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GLOBAL WELL-POSEDNESS FOR NONLINEAR SCHRÖDINGER
EQUATIONS WITH ENERGY-CRITICAL DAMPING

BINHUA FENG, DUN ZHAO

Abstract. We consider the Cauchy problem for the nonlinear Schrödinger

equations with energy-critical damping. We prove the existence of global in-
time solutions for general initial data in the energy space. Our results extend

some results from [1, 2].

1. Introduction

In this article we study the Cauchy problem for the nonlinear Schrödinger (NLS)
equation with energy-critical damping,

iut +
1
2

∆u = V (x)u+ λ|u|2σu− ia|u|αu, (t, x) ∈ [0,∞)× RN ,

u|t=0 = u0, u0 ∈ Σ,
(1.1)

where N ≥ 3, λ ∈ R, a > 0, 0 < σ ≤ 2
N−2 , α = 4

N−2 and Σ denotes the energy
space associated to the harmonic potential; i.e.,

Σ = {u ∈ H1(RN ), xu ∈ L2(RN )},
equipped with the norm

‖u‖Σ := ‖u‖L2 + ‖∇u‖L2 + ‖xu‖L2 .

The external potential V is supposed to be an anisotropic quadratic confinement,
i.e.,

V (x) =
1
2

N∑
j=1

ω2
jx

2
j , ωj ∈ R. (1.2)

Equation (1.1) appears in different physical contexts. For example, considering
the three-body interaction in collapsing Bose-Einstein condensates (BECs), within
the realm of Gross-Pitaevskii theory, the emittance of particles from the condensate
is described by the dissipative model involving a quintic nonlinear damping term
[14]; in nonlinear optics, equation (1.1) with V = 0 describes the propagation of a
laser pulse within an optical fiber under the influence of additional multi-photon
absorption processes, see, e.g., [5, 12].
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For a = 0, equation (1.1) simplifies to the classical NLS. It arises in various areas
of physics, such as nonlinear optics and nonlinear plasmas; for a broader introduc-
tion, see [9, 19]. It also has received a great deal of attention from mathematicians,
for instance, see [6, 9, 19, 20] and the references therein.

For a > 0, the last term in (1.1) is dissipative, see [1, 2]. Therefore, the energy
of (1.1) is no longer conserved, in contrast to the usual case of Hamiltonian NLS.
When σ = α, and 0 < σ ≤ 1/N , the asymptotic behavior in time of the small
solution to (1.1) has been studied in [16, 18]. Numerical studies of (1.1) can be
found in [3, 4, 13, 17]; in particular, the nonlinear-damping continuation of singular
solutions for (1.1) with critical and supercritical nonlinearities has been considered
in [13]. When V ≡ 0, under some assumptions, Feng, Zhao and Sun [11] have
showed that as a → 0 the solution of (1.1) converges to that of (1.1) with a = 0.
In [10] the particular case of a mass critical nonlinearity σ = 2/N and V = 0
has been studied. In there, global in-time existence of solutions is established if
α > 4/N and it is claimed that finite time blow-up in the log-log regime occurs
if α < 4/N . The global well-posedness for a cubic NLS equation perturbed by
higher-order nonlinear damping has been studied in [2], where, in particular, the
energy-critical case of a quintic dissipation in three-dimensional space has been
treated. Recently, Antonelli, Carles and Sparber [1] have done a more systematic
study for NLS type equations with general energy-subcritical damping. However,
equation (1.1) with an energy-critical damping or nonlinearity do not seem to have
been discussed except N = 3 and σ = 1. The aim of this paper is to establish the
global well-posedness for (1.1) with an energy-subcritical or critical nonlinearity
and an energy-critical damping. To solve this problem, we mainly use the idea of
[2]. This is shown in the following theorem.

