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POINTWISE ESTIMATES FOR POROUS MEDIUM TYPE
EQUATIONS WITH LOW ORDER TERMS AND MEASURE

DATA

STEFAN STURM

Abstract. We study a Cauchy-Dirichlet problem with homogeneous bound-
ary conditions on the parabolic boundary of a space-time cylinder for degen-

erate porous medium type equations with low order terms and a non-negative,

finite Radon measure on the right-hand side. The central objective is to ac-
quire linear pointwise estimates for weak solutions in terms of Riesz potentials.

Our main result, Theorem 1.1, generalizes an estimate previously obtained by

Bögelein, Duzaar and Gianazza [3, Theorem 1.2]), since the problem and the
structure conditions considered here, are more universal.

1. Introduction and main result

In this introductory section, we determine the basic setting for our further ob-
servations, describe the treated problem, specify some notation, mention the main
conclusion and unveil the proof strategies.

1.1. Setting. In this section, we present the covered problem and explain the oc-
curring quantities, including some of their properties. Let T > 0 and E ⊂ Rn be a
bounded, open domain, where n ≥ 2. By ET := E × (0, T ), we define a space-time
cylinder, and write ∂parET := (E ×{0})∪ (∂E × [0, T )) for its parabolic boundary.
Throughout this paper, we study a Cauchy-Dirichlet problem for porous medium
type equations of the form

∂tu− div
(
A(x, t, u,Du)

)
−B(x, t, u,Du) = µ in ET ,

u = 0 on ∂parET ,
(1.1)

where µ is a non-negative Radon measure on ET with finite total mass µ(ET ) <∞.
The vector fields A : ET × R× Rn → Rn and B : ET × R× Rn → R are assumed
to be measurable with respect to (x, t) ∈ ET for all (u, ξ) ∈ R×Rn and continuous
with respect to (u, ξ) ∈ R× Rn for a. e. (x, t) ∈ ET . Moreover, we require them to
satisfy the ellipticity condition

A(x, t, u, ξ) · ξ ≥ C0m|u|m−1|ξ|2 − C2|u|m+1 (1.2)
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as well as the two growth conditions

|A(x, t, u, ξ)| ≤ C1m|u|m−1|ξ|+ C|u|m, (1.3)

|B(x, t, u, ξ)| ≤ Cm|u|m−1|ξ|+ C2|u|m (1.4)

for any (x, t) ∈ ET , u ∈ R and ξ ∈ Rn, where C0 > 0, C1 > 0 and C ≥ 0 are fixed
constants andm > 1, i. e. we are concerned with the degenerate case of the equation.
Finally, in order to prove the existence of very weak solutions (cf. [3, Theorem 1.4
on page 3287]), one requires the monotonicity assumption(

A(x, t, u, ξ1)−A(x, t, u, ξ2)
)
· (ξ1 − ξ2) ≥ C0|u|m−1|ξ1 − ξ2|2

to hold for any u ∈ R, ξ1, ξ2 ∈ Rn and a. e. (x, t) ∈ ET . However, since our objective
here is not an existence proof, we do not need to have any monotonicity condition
in the further course of this paper. The prototype for equations treated in the
sequel is given by the classical porous medium equation

∂tu− div
(
Dum

)
= µ in ET . (1.5)

This ends the passage on the fundamental requirements, and some comments on
the porous medium equation, its fields of utilization and the history of the problem
are to come up next.

1.2. The porous medium equation. There are lots of different applications in
which one can portray the underlying process using an equation of the above form.
Besides considering such an equation for the characterization of ground water prob-
lems, heat radiation in plasmas, or spread of viscous fluids, one of the most impor-
tant examples is the modeling of an ideal gas flowing isoentropically in a homoge-
neous porous medium, e. g. soil or foam. The flow is controlled by the following
three physical laws, where for each one we like to give just a sketchy idea of what
the law signifies.
Since we are guided from the concept that the total amount of gas is conserved,
i. e. the rate at which mass enters some region of the medium is proportional to the
rate at which mass leaves that region (the constant of proportionality κ̃ ∈ (0, 1)
provides information on the porosity of the medium), we postulate that the mass
conservation law κ̃∂t%̃+ div(%̃ṽ) = 0 holds, where ṽ ≡ ṽ(x, t) is the velocity vector
and %̃ ≡ %̃(x, t) is the density of the gas. Next, we may demand that also Darcy’s
diffusion law, an empirically derived law describing the gas flow, applies to the sit-
uation, meaning that ν̃ṽ = −µ̃Dp̃ is satisfied. Here, ν̃ ∈ R+ denotes the viscosity
of the gas, µ̃ ∈ R+ stands for the permeability of the medium, and p̃ ≡ p̃(x, t) is the
pressure. At last, we ask the equation of state for ideal gases p̃ = p̃0%̃

α to hold with
constants p̃0 ∈ R+ and α ∈ [1,∞). Combining these laws, one can eliminate the
quantities p̃ and ṽ from the equations, which finally leads to the porous medium
equation (1.5) with µ ≡ 0, where in the physical context m = 1 + α ≥ 2, and u
represents a scaled density. Therefore, it is completely natural to assume u ≥ 0 for
our reflections.

