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EXISTENCE AND UNIQUENESS FOR SUPERLINEAR
SECOND-ORDER DIFFERENTIAL EQUATIONS ON THE

HALF-LINE

IMED BACHAR, HABIB MÂAGLI

Abstract. We prove the existence and uniqueness, and study the global be-

havior of a positive continuous solution to the superlinear second-order differ-

ential equation

1

A(t)
(A(t)u′(t))′ = u(t)g(t, u(t)), t ∈ (0,∞),

u(0) = a, lim
t→∞

u(t)

ρ(t)
= b,

where a, b are nonnegative constants such that a + b > 0, A is a continuous

function on [0,∞), positive and continuously differentiable on (0,∞) such that

1/A is integrable on [0, 1] and
R∞
0 1/A(t) dt = ∞. Here ρ(t) =

R t
0 1/A(s) ds,

for t ≥ 0 and g(t, s) is a nonnegative continuous function satisfying suitable

integrability condition. Our Approach is based on estimates of the Green’s
function and a perturbation argument. Finally two illustrative examples are

given.

1. Introduction

We are concerned with the existence, uniqueness and global behavior of a positive
continuous solution to the second-order differential equation

1
A(t)

(A(t)u′(t))′ = u(t)g(t, u(t)), t ∈ (0,∞),

u(0) = a, lim
t→∞

u(t)
ρ(t)

= b,

(1.1)

where a, b are nonnegative constants such that a + b > 0, A is a continuous func-
tion on [0,∞), positive and continuously differentiable on (0,∞) such that 1

A is
integrable on [0, 1] and

∫∞
0

1/A(t) dt =∞.
Here ρ(t) =

∫ t
0

1/A(s) ds, for t ≥ 0. The nonnegative nonlinearity g is required
to satisfy an appropriate condition related to the class K, defined next.
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Definition 1.1. A Borel measurable function q in (0,∞) belongs to the class K if

‖q‖ :=
∫ ∞

0

A(r)ρ(r)|q(r)|dr <∞. (1.2)

The motivation for the present work stems from both practical and theoretical
aspects. In fact, boundary value problems on the half-line arise quite naturally
in the study of radially symmetric solutions of nonlinear elliptic equations, see for
instance [4, 11], and various physical phenomena [9, 10], such as unsteady flow of
gas through a semi-infinite, porous media and the theory of drain flows.

Note that boundary value problems for second-order differential equations have
been considering widely and there are many results on the existence of solutions,
see for example [1, 2, 5, 7, 8, 14].

Zhao [17] considered the second-order differential equation

1
A(t)

(A(t)u′(t))′ + h(t, u(t)) = 0, t ∈ (0,∞), (1.3)

subject to the boundary conditions

u(0) = a, lim
t→∞

u(t)
ρ(t)

= b, (1.4)

where A(t) ≡ 1, a = 0 and h is a measurable function on (0,∞)×(0,∞), dominated
by a convex positive function. Then he showed that there exists µ > 0 such that
for each b ∈ (0, µ], there exists a positive continuous solution u of (1.3)–(1.4). This
result has been generalized by Mâagli and Masmoudi [12]. On the other hand,
Yan [15] studied equation (1.3) subject to the boundary condition u(0) = a ≥
0, limt→∞A(t)u′(t) = b ≥ 0, where A is a continuous function satisfying some
appropriate conditions and

q0(t)k(s) ≤ h(t, s) ≤ q0(t)k̃(s),

where q0, k and k̃ are nonnegative continuous functions on (0,∞) such that∫ ∞
0

A(r)|q0(r)|dr <∞, lim
s→0+

k(s)
s

=∞

and k̃ satisfying some growth condition. By using fixed-point index theory, the
existence of at least one nonnegative nonzero solution is established.

Recently, in [3], we have studied problem (1.3)-(1.4) where A is a continuous func-
tion satisfying some appropriate conditions, h(t, s) = q(t)sσ, with σ < 1, a = b = 0
and q(t) is a nonnegative continuous function that is required to satisfy some as-
sumptions related to Karamata regular variation theory. Using monotonicity meth-
ods, we established the existence, uniqueness and the global asymptotic behavior
of a positive continuous solution; see also [6].

Here, we shall use estimates of the Green’s function and a perturbation argu-
ment to address existence, uniqueness and global behavior of a positive continuous
solution to problem (1.1).

