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GLOBAL STABILITY OF A DELAYED
MOSQUITO-TRANSMITTED DISEASE MODEL

WITH STAGE STRUCTURE

B. G. SAMPATH ARUNA PRADEEP, WANBIAO MA

Abstract. This article presents a new eco-epidemiological deterministic de-

lay differential equation model considering a biological controlling approach on
mosquitoes, for endemic dengue disease with variable host (human) and vari-

able vector (Aedes aegypti) populations, and stage structure for mosquitoes.

In this model, predator-prey interaction is considered by using larvae as prey
and mosquito-fish as predator. We give a complete classification of equilibria

of the model, and sufficient conditions for global stability/global attractivity

of some equilibria are given by constructing suitable Lyapunov functionals and
using Lyapunov-LaSalle invariance principle. Also, numerical simulations are

presented to show the validity of our results.

1. Introduction

Recently, many scholars have proposed and investigated various kinds of epi-
demic models in order to understand and describe the dynamics of infectious dis-
ease. Most of the mathematical models pertinent to epidemiology are dependents
of the baseline SIR (Susceptible, Infectious and Recovered) model which was pre-
sented by Kermark and Mackendrick in 1927 based on ODE [23] with the concept
of “compartment modelling”. By referring to the classical books [3, 5, 28, 32, 47],
the readers can find not only the history of mathematical epidemiology but also
the theories related delayed incorporated to biological systems. After Kermark and
Mackendrick’s primus model numerous number of models emerged with time delay
(see for example [1, 9, 10, 19, 18, 27, 31, 38, 42]), without time delay [8, 17, 46],
epidemic model with stage structure [21, 45] and SVIR model with stochastic per-
turbation [7].

Many serious epidemics such as AIDS and dengue (here, we mentioned few of
them for more details in [4, 39]) can be transmitted horizontally as well as verti-
cally. In addition, diseases also spread due to their parental genes [4]. The disease
transmission via the vectors for examples West Nile fever, malaria, dengue and Rift
vally fever has been studied by many researchers [11, 14, 15, 40]. With regard to
dengue, one of the most spread out flavivirus disease propagated by adult female
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Aedes aegypti mosquito species (predominantly by this type, although there are oth-
ers). Prevalent throughout the year in tropical countries but transmission reaches
its peak when the highest rainfall takes place. It is known that this virus spreads
among host (human) after an infectious matured female Aedes aegypti (vector) hav-
ing a blood meal from a susceptible host. On the other hand, the susceptible vector
is infected after taking a blood meal from an infectious host. Although the disease
spreads vertically among vectors, there is very low possibility of getting infected
a new comer ([12] and references there in) which discourage us to include vertical
transmission to our model. The most appropriate way to eradicate the transmis-
sion of this viral disease is to control winged stage female mosquitoes and aquatic
stage of mosquitoes because in the near future, it cannot be anticipated a vaccine
to prevent from dengue fever ([36] and references there in). However, information
regarding the possibility of vaccine and review of the development of a vaccine is
found in [30]. Contemporary, eradication and control methods of mosquitos are
similar to those arranged over half a century back. In the academic article [13],
author has exhibited one of the controlling strategies named Sterile Insect Tech-
nique (SIT) for the control of Aedes aegypti mosquitoes. Further, RIDL (Release
of Insects Carrying a Dominant Lethal) based on new genetic sexing system for
male mosquitoes is introduced by which allow only to born of male mosquitoes by
blocking of female production of Aedes aegypti [20]. As a cost effective methods
most countries use high toxic chemicals such as Malathion and insecticides to con-
trol mosquito population which are very dangerous for public health. Places with
immovable and clear water are available; the female Aedes aegypti mosquitoes use
those places for oviposition. By continuous awareness programs, the public can be
made aware to avoid building up (source reduction) such places. Yet, it is hard
to control aquatic stage of mosquitoes in the places such as lakes and ponds. As
a biological control method, we can introduce mosquito-fish (predator) into wa-
ter body in which immature mosquitoes (prey) are usually inhabited. In [35] the
prey-dependent consumption predator prey model has been considered and some
valuable results have been obtained.

Subsequently in the in 1920s, Lotka and Volterra introduced baseline model
for predator-prey interaction, since then wide variety of modified and developed
predator-prey models were seen in the literature. Further, in article [16], the authors
have considered predator-prey model with infectious disease, models like SI, SIS and
SIR with mass action incidence have been applied. In addition to that maturation
time taken for the conversion process or gestation time delay for the predator or
the prey in predator-prey model has been used to upgrade the model coherence
with the natural world [26, 29, 37, 41, 44, 48]. It is ecologically important to
look on the effects on stage-structure of immature to become mature of a certain
species as all beings in the real world encounter to the stage structure. In the
monograph [2], Aiello and Freedman suggested and analyzed stage structure model
with constant maturation time delay for single species, for more examples one can
refer [6, 24, 33, 34]. The authors in [43] considered a model with maturation delay
and completely studied the stability properties and bifurcation analysis.

Motivated by the above works and as predator involvement is positively effect on
controlling spread of vector transmission disease. We concern to construct a new
echo-epidemic model for vector spread disease with both predator-prey interaction
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and stage structure. Nonlinear functional response for predator-prey system is
applied here. Biological appearance of our model is shown in Figure 1.

Figure 1. Mosquito life-cycle with predator and disease transmis-
sion among human

We form a model which is described by a system of differential equations, with
the aid of schematic diagram shown in Figure 2.