Theorem 1.1. Let N ≥ 3, a > 0, α = 4
N−2 and u0 ∈ Σ. Assume that V satisfy

(1.2) and suppose further that
(1) either λ ≥ 0 and 0 < σ ≤ 2

N−2 ,
(2) or λ < 0 and 0 < σ < 2

N−2 .

Then, the Cauchy problem (1.1) has a unique global solution u ∈ C([0,∞),Σ).

Remark. In the case of energy-critical, it is well-known (see, e.g. [9]) that the usual
a-priori estimates on the H1-norm is not sufficient to conclude global existence.
The reason is that the local existence time of solutions does not only depend on
the H1-norm of u, but also on its profile. This is an essential difference with [1].
Enlightened mainly by the work in [2, 20, 21, 22], we will prove this theorem by
combining a-priori estimates and a bootstrap argument.

We finally state the following estimate for the time-decay of solutions. The proof
is the same as that of [1, Proposition 4.2], so we omit it.

Corollary 1.2. Let N ≥ 3, a > 0, ωj 6= 0 (j = 1, . . . , N) and u0 ∈ Σ. In
either of the cases mentioned in Theorem 1.1, the solution to (1.1) satisfies u ∈
L∞([0,∞),Σ) and there exists C > 0 such that

‖u(t)‖2L2 ≤ Ct−
N−2
N+2 , ∀t ≥ 1.

This article is organized as follows: in Section 2, we collect some lemmas such as
Strichartz’s estimates, and a-priori estimates for the solutions of (1.1). In section
3, we show Theorem 1.1.



EJDE-2015/06 WELL-POSEDNESS FOR NONLINEAR SCHRÖDINGER EQUATIONS 3

Notation. In this article, we use the following notation. C > 0 will stand for a
constant that may be different from line to line when it does not cause any confusion.
Since we exclusively deal with RN , we often use the abbreviation Lr = Lr(RN ).
Given any interval I ⊂ R, the norms of mixed spaces Lq(I, Lr(RN )) are denoted
by ‖ · ‖Lq(I,Lr). We denote by U(t) := eitH , the Schrödinger group generated by
H = − 1

2∆ + V . We recall that a pair of exponents (q, r) is Schrödinger-admissible
if 2

q = N( 1
2 −

1
r ) and 2 ≤ r ≤ 2N

N−2 , (2 ≤ r ≤ ∞ if N = 1; 2 ≤ r < ∞ if N = 2).
Then, for any space-time slab I × RN , we can define the Strichartz norm

‖u‖S(I) = sup
(q,r)

‖u‖Lq(I,Lr),

where the supremum is taken over all admissible pairs of exponents (q, r).

2. Some lemmas

We first recall the following Strichartz’s estimates.

Lemma 2.1 ([2, 7, 8, 15])). Let (q, r), (q1, r1) and (q2, r2) be admissible pairs.
Assume that I is some finite time interval. Then it follows

‖U(·)ϕ‖Lq(I,Lr) ≤ C(r,N)|I|1/q‖ϕ‖L2 ,

and ∥∥∫
I∩{s≤t}

U(t− s)F (s)ds
∥∥
Lq1 (I,Lr1 )

≤ C(r1, r2, N)|I|1/q1‖F‖
Lq
′
2 (I,Lr

′
2 )
.

Next, we show that (1.1) is locally well-posed for any u0 ∈ Σ and we also establish
a blow-up alternative.

Proposition 2.2 (Local solution). Let N ≥ 3, 0 < σ ≤ 2
N−2 , α = 4

N−2 , λ, a ∈ R
and V satisfy (1.2). For every u0 ∈ Σ, there exist T > 0 and a unique strong
solution u defined on [0, T ]. Let [0, T ∗) be the maximal time interval on which u is
well-defined, then, the following properties hold:

(i) u,∇u, xu ∈ S([0, T ]) for 0 < T < T ∗.
(ii) If T ∗ <∞, then ‖u‖S([0,T∗)) = +∞.