Throughout this paper, and without loss of generality, we assume that ρ(1) = 1.
We let a, b ≥ 0 such that a+ b > 0 and we denote by ω(t) := a+ bρ(t), t ≥ 0, the
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unique solution of the problem
1

A(t)
(A(t)u′(t))′ = 0, t ∈ (0,∞),

u(0) = a, lim
t→∞

u(t)
ρ(t)

= b.

(1.5)

We denote by G(t, s) the Green’s function of the operator u 7→ − 1
A (Au′)′ on

(0,∞) with the Dirichlet conditions u(0) = 0 and limt→∞
u(t)
ρ(t) = 0, which is given

by
G(t, s) = A(s) min(ρ(t), ρ(s)). (1.6)

The outline of the article is as follows. In Section 2, we give some sharp estimates
on the Green’s function G(t, s), including the following 3G-inequality: for each
t, s, r ∈ (0,∞),

G(t, r)G(r, s)
G(t, s)

≤ A(r)ρ(r).

In particular, we derive from this 3G-inequality that for each q ∈ K, we have

αq := sup
t,s∈(0,∞)

∫ ∞
0

G(t, r)G(r, s)
G(t, s)

|q(r)|dr = ‖q‖ <∞. (1.7)

In Section 3, for a given nonnegative function q in K ∩ C((0,∞)), we prove that
the Green’s function Gq(t, s) of the operator u 7→ − 1

A (Au′)′ + qu on (0,∞) with
the Dirichlet conditions u(0) = 0 and limt→∞

u(t)
ρ(t) = 0 is given by

Gq(t, s) = A(s)ρ(t)ρ(s)ϕ(t)ϕ(s)
∫ ∞

max(t,s)

dr

A(r)ρ2(r)ϕ2(r)
,

where ϕ is the unique positive solution in C([0,∞)) ∩ C2((0,∞)) of the equation
1

A(t)ρ2(t)
(A(t)ρ2(t)u′(t))′ − q(t)u(t) = 0

limt→0(Aρ2ϕ′)(t) = 0 and ϕ(0) = 1.
In particular, we deduce the comparison result,

e−2‖q‖G(t, s) ≤ Gq(t, s) ≤ G(t, s), for t, s ≥ 0.

Moreover, we establish the resolvent equality

V f = Vqf + Vq(qV f) = Vqf + V (qVqf), for f ∈ B+((0,∞)),

where B+((0,∞)) is the set of nonnegative Borel measurable functions in (0,∞)
and the kernels V and Vq are defined on B+((0,∞)) by

V f(t) :=
∫ ∞

0

G(t, s)f(s)ds, Vqf(t) :=
∫ ∞

0

Gq(t, s)f(s)ds, t ≥ 0.

To state our existence results, we use the following assumptions:
(H1) g is a nonnegative continuous function in (0,∞)× [0,∞).
(H2) There exists a nonnegative function q ∈ K ∩ C((0,∞)) such that for each

t ∈ (0,∞), the map s→ s(q(t)− g(t, sω(t))) is nondecreasing on [0, 1].
(H3) For each t ∈ (0,∞), the function s→ sg(t, s) is nondecreasing on [0,∞).

Using properties of the Green’s functionGq(t, s) and using a perturbation argument,
we prove the following result.
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Theorem 1.2. Assume (H1)–(H3). Then (1.1) has a unique positive solution
u ∈ C([0,∞)) ∩ C2((0,∞)) satisfying

cω(t) ≤ u(t) ≤ ω(t), (1.8)

where c is a constant in (0, 1].

Corollary 1.3. Let f be a nonnegative function in C1([0,∞)) such that the map
s → θ(s) = sf(s) is nondecreasing on [0,∞). Let p be a nonnegative continuous
function on (0,∞) such that the function t→ q(t) := p(t) max0≤ξ≤ω(t) θ

′(ξ) belongs
to the class K. Then the problem

1
A(t)

(A(t)u′(t))′ = p(t)u(t)f(u(t)), t ∈ (0,∞),

u(0) = a, lim
t→∞

u(t)
ρ(t)

= b,

(1.9)

has a unique positive solution u ∈ C([0,∞)) ∩ C2((0,∞)) satisfying

e−2‖q‖ω(t) ≤ u(t) ≤ ω(t), t ≥ 0. (1.10)

Observe that in Theorem 1.2 we obtain a positive continuous solution u, to (1.1),
which behavior is not affected by the perturbed term. That is, it behaves like the
solution ω of the homogeneous problem (1.5).