Let Sh(t), Ih(t) and Rh(t) represent the classes for the human population, in-
dicating the number of susceptible, infective and recovered individuals at time t,
respectively. Λh, γh, µh, qv, τ, µl, µv, βv, βp, kv, γv, µp, λl and λp are all positive con-
stants. Here, µh, µv, µl, and µp denote the per capita mortality rate of the human,
vector, larvae and predator populations respectively. Λh indicates the recruitment
of human to susceptible class while γh represents the recovered rate. Further, the
vector population sub-divided into two classes, namely, Sv(t) is the number of sus-
ceptible and Iv(t) is the number of infective. It is assumed that vectors and human
populations are mixing homogeneously. It is also accepted that the infected vectors
will never be recovered and they transmit the virus in their entire life-span. The
birth to the immature population (larvae) is proportional to the currently available
number of matured population (vector) and qv is the conversion rate. In addition,
λl is the rate of encounter and λp is the conversion efficiency. Λv represents the re-
cruitment of immigrated mosquitoes to the susceptible class (see for example [22]).
We assumed that larvae are the only available food for predators. The density
dependent mortality rate is denoted by βv (see, for example [2]) and the crowding
rate is denoted βp. The state variables Lv(t) and P (t) show up the number of
larvae and number of predator at time t, respectively. The larvae who was born
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Figure 2. Transfer diagram of the disease in human and vectors
with predator

at t − τ and still survive at time t, transforming from larvae (immature stage) to
susceptible vector (matured stage) is given by the term bqve

−τµlSv(t − τ) and to
infected vector (matured stage) by aqve

−τµlIv(t − τ), where a and b are positive
constants such that a+b = 1. The number of recovered human at time t is denoted
by Rh(t) which has not appeared in the other equations of system (1.1). Therefore,
it is excluded from further consideration. The formulated model is given below.

Ṡh(t) = Λh − βvhIv(t)Sh(t)− µhSh(t),

İh(t) = khβvhIv(t)Sh(t)− (µh + γh)Ih(t),

Ṡv(t) = Λv + bqve
−τµlSv(t− τ)− βhvIh(t)Sv(t)− µvSv(t)− βvS2

v(t),

İv(t) = aqve
−τµlIv(t− τ) + kvβhvIh(t)Sv(t)− (µv + γv)Iv(t),

L̇v(t) = b[Sv(t)− e−τµlSv(t− τ)] + a[Iv(t)− e−τµlIv(t− τ)]

− µlLv(t)− λlf(Lv(t))P (t),

Ṗ (t) = P (t)(−µp − βpP (t)) + λpf(Lv(t))P (t).

(1.1)

In system (1.1) it is assumed that at time t the number of βvhIv(t)Sh(t) is removed
from susceptible human class and simultaneously the number of khβvhIv(t)Sh(t)
enters to infected human class. It is further assumed that at time t the number of
βhvIh(t)Sv(t) is removed from susceptible mosquito class and simultaneously the
number of kvβhvIh(t) Sv(t) enters to infected mosquito class, where βvh, βhv, kh and
kv are positive constants. f(Lv) is a function such that monotonically increasing,
positive and differentiable for all Lv > 0 and f(0) = 0. More general model for
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system (1.1) is formulated as follows:

Ṡh(t) = Λh − βvhIv(t)Sh(t)− µhSh(t),

İh(t) = khβvhe
−µhσIv(t− σ)Sh(t− σ)− (µh + γh)Ih(t),

Ṡv(t) = Λv + bqve
−τµlSv(t− τ)− βhvIh(t)Sv(t)− µvSv(t)− βvS2

v(t),

İv(t) = aqve
−τµlIv(t− τ) + kvβhve

−µvωIh(t− ω)Sv(t− ω)− (µv + γv)Iv(t),

L̇v(t) = b[Sv(t)− e−τµlSv(t− τ)] + a[Iv(t)− e−τµlIv(t− τ)]

− µlLv(t)− λlf(Lv(t))P (t),

Ṗ (t) = P (t)(−µp − βpP (t)) + λpf(Lv(t− ρ))P (t− ρ),
(1.2)

where σ > 0 is the latent delay for human, ω > 0 is the latent delay for mosquito
and ρ > 0 is the predation delay and others have the same biological meaning as
in system (1.1).

This work is organized as follows. In next section, we state some lemmas that are
important for our discussion and show the existence, boundedness of the solutions
of system (1.1) with the initial condition (2.1). Moreover, conditions are given
for existence of all kinds of equilibria of system (1.1); the reproduction number
is simultaneously calculated. In Section 3, stability properties of some equilibria
are established by means of Lyapunov functionals, and instability of equilibria is
given by using characteristic equations. Further, the global attractiveness of other
equilibria is also considered. Numerical simulations of the results are presented in
Section 4. The paper ends with a brief discussion.

2. Boundedness of solutions and analysis of equilibria

In this section, we consider the boundedness of solutions and existence of equi-
libria for system (1.1). First, the initial conditions of system (1.1) are

Sh(θ) = ϕ1(θ), Ih(θ) = ϕ2(θ), Sv(θ) = ϕ3(θ),

Iv(θ) = ϕ4(θ), Lv(θ) = ϕ5(θ), P (θ) = ϕ6(θ),
(2.1)

where (−τ ≤ θ ≤ 0) and ϕi(θ) (i = 1, 2, . . . , 6) belong to Banach space C =
C([−τ, 0], R+) of continuous functions mapping from the interval [−τ, 0] into R+ :=
[0,+∞), equipped with the supremum norm.

Using the basic theory of delay differential equations (see, for example, [24]),
it is not difficult to show that, for the initial conditions given above, the solution
(Sh(t), Ih(t), Sv(t), Iv(t), Lv(t), P (t)) of system (1.1) exists and unique for all time
t ≥ 0. The following lemma is used to obtain our results.