Proof. The proof of this proposition is standard and based on contraction mapping
arguments. Thus, we only present the main steps of the classical argument, which
can be found for instance in [9]. Firstly, for some T > 0, we define

XT = L∞((0, T );L2) ∩ Lq((0, T );Lr) ∩ Lγ((0, T );Lρ)

where r = 2σ + 2,

q =
4σ + 4
Nσ

, γ =
2N
N − 2

, ρ =
2N2

N2 − 2N + 4
.

Since U(·)∇u0 ∈ XT by Strichartz’s estimates, we have ‖U(·)∇u0‖XT → 0 as
T → 0.

Next, we claim that there exists η > 0 such that if u0 ∈ Σ satisfies

‖U(·)∇u0‖XT ≤ η (2.1)

for some T > 0, then there exists a unique solution u ∈ S([0, T ]) of (1.1). Notice
that (2.1) is satisfied for T small enough.
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Indeed, fix η > 0, to be chosen later. Duhamel’s formulation for (1.1) reads

u(t) = U(t)u0 − iλ
∫ t

0

U(t− s)(|u|2σu)(s)ds− a
∫ t

0

U(t− s)(|u|
4

N−2u)(s)ds. (2.2)

Denote the right hand side by Φ(u)(t). By Lemma 2.1 and Hölder’s inequality, we
have

‖Φ(u)‖XT ≤ C‖u0‖L2 + C‖|u|2σu‖Lq′ ((0,T );Lr′ ) + C‖|u|
4

N−2u‖Lγ′ ((0,T );Lρ′ )

≤ C‖u0‖L2 + CT 2σ/θ‖u‖2σL∞((0,T );H1)‖u‖Lq((0,T );Lr)

+ C‖u‖Lγ((0,T );Lρ)‖∇u‖
4

N−2

Lγ((0,T );Lρ),

(2.3)

where θ = 2σ(2σ+2)
2−(N−2)σ . Next, to estimate ∇u and xu, we notice that

[∂j , H] = ∂jV (x), [xj , H] = ∂j , j = 1, . . . , N.

where [A,B] = AB −BA denotes the usual commutator. Therefore,

∇Φ(u)(t) = U(t)∇u0 − iλ
∫ t

0

U(t− s)∇(|u|2σu)(s)ds

− a
∫ t

0

U(t− s)∇(|u|
4

N−2u)(s)ds

− iλ
∫ t

0

U(t− s)Φ(u)(s)∇V ds.

(2.4)

Now we estimate the second term of the right-hand side as above. Since ∇V is
sublinear by assumption,

‖∇Φ(u)‖XT ≤ C‖U(·)∇u0‖XT + CT 2σ/θ‖u‖2σL∞((0,T );H1)‖∇u‖Lq((0,T );Lr)

+ C‖∇u‖
N+2
N−2

Lγ((0,T );Lρ) + CT‖xΦ(u)‖L∞((0,T );L2)

+ CT‖Φ(u)‖L∞((0,T );L2).

(2.5)

Similarly, we have

‖xΦ(u)‖XT ≤ C‖xu0‖L2 + CT 2σ/θ‖u‖2σL∞((0,T );H1)‖xu‖Lq((0,T );Lr)

+ C‖xu‖Lγ((0,T );Lρ)‖∇u‖
4

N−2

Lγ((0,T );Lρ)

+ CT‖∇Φ(u)‖L∞((0,T );L2).

(2.6)

It is thus easy to see that Φ maps the set

B =
{
u; ‖∇u‖Lγ((0,T );Lρ) ≤ 2η, ‖∇u‖L∞((0,T );L2)∩Lq((0,T );Lr) ≤ 2C‖xu0‖L2 ,

‖xu‖XT ≤ 2C‖xu0‖L2 , ‖u‖XT ≤ 2C‖u0‖L2

}
to itself and is a contraction in the XT norm, provided η and T are chosen suf-
ficiently small. The contraction mapping theorem then implies the existence of a
unique solution to (1.1) on [0, T ]. Finally, by some standard arguments, (i) and (ii)
follow. �

Remark. For more general potentials, as suggested in the proof, Proposition
2.2 remains valid if we assume more generally that V (x) is smooth, and at most
quadratic, i.e., ∂αV ∈ L∞(RN ) for all |α| ≥ 2.
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In the following, we shall derive several a-priori estimates on the solutions of
(1.1). By the analogous arguments to those of [1, Lemma 2.7] and [2, Lemma 3.1],
we obtain the following lemma.