As a typical example of nonlinearity satisfying (H1)–(H3), we have g(t, s) =
p(t)sσ, for σ ≥ 0, where p is a positive continuous function on (0,∞) such that∫ ∞

0

A(r)ρ(r)(a+ bρ(r))σp(r)dr <∞.

2. Estimates on the Green’s function

In this section, we prove some estimates on the Green’s function G(t, s).

Proposition 2.1. (i) For each t, s ∈ [0,∞), we have

A(s) min(1, ρ(s)) min(1, ρ(t)) ≤ G(t, s) ≤ A(s) min(1, ρ(s)) max(1, ρ(t)). (2.1)

(ii) For f ∈ B+((0,∞)), the function t→ V f(t) is continuous on [0,∞) if and only
if the integral

∫∞
0
A(s) min(1, ρ(s))f(s)ds converges.

Proof. (i) The inequalities in (2.1) follow from (1.6) and the fact that for α, β ≥ 0,

min(1, α) min(1, β) ≤ min(α, β) ≤ min(1, α) max(1, β).

(ii) Using (1.6), (2.1) and the dominated convergence theorem, we obtain the
required assertion. �

Corollary 2.2. Let f ∈ B+((0,∞)) such that s 7→ A(s) min(1, ρ(s))f(s) is contin-
uous and integrable on (0,∞). Then V f is the unique continuous solution of the
boundary-value problem

1
A(t)

(A(t)u′(t))′ = −f, in (0,∞),

u(0) = 0, lim
t→∞

u(t)
ρ(t)

= 0.
(2.2)

We have the following 3G-inequality.
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Proposition 2.3. For each t, s, r ∈ (0,∞), we have
G(t, r)G(r, s)

G(t, s)
≤ A(r)ρ(r). (2.3)

Proof. Using (1.6), for each t, s, r ∈ (0,∞), we deduce that
G(t, r)G(r, s)

G(t, s)
=
A(r) min(ρ(t), ρ(r)) min(ρ(r), ρ(s))

min(ρ(t), ρ(s))
.

We claim that
min(ρ(t), ρ(r)) min(ρ(r), ρ(s))

min(ρ(t), ρ(s))
≤ ρ(r).

Indeed, by symmetry, we may assume that t ≤ s. Therefore, we obtain
min(ρ(t), ρ(r)) min(ρ(r), ρ(s))

min(ρ(t), ρ(s))
=

min(ρ(t), ρ(r)) min(ρ(r), ρ(s))
ρ(t)

≤ ρ(t)ρ(r)
ρ(t)

= ρ(r).

This completes the proof. �

In the sequel, we denote

αq = sup
t,s∈(0,∞)

∫ ∞
0

G(t, r)G(r, s)
G(t, s)

|q(r)| dr, ‖q‖ =
∫ ∞

0

A(r)ρ(r)|q(r)|dr.

Proposition 2.4. Let q be a nonnegative function in K, then: (i) For t ∈ [0,∞),
we have

V (q)(t) ≤ αq. (2.4)
In particular,

αq = ‖q‖ <∞. (2.5)
(ii) For t ∈ [0,∞), we have

V (qρ)(t) ≤ αqρ(t). (2.6)

In particular for t ∈ [0,∞), we obtain

V (qω)(t) ≤ αqω(t). (2.7)

(iii) Let f ∈ B+(0,∞), then

V (qV (f))(t) ≤ αqV (f)(t). (2.8)

Proof. Let q be a nonnegative function in K.
(i) Since for each t, s ∈ (0,∞), we have limr→0

G(s,r)
G(t,r) = 1, then by Fatou’s lemma

and (1.7), we deduce that

V (q)(t) =
∫ ∞

0

G(t, s)q(s)ds ≤ lim inf
r→0

∫ ∞
0

G(t, s)
G(s, r)
G(t, r)

q(s)ds ≤ αq.

This proves (2.4).
To prove (2.5), observe that ‖q‖ = ‖V (q)‖∞ := supt>0 |V (q)(t)|. So it follows

from (2.4) that ‖q‖ = ‖V (q)‖∞ ≤ αq. On the other hand, by using (2.3), for
t, s ∈ (0,∞), we have∫ ∞

0

G(t, r)G(r, s)
G(t, s)

q(r)dr ≤
∫ ∞

0

A(r)ρ(r)q(r)dr = ‖q‖.