Lemma 2.1. Consider the delay differential equation ẋ(t) = α+βx(t−τ)−γx(t)−
δx2(t) where α, β, γ > 0, δ ≥ 0, τ ≥ 0 are constants, the initial function ϕ ∈ C and
ϕ(θ) > 0.

(i) If δ > 0 and γ ≥ β then unique positive equilibrium

x∗ =
β − γ +

√
(β − γ)2 + 4αδ
2δ

,

is globally asymptotically stable.
(ii) If δ = 0 and γ > β, then unique positive equilibrium x∗ = α/(γ − β) is

globally asymptotically stable.
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Proof. Let us consider case (i). It is not difficult to verify that the solution x(t)
with any initial function ϕ of this equation is positive. For t ≥ 0, let us define

V = x− x∗ − x∗ ln
x

x∗
+ β

∫ t

t−τ

(
x(θ)− x∗ − x∗ ln

x(θ)
x∗

)
dθ.

By considering the time derivative along the solution we have that

V̇ = (γ − β)x∗
(

2− x

x∗
− x∗

x

)
+ βx∗

(
1− x(t− τ)

x
+ ln

x(t− τ)
x

)
− δ

x
(x− x∗)2 (x+ x∗) .

If γ ≥ β, it is clear that V̇ ≤ 0. Therefore, it follows easily from Corollary 5.2
of Kuang [24] that x∗ is globally asymptotically stable. Proof of part (ii) can be
obtained by using similar method as in part (i). �

For biological reasons, throughout this paper we discuss the dynamical behavior
of system with µv ≥ max[aqve−τµl , bqve−τµl ].

For boundedness of the solutions to (1.1), we have the following result.

Theorem 2.2. Every solution (Sh(t), Ih(t), Sv(t), Iv(t), Lv(t), P (t)) of (1.1) has
the following properties:

lim sup
t→+∞

(
Sh(t) +

1
kh
Ih(t)

)
≤MSh , lim sup

t→+∞
Ih(t) ≤M Ih ,

lim sup
t→+∞

Sv(t) ≤MSv lim sup
t→+∞

Iv(t) ≤M Iv ,

lim sup
t→+∞

Lv(t) ≤MLv , lim sup
t→+∞

P (t) ≤MP
,

where

MSv = Se0v , M Ih =
khβvhS

e0
h

µh + γh
M Iv ,

M Iv =
khkvβhvS

e0
h

µv + γv − aqve−τµl
MSv , MLv =

bMSv + aM Iv

µl
,

MP =

{
λpf(MLv )−µp

βp
λpf(MLv ) > µp,

0, λpf(MLv ) ≤ µp,

MSh = Se0h =
Λh
µh
,

Se0v =
1

2βv

(
qvbe

−τµl − µv +
√

(qvbe−τµl − µv)2 + 4βvΛv
)
.

Proof. From the first two equations of (1.1), for t ≥ 0, we have(
Sh(t) +

1
kh
Ih(t)

)′
≤ Λh − µh

(
Sh(t) +

1
kh
Ih(t)

)
,

from which, we have

lim sup
t→+∞

(Sh(t) + Ih(t)/kh) ≤ Se0h , lim sup
t→+∞

Ih(t) ≤ khSe0h .

Hence, from (1.1) it follows that for t ≥ 0,

Ṡv(t) ≤ Λv + bqve
−τµlSv(t− τ)− µvSv(t)− βvS2

v(t).
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The well-known comparison theorems for delay differential equations (see, for ex-
ample [25]) and Lemma 2.1 imply that lim supt→+∞ Sv(t) ≤MSv .

For any sufficiently small ε > 0, there exists some sufficiently large T , such that,
for t ≥ T , it has from system (1.1) that

İv(t) ≤ aqve−τµlIv(t− τ) + kvβhv(khSe0h + ε)(MSv + ε)− (µv + γv)Iv(t).

Hence, from Lemma 2.1, it is easy to obtain that

lim sup
t→+∞

Iv(t) ≤
kvβhv(khSe0h + ε)(MSv + ε)

µv + γv − aqve−τµl
.

Let ε→ 0+, it has that lim supt→+∞ Iv(t) ≤M Iv .
With similar arguments as above, for any sufficiently small ε > 0, there exists

some sufficiently large T1, such that for t ≥ T1, from system (1.1), we have

İh(t) ≤ khβvh(M Iv + ε)(Se0h + ε)− (µh + γh)Ih(t),

L̇v(t) ≤ b(MSv + ε) + a(M Iv + ε)− µlLv(t),
from which it is easy obtain that

lim sup
t→+∞

Ih(t)≤khβvh(M Iv + ε)(Se0h + ε)/(µh + γh),

lim sup
t→+∞

Lv(t)≤(b(MSv + ε) + a(M Iv + ε))/µl.

Further, by letting ε→ 0+, one has that

lim sup
t→+∞

Ih(t)≤M Ih , lim sup
t→+∞

Lv(t)≤MLv .

For a sufficiently small ε > 0, there exists some sufficiently large T2, such that
for t ≥ T2, from system (1.1), one has

Ṗ (t) ≤ P (t)(−µp − βpP (t)) + λpf(MLv + ε)P (t)

= [λpf(MLv + ε)− µp − βpP (t)]P (t).

If λpf(MLv ) > µp, for sufficient small ε > 0, it has that λpf(MLv + ε)−µp > 0.
Hence, we can obtain that lim supt→+∞ P (t) ≤

(
λpf(MLv +ε)−µp

)
/βp. By letting

ε→ 0+, one has that lim supt→+∞ P (t) ≤
(
λpf(MLv )− µp

)
/βp.