Lemma 2.3. Let u(t) ∈ Σ be a solution of (1.1) defined on the maximal interval
[0, T ∗), and V (x) satisfy (1.2). Then it follows

‖u(t)‖L2 ≤ ‖u0‖L2 , ∀ t ∈ [0, T ∗), (2.7)∫ T∗

0

∫
RN
|u(t, x)|

2N
N−2 dxdt ≤ C(‖u0‖L2). (2.8)

The a-priori estimates in Lemma 2.1 are not sufficient to conclude global well-
posedness for (1.1). We consequently follow the idea in [1] and [2] and consider the
modified energy functional

E(t) =
1
2

∫
RN
|∇u(t, x)|2dx+

∫
RN

V (x)|u(t, x)|2dx

+
λ

σ + 1

∫
RN
|u(t, x)|2σ+2dx+ κ

∫
RN
|u(t, x)|

2N
N−2 dx.

(2.9)

Lemma 2.4. Let u(t) ∈ Σ be a solution of (1.1) defined on the maximal interval
[0, T ∗), and V (x) satisfy (1.2). Moreover, let 0 < κ < a(N−2)2

2N , and assume that
(1) either λ ≥ 0 and 0 < σ ≤ 2

N−2 ,
(2) or λ < 0 and 0 < σ < 2

N−2 .
Then

E(t) ≤ E(0) + C(‖u0‖L2), ∀ t ∈ [0, T ∗), (2.10)∫ T∗

0

∫
RN
|u(x, t)|

2(N+2)
N−2 dxdt ≤ C(E(0), ‖u0‖L2). (2.11)

Proof. This is done along the lines of [1, Proposition 3.1]. By their, we obtain
d

dt
E(t) = −

(
a− κ

( 4
(N − 2)2

+
2

N − 2

))∫
RN
|u|

4
N−2 |∇u|2dx

− 2a
2

N − 2

∫
RN
|u|

4
N−2 |∇|u||2dx

− κ
( 4

(N − 2)2
+

2
N − 2

)∫
RN
|u|

4
N−2 |Re(φ̄∇u)− Im(φ̄∇u)|2dx

− 2a
∫

RN
V (x)|u|

2N
N−2 dx− 2aλ

∫
RN
|u|

4
N−2 +2σdx

− 2aκ
N

N − 2

∫
RN
|u|

8
N−2 +2dx,

where

φ(t, x) :=

{
|u(t, x)|−1u(t, x) if u(t, x) 6= 0,
0 if u(t, x) = 0.

Therefore, if λ ≥ 0, (2.10) follows by d
dtE(t) ≤ 0. If λ < 0, (2.10) follows by the

Young inequality with ε. (2.11) follows by (2.10) and (2.8). �

With Lemma 2.4 in hand, we can obtain the uniform bound on the Σ-norm of
u(t). The proof is analogue to that of Corollary 3.4 in [2], so we omit it.
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Corollary 2.5. Let u(t) ∈ Σ be a solution of (1.1) defined on the maximal interval
[0, T ∗). Then

‖u(t)‖Σ ≤ C(‖u0‖Σ), ∀t ∈ [0, T ∗).

3. Proof of main results

Proof of Theorem 1.1. Let I be some finite time interval, in the following, we set

W (I) = L
2(N+2)
N−2 (I, L

2(N+2)
N−2 ), V (I) = L

2(N+2)
N (I, L

2(N+2)
N ).