Hence αq ≤ ‖q‖ <∞. Therefore αq = ‖q‖ <∞.
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(ii) Since for each t, s ∈ (0,∞), we have limr→∞
G(s,r)
G(t,r) = ρ(s)

ρ(t) , then we deduce
by Fatou’s lemma and (1.7), that∫ ∞

0

G(t, s)
ρ(t)

ρ(s)q(s)dr ≤ lim inf
r→∞

∫ ∞
0

G(t, s)
G(s, r)
G(t, r)

q(s)ds ≤ αq.

This proves (2.6). Inequality (2.7) follows from inequalities (2.4), (2.6) and the fact
that ω(t) = a+ bρ(t).

(iii) Using (1.7) and Fubini-Tonelli’s theorem, we obtain

V (qV (f))(t) =
∫ ∞

0

[
∫ ∞

0

G(t, r)G(r, s)q(r)dr]f(s)ds

≤
∫ ∞

0

αqG(t, s)f(s)ds = αqV (f)(t).

This completes the proof. �

3. Proofs of main results

In this section, we prove Theorem 1.2 and Corollary 1.3. First, for a given
nonnegative function q in K∩C((0,∞)), we aim at determining the Green’s function
Gq(t, s) of the linear problem

1
A(t)

(A(t)u′(t))′ − q(t)u(t) = −f(t), t ∈ (0,∞),

u(0) = 0, lim
t→∞

u(t)
ρ(t)

= 0.
(3.1)

Put u(t) := ρ(t)v(t). It is easy to check that u is a solution of (3.1) if and only if v
is a solution of the problem

1
A(t)ρ2(t)

(A(t)ρ2(t)v′(t))′ − q(t)v(t) =
−f(t)
ρ(t)

, t ∈ (0,∞),

lim
t→0

(Aρ2v′)(t) = 0, lim
t→∞

v(t) = 0.
(3.2)

Therefore, to obtain Gq(t, s) it is sufficient to determine the Green’s function
Hq(t, s) of the operator u 7→ −1

Aρ2 (Aρ2v′)′ + qv on (0,∞) with the Dirichlet condi-
tions limt→0(Aρ2v′)(t) = 0, limt→∞ v(t) = 0. To this end, we need the following
results.

Proposition 3.1. Let q be a nonnegative function in K ∩ C((0,∞)), then the
problem

1
A(t)ρ2(t)

(A(t)ρ2(t)u′(t))′ − q(t)u(t) = 0, t ∈ (0,∞),

lim
t→0

(Aρ2u′)(t) = 0, u(0) = 1,
(3.3)

has a unique positive solution ϕ ∈ C([0,∞)) ∩ C2((0,∞)). Moreover, ϕ is nonde-
creasing and for t ≥ 0 satisfies

1 ≤ ϕ(t) ≤ exp
(∫ t

0

1
A(s)ρ2(s)

(
∫ s

0

A(r)ρ2(r)q(r)dr)ds
)
≤ exp(‖q‖). (3.4)

In particular, ϕ(∞) := limt→∞ ϕ(t) exists and 1 ≤ ϕ(∞) ≤ exp(‖q‖).
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Proof. (see [16]). Let K be the operator defined on C([0,∞)) by

Kf(t) :=
∫ t

0

1
A(s)ρ2(s)

(∫ s

0

A(r)ρ2(r)q(r)f(r)dr
)
ds, t ∈ [0,∞).

We put Kj = Kj−1 ◦K for any integer j ≥ 2. Then we claim that for each t ≥ 0
and m ∈ N, we have

0 ≤ Km1(t) ≤ (K1)m(t)
m!

. (3.5)

Indeed, if m = 0 or 1, (3.5) is valid. Now for a given m ∈ N, suppose (3.5), then
we have

Km+11(t) = K(Km1)(t)

≤ 1
m!
K((K1)m)(t)

=
1
m!

∫ t

0

1
A(s)ρ2(s)

(∫ s

0

A(r)ρ2(r)q(r)(K1)m(r) dr
)
ds.

Since the function K1 is nondecreasing, it follows that

Km+11(t) ≤ 1
m!

∫ t

0

(K1)m(s)
( 1
A(s)ρ2(s)

∫ s

0

A(r)ρ2(r)q(r) dr
)
ds

=
1
m!

∫ t

0

(K1)m(s)(K1)′(s) ds

=
1

(m+ 1)!
(K1)m+1(t).