Further, if λpf(MLv ) ≤ µp, it has that for t ≥ T2, Ṗ (t) ≤ (ε − βpP (t))P (t),
which implies that lim supt→+∞ P (t) ≤ε/βp. By letting ε → 0+, we have that
lim supt→+∞ P (t) =0. Therefore, it proves that lim supt→+∞P (t) ≤MP . �

Next, we study the existence of all possible nonnegative equilibria of system
(1.1). We have following four cases to be considered.

(i) There exists boundary equilibrium (disease-free and predator-free ) E0 =
(Se0h , 0, S

e0
v , 0, L

e0
v , 0), where

Le0v =
b

µl
(1− e−τµl)Se0v ,

(ii) If f(Le1v ) > µp/λp holds, there exists boundary equilibrium (disease-free with
predator) E1 = (Se1h , 0, S

e1
v , 0, L

e1
v , P

e1), where Se1h = Se0h , Se1v = Se0v . From last
two equations of system (1.1), we have that P e1 =

(
λpf(Le1v )− µp

)
/βp and

G(Lv) = b(1− e−τµl)Se1v − µlLv − λlf(Lv)P e1 = 0,

where Lv is any value which satisfy the fifth equation.
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It is easy to show that G(0) = b(1−e−τµl)Se1v > 0 and G(L1) = −λlf(L1)P e1 <
0. Therefore, there exists a unique Le1v ∈ (0, L1) where L1 = b(1− e−τµl)Se1v /µl.

(iii) If Se0v < Se2v R0 holds, there exists boundary equilibrium (predator free with
disease) E2 = (Se2h , I

e2
h , S

e2
v , I

e2
v , L

e2
v , 0), where

Se2h =
Se0v S

e0
h

Se2v R0
, Ie2h =

khΛh
µh + γh

(
1− Se0v

R0S
e2
v

)
,

Ie2v =
kvβhvS

e2
v I

e2
h

(µv + γv − aqve−τµl)
, Le2v =

(bSe2v + aIe2v )
µl

(1− e−τµl).

Se2v =
(
−K +

√
K2 + 4βvM

)
/2βv is given by βv(Se2v )2 +KSe2v −M = 0, where

K =
βhvkhΛh
µh + γh

+ µv − bqve−τµl , M = Λv +
(µv + γv − aqve−τµl)µh

kvβvh
,

and

R0 =
khβvh

µv + γv − aqve−τµl
Se0h

kvβhv
µh + γh

Se0v

is the basic reproduction number of system (1.1).
(iv) If Se0v < S∗vR0 and f(L∗v) > µp/λp hold, there exists a unique positive equi-

librium (disease with predator) E∗ = (S∗h, I
∗
h, S

∗
v , I
∗
v , L

∗
v, P

∗), where S∗h = Se2h , I
∗
h =

Ie2h , S
∗
v = Se2v and I∗v = Ie2v .

From last two equations of system (1.1), we have that P ∗ = (λpf(L∗v)− µp)/βp
and

H(Lv) =
(
bS∗v + aI∗v

)
(1− e−τµl)− µlLv − λlf(Lv)P ∗ = 0,

where Lv is any value which satisfy the fifth equation. It is not difficult to show that
H(0) = (bS∗v + aI∗v )(1 − e−τµl)S∗v > 0 and H(L2) = −λlf(L2)P ∗ < 0. Therefore,
there exist a unique L∗v ∈ (0, L2) where L2 = (bS∗v + aI∗v )(1− e−τµl)/µl.

3. Stability of equilibria

In this section, we analyze the stability properties of each equilibrium of sys-
tem (1.1). The characteristic equation of system (1.1) at any equilibrium E =
(Sh, Ih, Sv, Iv, Lv, P ) has the form

F (λ, τ) (3.1)

=

∣∣∣∣∣∣∣∣∣∣∣∣

λ+ a1 0 0 βvhSh 0 0
−khβvhIv λ+ b1 0 −khβvhSh 0 0

0 βhvSv λ+ q(λ, τ) 0 0 0
0 −kvβhvSv −kvβhvIh λ+ c(λ, τ) 0 0
0 0 g(λ, τ) j(λ, τ) λ+ d λlf(Lv)
0 0 0 0 −λpf ′(Lv)P λ+ e

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

where

a1 = βvhIv + µh, b1 = µh + γh, c(λ, τ) = µv + γv − aqve−(λ+µl)τ ,

d = µl + λlf
′(Lv)P, e = µp + 2βpP − λpf(Lv),

g(λ, τ) = b(e−(λ+µl)τ − 1), q(λ, τ) = h− qvbe−(λ+µl)τ ,

h = βhvIh + µv + 2βvSv, j(λ, τ) = a(e−(λ+µl)τ − 1).

In next theorem, we establish stability properties of the equilibrium E0.
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Theorem 3.1. The following conclusions hold for any time delay τ ≥ 0.
(a) If R0 ≤ 1 and f(Le0v ) ≤ µp/λp then E1, E2 and E∗ are not existent, and E0

is globally asymptotically stable,
(b) Either R0 > 1 or f(Le1v ) > µp/λp holds, then E0 unstable.

Proof. The characteristic equation (3.1) at E0 is reduced to

(λ+ a1)(λ+ q(λ, τ))(λ+ d)(λ+ e)∆1(λ, τ) = 0, (3.2)

where

∆1(λ, τ) = (λ+ b1)(λ+ c(λ, τ))− kvβhvSe0v khβvhS
e0
h

= λ2 + (µh + γh + µv + γv − aqve−(λ+µl)τ )λ

+ (µh + γh)(µv + γv − aqve−(λ+µl)τ )(1−R0).