We divide the proof into two steps: (i) 2
N < σ ≤ 2

N−2 and (ii) 0 < σ ≤ 2
N .

Step 1. We first treat the case (i) 2
N < σ ≤ 2

N−2 . By applying Strichartz’s
estimates to (2.2) and Hölder’s inequality, we can estimate as follows:

‖u‖Lq(I,Lr)

≤ C|I|1/q
(
‖u0‖L2 + ‖|u|2σu‖

L
2(N+2)
N+4 (I,L

2(N+2)
N+4 )

+ ‖|u|
4

N−2u‖
L

2(N+2)
N+4 (I,L

2(N+2)
N+4 )

)
≤ C|I|1/q

(
‖u0‖L2 + ‖u‖2σLσ(N+2)(I,Lσ(N+2))‖u‖V (I) + ‖u‖

4
N−2

W (I)‖u‖V (I)

)
≤ C|I|1/q

(
‖u0‖L2 + ‖u‖Nσ−2

W (I) ‖u‖
3−σ(N−2)
V (I) + ‖u‖

4
N−2

W (I)‖u‖V (I)

)
,

(3.1)

where C is independent of I.
By an analogous argument to that of (3.1), we obtain

‖∇u‖Lq(I,Lr) + ‖xu‖Lq(I,Lr)

≤ C|I|1/q
(
‖∇u0‖L2 + ‖|u|2σ∇u‖

L
2(N+2)
N+4 (I,L

2(N+2)
N+4 )

+ ‖|u|
4

N−2∇u‖
L

2(N+2)
N+4 (I,L

2(N+2)
N+4 )

)
+ C|I|1/q

(
‖xu0‖L2 + ‖|u|2σxu‖

L
2(N+2)
N+4 (I,L

2(N+2)
N+4 )

+ ‖|u|
4

N−2xu‖
L

2(N+2)
N+4 (I,L

2(N+2)
N+4 )

)
≤ C|I|1/q

(
‖∇u0‖L2 + ‖u‖Nσ−2

W (I) ‖u‖
2−σ(N−2)
V (I) ‖∇u‖V (I)

+ ‖u‖
4

N−2

W (I)‖∇u‖V (I)

)
+ C|I|1/q

(
‖xu0‖L2

+ ‖u‖Nσ−2
W (I) ‖u‖

2−σ(N−2)
V (I) ‖xu‖V (I) + ‖u‖

4
N−2

W (I)‖xu‖V (I)

)
.

(3.2)

Denoting the Strichartz norm in Σ by

‖u‖SΣ(I) := ‖u‖S(I) + ‖∇u‖S(I) + ‖xu‖S(I),

it follows from (3.1) and (3.2) that

‖u‖SΣ(I)

≤ C sup
q
|I|1/q

(
‖u0‖Σ + ‖u‖Nσ−2

W (I) ‖u‖
3−σ(N−2)
SΣ(I) + ‖u‖

4
N−2

W (I)‖u‖SΣ(I)

)
.

(3.3)

On the other hand, for every T ∈ [0, T ∗), we deduce from (2.11) that there
exists M > 0 such that ‖u‖W ([0,T ]) ≤ M , where M is independent of the length
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of I. Therefore, we can divide [0, T ] into subintervals [0, T ] = I1 ∪ . . . ∪ IK , where
Ik = [tk−1, tk] and such that in each Ik, we have

‖u‖W (Ik) ≤ ε, for all k = 1, . . . ,K,

for some ε < 1, which only depends on ‖u0‖Σ.
Considering the first interval, I1 = [0, t1], from (3.3) it follows that

‖u‖SΣ(I1) ≤ C sup
q
|I1|1/q(‖u0‖Σ + εNσ−2‖u‖3−σ(N−2)

SΣ(I1) + ε
4

N−2 ‖u‖SΣ(I1)).