Therefore, the series
∑∞
m=0(Km1)(t) converges locally uniformly to a function ϕ ∈

C([0,∞)) satisfying for each t ≥ 0,

ϕ(t) = 1 +
∫ t

0

1
A(s)ρ2(s)

(∫ s

0

A(r)ρ2(r)q(r)ϕ(r)dr
)
ds.

Hence ϕ ∈ C([0,∞)) ∩ C2((0,∞)) and ϕ is a positive solution of (3.3).
Now, we show the uniqueness. Let u, v ∈ C([0,∞))∩C2((0,∞)) be two positive

solutions of (3.3). Then for each R ∈ (0,∞) and t ∈ [0, R] we have

|u(t)− v(t)| ≤ K(|u− v|)(t).
Since K is a nondecreasing operator, we deduce by induction that for each m ≥ 0,

|u(t)− v(t)| ≤ Km(|u− v|)(t)
≤ sup
r∈[0,R]

|u(r)− v(r)|Km1(R)

≤ sup
r∈[0,R]

|u(r)− v(r)| (K1)m(R)
m!

.

Letting m tend to infinity, we obtain |u(t) − v(t)| = 0 for all t ∈ [0, R]. So u = v
on [0,∞). Finally (3.4) follows from the fact that

1 ≤ ϕ(t) =
∞∑
m=0

(Km1)(t) ≤
∞∑
m=0

(K1)m(t)
m!

= exp(K1(t)) ∀t ≥ 0,

K1(t) ≤
∫ ∞

0

1
A(s)ρ2(s)

(∫ s

0

A(r)ρ2(r)q(rdr)
)
ds = ‖q‖.
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�

Remark 3.2. Let q be a nonnegative function in K ∩ C((0,∞)) and ϕ be the
solution of (3.3). It follows that the function ψ defined on (0,∞) by

ψ(t) := ϕ(t)
∫ ∞
t

ds

A(s)ρ2(s)ϕ2(s)
,

is a second solution of the equation
1

A(t)ρ2(t)
(A(t)ρ2(t)u′(t))′ − q(t)u(t) = 0, on (0,∞),

such that ϕ and ψ are linearly independent.
Furthermore, since for t > 0,

1
ϕ2(∞)ρ(t)

≤ ψ(t) ≤ 1
ϕ(t)

∫ ∞
t

ds

A(s)ρ2(s)
=

1
ϕ(t)ρ(t)

, (3.6)

it follows that limt→∞ ψ(t) = 0 and also we have

ψ(t) ∼
∫ ∞
t

ds

A(s)ρ2(s)
=

1
ρ(t)

as t→ 0.

Hence limt→0 ρ(t)ψ(t) = 1.

Now, following [13, Section 2, p.294], we deduce that Hq(t, s) is given by

Hq(t, s) =

{
A(s)ρ2(s)ϕ(s)ψ(t), if 0 < s ≤ t <∞,
A(s)ρ2(s)ϕ(t)ψ(s), if 0 < t ≤ s <∞.

On the other hand, we deduce that {ρϕ, ρψ} is a fundamental system of solutions
of the equation 1

A (Au′)′ − qu = 0 on (0,∞) satisfying

A(t)[(ρψ)(t)(ρϕ)′(t)− (ρϕ)(t)(ρψ)′(t)] = 1 for t ∈ (0,∞). (3.7)

Furthermore, the Green’s function Gq(t, s) of problem (3.1) is given by

Gq(t, s) =
ρ(t)
ρ(s)

Hq(t, s) =

{
A(s)ρ(t)ρ(s)ϕ(s)ψ(t), if 0 < s ≤ t <∞,
A(s)ρ(t)ρ(s)ϕ(t)ψ(s), if 0 < t ≤ s <∞.

That is,

Gq(t, s) = A(s)ρ(t)ρ(s)ϕ(t)ϕ(s)
∫ ∞
t∨s

dr

A(r)ρ2(r)ϕ2(r)
(3.8)

= A(s)ρ(t ∧ s)ρ(t ∨ s)ϕ(t ∧ s)ψ(t ∨ s), (3.9)

where t ∧ s = min(t, s) and t ∨ s = max(t, s).
Next, we recall that the kernels V and Vq are defined on B+((0,∞)) by

V f(t) :=
∫ ∞

0

G(t, s)f(s)ds, Vqf(t) :=
∫ ∞

0

Gq(t, s)f(s)ds, t ≥ 0.