By following a similar procedure as the one used in [24] it easy to show for the
characteristics equation (3.2) that if f(Le0v ) < µp/λp and R0 ≤ 1 hold, E0 of
system (1.1) is locally asymptotically stable.

Define a Lyapunov functional as

W1 =
k1

βvhS
e0
h

V1 +
k1

khβvhS
e0
h

Ih +
1

βhvS
e0
v
V2 +

1
kvβhvS

e0
v
V3 + U,

where k1 is determined later, and

V1 = Sh − Se0h − S
e0
h ln

Sh
Se0h

, V2 = Sv − Se0v − Se0v ln
Sv
Se0v

,

V3 = Iv + aqve
−τµl

∫ t

t−τ
Ivdt, U =

qvbe
−τµl

βhvS
e0
v

∫ t

t−τ
[Sv − Se0v − Se0v ln

Sv
Se0v

]dt.

By considering the derivative along the solution, we have

Ẇ1 =
k1

βvhS
e0
h

(1−
Se0h
Sh

)(Λh − βvhIvSh − µhSh)

+
k1

khβvhS
e0
h

(khβvhIvSh − (µh + γh)Ih)

+
1

βhvS
e0
v

(1− Se0v
Sv

)(Λv + bqve
−τµlSv(t− τ)− βhvIhSv − µvSv − βvS2

v)

+
1

kvβhvS
e0
v

(aqve−τµlIv(t− τ) + kvβhvIhSv − (µv + γv)Iv)

+
aqve

−τµl

kvβhvS
e0
v

(Iv(t)− Iv(t− τ))

+
qvbe

−τµl

βhvS
e0
v

(Sv − Sv(t− τ) + Se0v ln
Sv(t− τ)

Sv
).

By choosing k1 = µv−aqve−τµl+γv
kvβhvS

e0
v

and noting that Λv = (µv − bqve
−τµl)Se0v +

βv(Se0v )2, Λh = µhS
e0
h , we have that

Ẇ1 =
k1µh
βvh

(2− Sh
Se0h
−
Se0h
Sh

) + (1− 1
R0

)Ih +
(µv − qvbe−τµl)

βhv
(2− Sv

Se0v
− Se0v

Sv
)

− βv
βhvSvS

e0
v

(Sv − Se0v )2(Sv + Se0v )
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+
qvbe

−τµl

βhv

(
1− Sv(t− τ)

Sv
+ ln

Sv(t− τ)
Sv

)
.

It can be shown that if R0 ≤ 1, then Ẇ1 ≤ 0. Define the subset E = {ϕ = (ϕ1,
ϕ2, ϕ3, ϕ4, ϕ5, ϕ6) | Ẇ1(ϕ) = 0}. Further, let M be the largest invariant set in E
with respect to system (1.1). Let us further show that M = {E0}. Denote

Sht(θ) = Sh(t+ θ), Svt(θ) = Sv(t+ θ),

Iht(θ) = Ih(t+ θ), Ivt(θ) = Iv(t+ θ),

Lvt(θ) = Lv(t+ θ),

Pt(θ) = P (t+ θ) (−τ ≤ θ ≤ 0).

For any solution (Sht, Iht, Svt, Ivt, Lvt, Pt) with the initial function ϕ = (ϕ1,
ϕ2, ϕ3, ϕ4, ϕ5, ϕ6) ∈M , one has, from the invariance, that for all t ∈ R, (Sht, Iht,
Svt, Ivt, Lvt, Pt)∈M .

If R0 < 1, then Ẇ1 = 0 if and only if Iht(0) = 0 and

Sht(0)
Se0h

=
Svt(0)
Se0v

=
Sht(−τ)
Sv

= 1.

Hence, from invariance of M , we can obtain that Iht(0) = Ih(t) = 0, Sht(0) =
Sh(t) = Se0h , Svt(0) = Sv(t) = Se0v . Further from first equation of (1.1), we can
obtain that Ivt(0) = Iv(t) = 0.

If R0 = 1, then Ẇ1 = 0 if and only if

Sht(0)
Se0h

=
Svt(0)
Se0v

=
Svt(−τ)
Sv

= 1.

Hence, for all t ∈ R, one has that Sht(0) = Sh(t) = Se0h , Svt(0) = Sv(t) = Se0v. .
From first and third equations of system (1.1), we can show that Iht(0) = Ih(t) = 0
and Ivt(0) = Iv(t) = 0 respectively, for all t ∈ R. Therefore, for all t ∈ R, in subset
M last two equations of system (1.1) are reduced to

L̇v(t) = b(1− e−τµl)Se0v − µlLv(t)− λlf(Lv(t))P (t),

Ṗ (t) = P (t)(−µp − βpP (t)) + λpf(Lv(t))P (t).

Define another Lyapunov functional as

W2 = Lv − Le0v −
∫ Lv

L
e0
v

f(Le0v )
f(θ)

dθ + k2P,

where k2 due to be determined later. By taking time derivative along the solution,
we have that

Ẇ2 =
(

1− f(Le0v )
f(Lv)

)(
b(1− e−τµl)Se0v − µlLv − λlf(Lv)P

)
+ k2

(
(−µp − βpP )P + λpf(Lv)P

)
.

Letting k2 = λl/λp and noting that b(1− e−τµl)Se0v = µlL
e0
v , we have that

Ẇ2 = µl(Le0v − Lv)
(

1− f(Le0v )
f(Lv)

)
+ λlP

(
f(Le0v )− µp

λp

)
− λl
λp
βpP

2.

