q(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω))‖u‖2. (3.20)

Recalling that h is Lipschitz continuous, we have

|((h(u1x)− h(u2x), ux))| ≤
∫

Ω

|h(u1x)− h(u2x)||ux| dx ≤ c‖ux‖2. (3.21)
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We finally deduce from (3.18)-(3.21) and the interpolation inequality

‖ux‖ ≤ c‖u‖1/2‖uxx‖1/2

that
d

dt
‖u‖2 + ‖uxx‖2 ≤ Q(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω))‖u‖2. (3.22)

Then Gronwall’s Lemma yields

‖u1(t)− u2(t)‖ ≤ ceQ(‖u1,0‖H2(Ω),‖u2,0‖H2(Ω))t‖u0‖, (3.23)

hence the uniqueness, as well as the continuous dependence with respect to the
initial data in the L2-norm.
(b) Existence: The proof of existence of solutions is based on the a priori estimates
derived in the previous section and, e.g., a standard Galerkin scheme.

In particular, it follows from (3.7)-(3.8) and (3.10) that we can construct a
sequence of solutions um to a proper approximated problem such that

um → u weak star in L∞(0, T ;H2(Ω)), strongly in C([0, T ];H2−ε(Ω)) and a.e.,
∂um
∂t
→ ∂u

∂t
weakly in L2(0, T ;L2(Ω)),

ωm → ω weak star in L∞(0, T ;L2(Ω)) and weakly in L2(0, T ;H2(Ω)),

as m→ +∞ for all T > 0.
The passage to the limit is then standard and can be done as in the previous

section. Furthermore, it follows from (3.7)-(3.8) and (3.10) that

u ∈ L∞(R+;H2(Ω)),
∂u

∂t
∈ L2(0, T ;L2(Ω)), ∀T > 0,

and, consequently, ω ∈ L∞(R+;L2(Ω)).
It follows from Theorem 3.1 that we can define the continuous (for the L2-norm)

semigroup
S(t) : Φ→ Φ, u0 → u(t)

where Φ = H2(Ω)∩H1
0 (Ω). Finally, the dissipativity of S(t) follows from (3.10). �
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