Proposition 3.3. Let q be a nonnegative function in K∩C((0,∞)), then we have

e−2‖q‖G(t, s) ≤ Gq(t, s) ≤ G(t, s). (3.10)

In particular for f ∈ B+((0,∞)), we obtain

e−2‖q‖V f ≤ Vqf ≤ V f. (3.11)

Proof. Using (3.9), (3.6) and that the function ϕ is nondecreasing, we obtain in-
equalities (3.10). Integrating inequalities (3.10), we obtain (3.11). �
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Corollary 3.4. Let q be a nonnegative function in K ∩ C((0,∞)) and let f in
B+((0,∞)), then the following two statements are equivalent.

(i) The function t→ Vqf(t) is continuous on [0,∞).
(ii) The integral

∫∞
0
A(s) min(1, ρ(s))f(s)ds converges.

Proposition 3.5. Let q be a nonnegative function in K ∩ C((0,∞)) and let f ∈
B+((0,∞)) such that s → A(s) min(1, ρ(s))f(s) is continuous and integrable on
(0,∞). Then Vqf is the unique nonnegative continuous solution of problem (3.1).

Proof. Let q be a nonnegative function in K ∩ C((0,∞)) and f ∈ B+((0,∞)). By
Corollary 3.4, the function t→ Vqf(t) is continuous on [0,∞). On the other hand,
for t > 0, we have

Vqf(t) =
∫ ∞

0

Gq(t, s)f(s)ds

= (ρψ)(t)
∫ t

0

A(s)ρ(s)ϕ(s)f(s)ds+ (ρϕ)(t)
∫ ∞
t

A(s)ρ(s)ψ(s)f(s)ds.

So Vqf is differentiable on (0,∞) and we have for t > 0,

(Vqf)′(t) = (ρψ)′(t)
∫ t

0

A(s)ρ(s)ϕ(s)f(s)ds+ (ρϕ)′(t)
∫ ∞
t

A(s)ρ(s)ψ(s)f(s)ds.

Therefore by using the fact that ρϕ and ρψ are solutions of the equation 1
A (Au′)′−

qu = 0 on (0,∞) and (3.7), we obtain

(A(Vqf)′)′(t) = (A(ρψ)′)′(t)
∫ t

0

A(s)ρ(s)ϕ(s)f(s)ds

+ (A(ρϕ)′)′(t)
∫ ∞
t

A(s)ρ(s)ψ(s)f(s)ds

+A(t)f(t)[A(ρϕ)(ρψ)′ −A(ρψ)(ρϕ)′](t)

= A(t)q(t)Vqf(t)−A(t)f(t).

So Vqf is a solution of the equation 1
A(t) (A(t)u′(t))′ − q(t)u(t) = −f(t). Now since

0 ≤ Vqf ≤ V f , it follows by Corollary 2.2, that Vqf(0) = 0 and limt→∞
Vqf(t)
ρ(t) = 0.

It remains to prove the uniqueness. Assume that there exist two positive so-
lutions u, v ∈ C([0,∞)) ∩ C2((0,∞)) to problem (3.1). Let θ := u − v, then
θ ∈ C([0,∞)) ∩ C2((0,∞)) and satisfies

1
A(t)

(A(t)θ′(t))′ − q(t)θ(t) = 0 on (0,∞),

θ(0) = 0, lim
t→∞

θ(t)
ρ(t)

= 0.

Hence, there exists λ, µ ∈ R, such that

θ(t) = λρ(t)ϕ(t) + µρ(t)ψ(t), for t ≥ 0.

So using this fact, Proposition 3.1, Remark 3.2 and that

θ(0) = lim
t→∞

θ(t)
ρ(t)

= 0,

we deduce that λ = µ = 0. That is, u = v. This completes the proof. �
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Corollary 3.6. Let q be a nonnegative function in K ∩ C((0,∞)) and let f ∈
B+((0,∞)) such that s → A(s) min(1, ρ(s))f(s) is continuous and integrable on
(0,∞). Then Vqf satisfies the resolvent equation

V f = Vqf + Vq(qV f) = Vqf + V (qVqf). (3.12)

In particular, if V (qf) <∞, we have

(I − Vq(q·))(I + V (q·))f = (I + V (q·))(I − Vq(q·))f = f. (3.13)

Proof. Let q be a nonnegative function in K ∩ C((0,∞)) and let f ∈ B+((0,∞))
such that s→ A(s) min(1, ρ(s))f(s) is continuous and integrable on (0,∞).