If f(Le0v ) ≤ µp/λp holds, and from properties of the function we have that Ẇ2 ≤ 0.
Further, Ẇ2 = 0 if and only if Lv(t) = Le0v and P (t) = 0. This proves that
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M = {E0}. By Lyapunov-LaSalle invariance principle from [24], one proves that
E0 is globally attractive. Hence, E0 is globally asymptotically stable.

If R0 > 1, we have from (3.2) that limλ→+∞∆1(λ, τ) = +∞ and ∆1(0, τ) < 0.
Hence, ∆1(λ, τ) = 0 has at least one positive real root.

Next, we consider the factor λ + e = λ + µp − λpf(Le0v ) = 0. Clearly, it has a
positive real root when f(Le0v ) > µp/λp. �

Remark: At equilibrium E1 predators consume some larvae (i.e. f(Le1v ) ≤ f(Le0v ).
Hence, if (f(Le1v ) ≤)f(Le0v ) ≤ µp/λp holds, E0 stable. From which, it implies that
E1 is not existent. Further, it is clear from Theorem 2.2 and Theorem 3.1 that
Se2v < Se0v and if R0 ≤ 1 holds E0 stable, respectively. From which, it implies that
E2 and E∗ are not existent. Therefore, if E0 stable, E1, E2 and E∗ are not existent.

In Theorem 3.2, we establish the global stability properties of the equilibrium
E1.

Theorem 3.2. If f(Le1v ) > µp/λp (i.e. E0 is unstable), then following conclusions
hold for any time delay τ ≥ 0.

(a) If R0 ≤ 1 (i.e. E2 and E∗ are not existent), then E1 is globally asymptotically
stable,

(b) If R0 > 1 holds, then E1 is unstable.

Proof. At equilibrium E1 the characteristic equation (3.1) becomes

(λ+ a1)(λ+ q(λ, τ))[(λ+ d)(λ+ e) + λlλpP
e1f ′(Le1v )f(Le1v )]∆2(λ, τ) = 0, (3.3)

where

∆2(λ, τ) = (λ+ b1)(λ+ c(λ, τ))− kvβhvSe1v khβvhS
e1
h

= λ2 + (µh + γh + µv + γv − aqve−(λ+µl)τ )λ

+ (µh + γh)(µv + γv − aqve−(λ+µl)τ )(1−R0).

By following a similar procedure as in [24] it is easy to show, for the characteristics
equation (3.3), that if R0 ≤ 1 holds, E1 of system (1.1) is locally asymptotically
stable.

We define the same Lyapunov functional (W1) and applying the same procedure
as in proof of Theorem 3.1, we can show that Sh(t) = Se1h , Ih(t) = 0, Sv(t) = Se1v ,
Iv(t) = 0 on M . For all t ∈ R, in subset M last two equations of system (1.1) are
reduced to

L̇v(t) = b(1− e−τµl)Se1v − µlLv(t)− λlf(Lv(t))P (t),

Ṗ (t) = P (t)(−µp − βpP (t)) + λpf(Lv(t))P (t).

Define a Lyapunov functional as

W3 = Lv − Le1v −
∫ Lv

L
e1
v

f(Le1v )
f(θ)

dθ +
λl
λp

(
P − P e1 − P e1 ln

P

P e1

)
.

By taking the time derivative along the solution, we have that

Ẇ3 =
(

1− f(Le1v )
f(Lv)

)
(b(1− e−τµl)Se1v − µlLv − λlf(Lv)P )

+
λl
λp

(
1− P e1

P

)(
(−µp − βpP )P + λpf(Lv)P

)
.
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Noting that b(1 − e−τµl)Se1v = µlL
e1
v + λlf(Le1v )P e1 and µp = λpf(Le1v ) − βpP e1 ,

we have that

Ẇ3 = µl(Le1v −Lv)
(

1− f(Le1v )
f(Lv)

)
+λlf(Le1v )

(
2− f(Le1v )

f(Lv)
− f(Lv)
f(Le1v )

)
− λlβp

λp
(P−P e1)2.

From the properties of the function f we have that Ẇ3 ≤ 0. Further, Ẇ3 = 0 if and
only if Lv(t) = Le1v and P (t) = P e1 . This proves that M = {E1}. By Lyapunov-
LaSalle invariance principle from [24], E1 is globally attractive. It proves that E1

is globally asymptotically stable.
If R0 > 1 holds, we can easily show from (3.3) that limλ→+∞∆2(λ, τ) = +∞

and ∆2(λ, τ) < 0. Hence, ∆2(λ, τ) = 0 has at least one positive real root. �

Theorem 3.3. If Se0v < Se2v R0 (i.e. E0, E1 are unstable), then following conclu-
sions hold for any time delay τ ≥ 0.

(a) If f(Le2v ) ≤ µp/λp (i.e. E∗ is not existent), then E2 is globally attractive,
(b) If f(L∗v) > µp/λp holds, then E2 is unstable.

Proof. Define a Lyapunov functional

W4 =
1

βvhI
e2
v S

e2
h

V1(t) +
1

khβvhI
e2
v S

e2
h

V2(t) +
1

βhvI
e2
h S

e2
v

(V3(t) + U1)

+
1

kvβhvI
e2
h S

e2
v

(V4(t) + U2),

where

V1(t) = Sh − Se2h − S
e2
h ln

Sh
Se2h

, V4(t) = Iv − Ie2v − Ie2v ln
Iv
Ie2v

,

V2(t) = Ih − Ie2h − I
e2
h ln

Ih
Ie2h

, U1 = qvbe
−τµl

∫ t

t−τ
[Sv − Se2v − Se2v ln

Sv
Se2v

]dt,

V3(t) = Sv − Se2v − Se2v ln
Sv
Se2v

, U2 = aqve
−τµl

∫ t

t−τ
[Iv − Ie2v − Ie2v ln

Iv
Ie2v

]dt.