A standard continuity argument yields

‖u‖SΣ(I1) ≤ C(‖u0‖Σ, |I1|).

Similarly, we can show that

‖u‖SΣ(Ik) ≤ C(‖utk−1‖Σ, |Ik|), k = 2, . . . ,K,

which, together with Corollary 2.5 implies

‖u‖SΣ(Ik) ≤ C(‖u0‖Σ, |Ik|), k = 1, . . . ,K.

Summing up all the subintervals Ik, it follows that

‖u‖SΣ([0,T ]) ≤ C(‖u0‖Σ,M), for every T < T ∗

which implies ‖u‖SΣ([0,T∗)) <∞. According to the blow-up alternative in Proposi-
tion 2.2, we conclude that the Cauchy problem (1.1) with 2

N < σ ≤ 2
N−2 is globally

well-posedness.
Step 2. Next we treat case (ii) 0 < σ ≤ 2

N . We deduce from Strichartz’s
estimates and Hölder’s inequality that

‖u‖Lq(I,Lr)

≤ C|I|1/q
(
‖u0‖L2 + ‖|u|2σu‖

Lq
′
1 (I,Lr

′
1 )

+ ‖|u|
4

N−2u‖
L

2(N+2)
N+4 (I,L

2(N+2)
N+4 )

)
≤ C|I|1/q

(
‖u0‖L2 + ‖u‖2σLβ(I,Lr1 )‖u‖Lq1 (I,Lr1 ) + ‖u‖

4
N−2

W (I)‖u‖V (I)

)
≤ C|I|1/q

(
‖u0‖L2 + |I|1/γ‖u‖1−θL∞(I,L2)‖u‖

θ
W (I)‖u‖Lq1 (I,Lr1 ) + ‖u‖

4
N−2

W (I)‖u‖V (I)

)
,

(3.4)
where

β =
2σ(2σ + 2)

2− (N − 2)σ
, θ =

σ(N + 2)
4(σ + 1)

< 1, γ =
8σ(σ + 1)

4− 2σ(N − 2)− σ2(N − 2)
> 0,
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r1 = 2σ + 2, taking q1 such that (q1, r1) is an admissible pair. By an analogous
argument to that of (3.4), we have

‖∇u‖Lq(I,Lr) + ‖xu‖Lq(I,Lr)

≤ C|I|1/q
(
‖∇u0‖L2 + ‖|u|2σ∇u‖

Lq
′
1 (I,Lr

′
1 )

+ ‖|u|
4

N−2∇u‖
L

2(N+2)
N+4 (I,L

2(N+2)
N+4 )

)
+ C|I|1/q

(
‖xu0‖L2 + ‖|u|2σxu‖

Lq
′
1 (I,Lr

′
1 )

+ ‖|u|
4

N−2xu‖
L

2(N+2)
N+4 (I,L

2(N+2)
N+4 )

)
≤ C|I|1/q

(
‖∇u0‖L2 + |I|1/γ‖u‖1−θL∞(I,L2)‖u‖

θ
W (I)‖∇u‖Lq1 (I,Lr1 )

+ ‖u‖
4

N−2

W (I)‖∇u‖V (I)

)
+ C|I|1/q

(
‖xu0‖L2

+ |I|1/γ‖u‖1−θL∞(I,L2)‖u‖
θ
W (I)‖xu‖Lq1 (I,Lr1 ) + ‖u‖

4
N−2

W (I)‖xu‖V (I)

)
.

(3.5)
It follows from (3.4) and (3.5) that

‖u‖SΣ ≤ C sup
q
|I|1/q

(
‖u0‖Σ + |I|1/γ‖u‖θW (I)‖u‖

2−θ
SΣ

+ ‖u‖
4

N−2

W (I)‖u‖SΣ

)
. (3.6)

Arguing as Step 1, we can conclude that the Cauchy problem (1.1) with 0 < σ ≤
2/N is global well-posedness. This completes the proof. �
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