By Proposition 2.1 it is clear that the function t 7→ q(t)V f(t) is continuous on
(0,∞) and there exists a nonnegative constant c such that

V f(t) ≤ (1 + ρ(t))
∫ ∞

0

A(s) min(1, ρ(s))f(s)ds ≤ c(1 + ρ(t)). (3.14)

So we deduce by Proposition 2.4 that∫ ∞
0

A(s) min(1, ρ(s))q(s)V f(s)ds ≤ c
∫ ∞

0

G(1, s)(1 + ρ(s))q(s)ds

≤ 2cαq <∞.

Let θ := V f − Vqf − Vq(qV f). By using Corollary 2.2 and Proposition 3.5, the
function θ is a solution of the problem

1
A(t)

(A(t)θ′(t))′ − q(t)θ(t) = 0, t ∈ (0,∞),

θ(0) = 0, lim
t→∞

θ(t)
ρ(t)

= 0.
(3.15)

From the uniqueness in Proposition 3.5, we deduce that θ = 0.
Now, by using Corollary 3.4 and (3.11), we deduce that the function t 7→

q(t)Vqf(t) is continuous on (0,∞) and that∫ ∞
0

A(s) min(1, ρ(s))q(s)Vqf(s)ds ≤
∫ ∞

0

A(s) min(1, ρ(s))q(s)V f(s)ds <∞.

So by similar arguments as above, we obtain V f − Vqf − V (qVqf) = 0. This
completes the proof. �

We recall that for a, b ≥ 0 such that a+ b > 0, we have

ω(t) = a+ bρ(t), t ∈ [0,∞).

The next Lemma will be useful for the proof of Theorem 1.2.

Lemma 3.7. Let q be a nonnegative function in K ∩ C((0,∞)), then we have

e−2‖q‖ω ≤ ω − Vq(qω) ≤ ω.

Proof. Let θ := ω − Vq(qω). It is clear that θ ≤ ω. Now since {ρϕ, ρψ} is a
fundamental system of solutions of the equation

1
A(t)

(A(t)u′(t))′ − q(t)u(t) = 0, (3.16)
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and the function θ is also a solution of this equation with θ(0) = a and limt→∞
θ(t)
ρ(t) =

b, we deduce by using Proposition 3.1 and Remark 3.2 that

θ(t) =
b

ϕ(∞)
ρ(t)ϕ(t) + aρ(t)ψ(t), t > 0.

Using Proposition 3.1 and (3.6), this implies that

θ = ω − Vq(qω) ≥ b

ϕ(∞)
ρ+

a

ϕ2(∞)
≥ 1
ϕ2(∞)

ω ≥ e−2‖q‖ω.

The proof is complete. �

Proof of Theorem 1.2. Since g satisfies (H2), there exists a nonnegative continuous
function q in K such for each t ∈ (0,∞), the map s → s(q(t) − g(t, sω(t))) is
nondecreasing on [0, 1]. Let

Λ :=
{
u ∈ B+((0,∞)) : e−2‖q‖ω ≤ u ≤ ω

}
,

and define the operator T on Λ by

Tu = ω − Vq(qω) + Vq((q − g(·, u))u).

By (H2), we have
0 ≤ g(., u) ≤ q, for all u ∈ Λ. (3.17)

We claim that Λ is invariant under T . Indeed, since g is nonnegative, we have for
u ∈ Λ

Tu ≤ ω − Vq(qω) + Vq(qu) ≤ ω
and by (3.17) and Lemma 3.7,

Tu ≥ ω − Vq(qω) ≥ e−2‖q‖ω.

Next, we will prove that the operator T is nondecreasing on Λ. Indeed, let u, v ∈ Λ
be such that u ≤ v. Since for t ∈ (0,∞), the map s → s(q(t) − g(t, sω(t))) is
nondecreasing on [0, 1], then we obtain

Tv − Tu = Vq([v(q − g(·, v))− u(q − g(·, u))]) ≥ 0.

Now, we consider the sequence {un} defined by u0 = e−2‖q‖ω and un+1 = Tun,
for n ∈ N. Since Λ is invariant under T , we have u1 = Tu0 ≥ u0 and by the
monotonicity of T , we deduce that

e−2‖q‖ω = u0 ≤ u1 ≤ · · · ≤ un ≤ un+1 ≤ ω.
So the sequence {un} converges to a function u ∈ Λ. Using hypotheses (H1)–(H2)
and the monotone convergence theorem, we deduce that

u = (I − Vq(q·))ω + Vq((q − g(., u))u).