By considering time derivative along the solution, we have

Ẇ4 =
1

βvhI
e2
v S

e2
h

(1−
Se2h
Sh

)(Λh − βvhIvSh − µhSh)

+
1

khβvhI
e2
v S

e2
h

(1−
Ie2h
Ih

)(khβvhIvSh − (µh + γh)Ih)

+
1

βhvI
e2
h S

e2
v

(1− Se2v
Sv

)(Λv + bqve
−τµlSv(t− τ)− βhvIhSv − µvSv − βvS2

v)

+
qvbe

−τµl

βhvI
e2
h S

e2
v

(Sv − Sv(t− τ) + Se2v ln
Sv(t− τ)

Sv
)

+
1

kvβhvI
e2
h S

e2
v

(1− Ie2v
Iv

)(aqve−τµlIv(t− τ) + kvβhvIhSv − (µv + γv)Iv)

+
aqve

−τµl

kvβhvI
e2
h S

e2
v

(Iv − Iv(t− τ) + Ie2v ln
Iv(t− τ)

Iv
).

Note that

Λh = βvhI
e2
v S

e2
h + µhS

e2
h , Λv = (µv − bqve−τµl)Se2v + βhvI

e2
h S

e2
v + βv(Se2v )2,

khβvhI
e2
v S

e2
h = (µh + γh)Ie2h , kvβhvI

e2
h S

e2
v = (µv − aqve−τµl + γv)Ie2v .



EJDE-2015/10 GLOBAL STABILITY OF A DISEASE MODEL 13

Ẇ4 =
µh

βvhI
e2
v

(
2− Sh

Se2h
−
Se2h
Sh

)
+
aIe2v qve

−τµl

kvβhvI
e2
h S

e2
v

(
1− Iv(t− τ)

Iv
+ ln

Iv(t− τ)
Iv

)
+ 4−

Se2h
Sh
− IvSh
Ie2v S

e2
h

Ie2h
Ih
− IhSv
Ie2h S

e2
v

Ie2v
Iv
− Se2v

Sv
− βv
βhvI

e2
h S

e2
v Sv

(Sv − Se2v )2

× (Sv + Se2v ) +
qvbe

−τµl

βhvI
e2
h

(
1− Sv(t− τ)

Sv
+ ln

Sv(t− τ)
Sv

)
+

(µv − qvbe−τµl)
βhvI

e2
h

(
2− Sv

Se2v
− Se2v

Sv

)
.

It is easy to see that Ẇ4 ≤ 0 for all t ≥ 0. Define the subset E = {ϕ =
(ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6) | Ẇ4(ϕ) = 0}. Let M be the largest invariant set in E with
respect to (1.1). Let us further show that M = {E2}. For any solution (Sht, Iht,
Svt, Ivt, Lvt, Pt) with the initial function ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6) ∈ M , it
has from the invariance of M that, for all t ∈ R, (Sht, Iht, Svt, Ivt, Lvt, Pt) ∈ M .
Moreover, Ẇ1 = 0 if and only if

Sht(0)
Se2h

=
Svt(0)
Se2v

=
Iht(0)
Ie2h

=
Ivt(0)
Ie2v

= 1.

Hence, we can obtain Iht(0) = Ih(t) = Ie2h , Sht(0) = Sh(t) = Se2h , Svt(0) = Sv(t) =
Se2v , Ivt(0) = Iv(t) = Ie2v . Therefore, on subset M for all t ∈ R, the last two
equations of (1.1) are reduced to

L̇v(t) = b(1− e−τµl)Se2v + a(1− e−τµl)Ie2v − µlLv(t)− λlf(Lv(t))P (t),

Ṗ (t) = P (t)(−µp − βpP (t)) + λpf(Lv(t))P (t).

By defining similar type of Lyapunov functional (W2) as in the proof of Theorem
3.1, one can easily show that if f(Le2v ) ≤ µp/λp, then Lvt(0) = Lv(t) = Le2v ,
Pt(0) = P (t) = 0. This proves that M = {E2}. Hence, by Lyapunov-LaSalle
invariance principle from [24], it proves that E2 is globally attractive.

By considering the factor λ+ µp − λpf(Le2v ) of the characteristic equation (3.1)
at E2, we can show that λ+µp−λpf(Le2v ) = 0 has one positive root when f(Le2v ) >
µp/λp. Hence, E2 is unstable. �

Theorem 3.4. If f(L∗v) > µp/λp and Se0v < Se2v R0 (i.e. E0, E1, E2 are unstable),
then E∗ is globally attractive for any time delay τ ≥ 0.

Proof. By defining the same Lyapunov functional (W4) that we used in proof of
Theorem 3.3 and following the same procedure, we show that Sh(t) = S∗h, Ih(t) =
I∗h, Sv(t) = S∗v , Iv(t) = I∗v . Then, on subset M , for any t ∈ R, the last two
equations of (1.1) are reduce to

L̇v(t) = b(1− e−τµl)S∗v + a(1− e−τµl)I∗v − µlLv(t)− λlf(Lv(t))P (t),

Ṗ (t) = P (t)(−µp − βpP (t)) + λpf(Lv(t))P (t).

Again using similar type of Lyapunov functional (W3) as in proof of Theorem
3.2, it has that if f(Le2v )(≥ f(L∗v)) > µp/λp, then Lv(t) = L∗v, P (t) = P ∗. This
proves that M = {E∗}. Hence, E∗ is globally attractive, by Lyapunov-LaSalle
invariance principle from [24]. This proves that E∗ is globally attractive. �
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4. Numerical simulations

In this section, we carry out some simulations of system (1.1) to illustrate the
theoretical results obtained in Section 3. For convenience, we set f(Lv) = Lv.

We choose parameters as γh = 0.1428, µh = 0.000457, qv = 0.9, µl = 0.2,
µv = 0.6, βp = 0.01, b1 = 0.6, αH = 0.85, αV = 0.80, kh = 1, τ = 10, Λv = 60,
βv = 0.5, γv = 0, λl = 0.7, a = 0.01, b = 1 − a, µp = 0.55 and NH = 200. In
addition, βvh = b1αH/NH , βhv = b1αV /NH and Λh = NHµh. Here, b1, denotes
the biting rate of mosquitoes or the average number of bites per mosquito per
day. Moreover, αH , αV and NH represents transmission probability from vector to
human, transmission probability from human to vector and total human population,
respectively.

The trajectories of system (1.1) obtained by using Matlab software are shown
in Figures 3-6. First of all, we present simulations regarding equilibrium E0. We
can see from Figure 3 that all the trajectories converge to the equilibrium E0 (200,
0,10.48, 0, 44.88, 0) which implies that equilibrium E0 is globally asymptotically
stable. Further, (a) and (b) in Figure 3 depict under conditions shown in Theorem
3.1 that R0 = 0.7481 < 1 and f(Le0v ) = 44.88 < µp/λp = 550. Secondly, we give the
numerical simulations of the boundary equilibrium E1 (200, 0, 10.48, 0, 2.95, 4.06)
which can be seen in Figure 3 (a) and Figure 4. In this case, f(Le1v ) = 2.95 >
µp/λp = 2.75 and R0 = 0.7481 < 1 are satisfied. Hence, graphs (a) and (c) show
that equilibrium E1 is globally asymptotically stable, this confirmed Theorem 3.2.
Thirdly, the equilibrium E2 is globally attractive (see, Figure 5) in which it can
be clearly seen that the trajectories approach to relevant values of the equilibrium
E2 (89.12, 0.35, 10.48, 0.28, 44.89, 0). Further, graphics (d), (e) and (f) in Figure
5 are shown under conditions noted in Theorem 3.3 that is R0 = 2.2443 > 1
and f(Le2v ) = 44.89 < µp/λp = 550. When f(L∗v) = 2.95 > µp/λp = 2.75 and
R0 = 2.2443 > 1, we depict computer simulation by (d), (e) in Figure 5 and (g)
in Figure 6 for E∗, from which we can see that trajectories approached to E∗

(89.12, 0.35, 10.48, 0.28, 2.95, 4.06). It means that E∗ is globally attractive.
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Figure 3. Time evolutions of system (1.1) with kv = 5, λp =
0.001 and initial values (200; 60; 5; 25; 20; 20)
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Figure 4. Time evolutions of system (1.1) with kv = 5, λp = 0.2
and initial values (200; 60; 5; 25; 20; 20)
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Figure 5. Time evolutions of system (1.1) with kv = 15, λp =
0.001 and initial values (100; 2; 3; 6; 10; 20)
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Figure 6. Time evolutions of system (1.1) with kv = 15, λp = 0.2
and initial values (100; 2; 3; 6; 10; 20)

5. Discussion

In this article, a vector transmission disease dynamic model is formulated with
stage-structure for mosquitoes and predator prey interaction between fish and larvae
in water. We investigate the stability properties of all equilibria of system (1.1). In
case R0 < 1, there are two distinct aspects to look into stability properties. Firstly,
the expected number of secondary infection is less than one and the number of
larvae is limited by some upper bound, that is R0 < 1 and f(Le0v ) < up/λp, respec-
tively. Then, equilibrium E0 (disease-free and predator-free) is globally asymptot-
ically stable which means that disease dies out. Further, it is shown that either
R0 > 1 or f(Le1v ) > µp/λp holds, E0 is unstable. Biologically, R0 > 1 implies the
average number of secondary infections larger than unity. In fact, disease becomes
endemic. If f(Le1v ) > µp/λp hold, there are excessive matured susceptible and in-
fected mosquitoes emerged from larvae, then disease becomes endemic. Secondly,
the expected number of secondary infection is less than one and the number of lar-
vae is limited by some lower bound (otherwise, the predators can not be survived
due to lack of enough foods), that is R0 < 1 and f(Le1v ) > up/λp, respectively.
Then, equilibrium E1 (disease-free with predator) is globally asymptotically stable
which means that disease dies out. In this case, although there are large number
of larvae in water, they are not emerged to matured stage of mosquito as predators
consume some. On the other hand, E1 is unstable if R0 > 1. In this case, disease
becomes endemic as average number of secondary infections larger than unity.

It is further shown that the equilibrium E2 (predator free with disease) is globally
attractive when it exits, which means that disease becomes endemic. On the other
hand, it is shown that if f(L∗v) > µp/λp the equilibrium E2 becomes unstable and
E∗ (disease with predator) is existent (predators have enough foods in water to
survive). Further, we have shown that if the endemic equilibrium E∗ exists and it
is globally attractive, which concludes that disease becomes endemic. Furthermore,
more general model (1.2) with several time delays is interested in considering which
is left as a future work.
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