That is,
(I − Vq(q·))u = (I − Vq(q·))ω − Vq(ug(·, u)).

On the other hand, since u ≤ ω, then by (2.7), we obtain V (qu) ≤ V (qω) ≤ αqω <
∞. So by applying the operator (I+V (q·)) on both sides of the above equality and
using (3.12) and (3.13), we conclude that u satisfies

u = ω − V (ug(·, u)). (3.18)

Next we aim at proving that u is a solution of problem (1.1). To this end, we
remark by (3.17) that

ug(·, u) ≤ qω. (3.19)
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By Proposition 2.1 (ii) and (2.7), this implies that the function t → V (ug(·, u))(t)
is continuous on [0,∞) and so by (3.18), u is continuous on [0,∞). Now, since by
(H1) and (3.19), the function s→ A(s) min(1, ρ(s))u(s)g(s, u(s)) is continuous and
integrable on (0,∞), we conclude by Corollary 2.2 that u is the required solution.

It remains to prove that u is the unique solution to (1.1). Assume that v ∈
C([0,∞)) ∩ C2((0,∞)) is another nonnegative solution to problem (1.1). Then we
have

v = ω − V (vg(·, v)). (3.20)

Now let h be the function defined on (0,∞) by

h(t) =

{
v(t)g(t,v(t))−u(t)g(t,u(t))

v(t)−u(t) if v(t) 6= u(t),

0 if v(t) = u(t).

From (H3), we have h ∈ B+((0,∞)) and by using (3.18) and (3.20), we obtain

(I + V (h.))(v − u) = 0.

On the other hand, since by (H2), we have h ≤ q, then by using (2.7) we deduce
that

V (h|v − u|) ≤ 2V (qω) ≤ 2αqω <∞.
Hence by (3.13), we conclude that u = v. This completes the proof. �

Proof of Corollary 1.3. Let g(t, s) = p(t)f(s) and θ(s) = sf(s), and let q(t) =
p(t) max0≤ξ≤ω(t) θ

′(ξ) ∈ K. It is clear that hypotheses (H1) and (H3) are satisfied.
Moreover, by a simple computation, we obtain

d

ds
[s(q(t)− g(t, sω(t)))] = q(t)− p(t)θ′(sω(t)) ≥ 0 for s ∈ [0, 1] and t > 0.

This implies that the function g satisfies hypothesis (H2). So the result follows by
Theorem 1.2. �

Example 3.8. Let a ≥ 0 and b ≥ 0 with a+ b > 0. Let σ ≥ 0, and p be a positive
continuous function on (0,∞) such that∫ ∞

0

A(r)ρ(r)(ω(t))σp(r)dr <∞.

Since the function q(t) := (σ + 1)p(t)(ω(t))σ belongs to the class K, the problem

1
A(t)

(A(t)u′(t))′ = p(t)uσ+1(t), t ∈ (0,∞),

u(0) = a, lim
t→∞

u(t)
ρ(t)

= b,

has a unique positive solution u ∈ C([0,∞)) ∩ C2((0,∞)) satisfying

e−2‖q‖ω(t) ≤ u(t) ≤ ω(t), t ≥ 0.

Example 3.9. Let a ≥ 0 and b ≥ 0 with a + b > 0. Let σ ≥ 0, γ > 0 and p be a
positive continuous function on (0,∞) such that∫ ∞

0

A(r)ρ(r)(ω(t))σ+γp(r)dr <∞.
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Let θ(s) = sσ+1 log(1 + sγ). Since the function q(t) := p(t) max0≤ξ≤ω(t) θ
′(ξ) be-

longs to the class K, then the problem

1
A(t)

(A(t)u′(t))′ = p(t)uσ+1(t) log(1 + uγ(t)), t ∈ (0,∞),

u(0) = a, lim
t→∞

u(t)
ρ(t)

= b,

has a unique positive solution u ∈ C([0,∞)) ∩ C2((0,∞)) satisfying

e−2‖q‖ω(t) ≤ u(t) ≤ ω(t), t ≥ 0.
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[3] I. Bachar, H. Mâagli; Existence and global asymptotic behavior of positive solutions for non-

linear problems on the half-line, J. Math. Anal. Appl. 416 (2014), 181-194.
[4] J. V. Baxley; Existence and uniqueness for nonlinear boundary value problems on infinite

intervals, J. Math. Anal. Appl. 147 (1990), 122-133.
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