Although from the physical background it seems instinctive to consider m ≥ 2, it
is sufficient to impose m > 1 as a condition on m, because the mathematical theory
makes no distinction between the exponents as long as they are larger than 1. More
precisely, the modulus of ellipticity of the treated equation is |u|m−1. For m > 1, it
vanishes if u becomes 0, such that the equation is degenerate on the set {|u| = 0},
whereas in the case that 0 < m < 1, the modulus of ellipticity |u|m−1 tends to∞ as
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|u| → 0, and the equation is singular on the set {|u| = 0}. Throughout the paper,
we will only look at the nonlinear, degenerate case, in which m > 1.

Having in mind the physical intuition, we expect that the support supp
(
Bm(·, t)

)
of the Barenblatt fundamental solution, that is the (unique, cf. [16, Theorem 1 on
page 175]) very weak solution of the porous medium equation ∂tu −∆um = δ(0,0)

in Rn × [0,∞),

Bm(x, t) :=

t−
n
k

[
1− b

(
|x|t− 1

k

)2] 1
m−1

+
for t > 0,

0 for t ≤ 0

is bounded for any fixed t > 0 (here, b = n(m−1)
2nmk and k = n(m−1)+2). This means

that if we suppose that the gas solely occurs in some bounded area at time t = 0,
the gas will have propagated after some time t > 0 only to a certain finite region,
i. e. the gas propagates with finite speed, which coincides with our imagination of
Bm as the distribution of the density of the gas (note that this mental image is also
in perfect accordance with the fact that the solution is radial in x, in other words,
the process does not prefer any specific direction). However, this imagination fails
in the case m = 1, where the equation is nondegenerate and (1.5) passes into the
well-known (linear) heat equation ∂tu = ∆u, which characterizes the distribution
of heat over time not taking into account any exterior heat sources, and for which
a rich theory is available (cf. [14]). The finite and infinite propagation speed,
respectively, is one of the most remarkable differences between the porous medium
equation with m > 1 and the heat equation.

As regards the regularity of solutions of the porous medium type equation

∂tu− div
(
A(x, t, u,Du)

)
−B(x, t, u,Du) = 0

under the structure conditions (1.2)-(1.4), the fact that locally bounded solutions
are locally Hölder continuous was established in [7]. In [8], local Hölder continuity
is deduced from a Harnack inequality, and [5] already contains the regularity result
for the special case of (1.5) with µ ≡ 0.

Unlike in large parts of the literature existing so far, we examine a fairly general
version of the porous medium equation involving a Radon measure on the right-
hand side. In addition to diverse applications, such as the description of explosions,
Radon measures are equipped with their own mathematical charm, which is why
it is worth studying the behavior of equations of the above form. In order to get a
more profound overview of the considered problem and the associated results, we
refer to [2], [8], [17] as well as the list of references at the end of this article. At this
point, we finish our annotations concerning the classification of the treated problem.
The next subsection is devoted to settle some notations that we will employ in the
sequel.

1.3. Notation. As to the notation, for a point z ∈ Rn+1 ∼= Rn × R, we always
write z = (x, t). As is customary, we denote by Br(x0) := {x ∈ Rn : |x− x0| < r}
the open ball in Rn with center x0 ∈ Rn and radius r > 0, and we define parabolic
cylinders by Qr,θ(z0) := Br(x0) × (t0 − θ, t0), where z0 = (x0, t0) ∈ Rn+1, θ > 0
and r ∈ (0, R0]. Here, R0 > 0 is an arbitrary upper bound for the radius r, which
shall be fixed for the rest of this report. What is more, for a cylinder Q ≡ Qr,θ(z0),
we use the abbreviation 2Q for the cylinder Q2r,4θ(z0).
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By {u > a}, we express the superlevel set {(x, t) ∈ ET : u(x, t) > a} where
the function u exceeds the level a > 0, and we address the positive part of u as
u+ := max{u, 0}. We denote the weak spatial derivative of the function u by
Du = Dxu = (Dx1u,Dx2u, . . . ,Dxnu), and ∂t = ∂

∂t is the operator for the time
derivative. Finally, γ ≡ γ(·) stands for a constant which may vary from line to line
and depends only on the parameters presented behind. This completes our remarks
on the notations, and we turn our attention towards the central statement of this
paper.

1.4. Main result. We now provide the principal theorem containing the linear
pointwise estimate (1.6) for a weak solution of the Cauchy-Dirichlet problem (1.1)
in terms of the Riesz potential Iµ2 (z0, r, θ), which will be introduced in Definition
2.2. The proof of Theorem 1.1 will be performed in Chapter 4.

Theorem 1.1. Let u be a weak solution of the Cauchy-Dirichlet problem (1.1)
for the inhomogeneous porous medium type equation in the sense of Definition 2.1
and R0 ∈ (0,∞) be fixed. Suppose that the structure conditions (1.2)-(1.4) are
fulfilled. Then, for any λ ∈ (0, 1

n ], almost every z0 ∈ ET and every parabolic
cylinder Qr,θ(z0) b ET with r ∈ (0, R0] and θ > 0, the linear potential estimate

u(z0) ≤ 5
(r2

θ

) 1
m−1

+ γ
[ 1
rn+2

∫∫
Qr,θ(z0)

um+λ dz
] 1

1+λ
+ γIµ2 (z0, r, θ) (1.6)

holds with a universal constant γ ≡ γ(n,C0, C1, C,m, λ,R0).

This estimate is optimal in the sense that the Barenblatt solution has exactly
the same behavior. Note that the bound depends on the Riesz potential in the
considered point z0, hence, viewed in this light, it is very fine. Having at hand the
estimate, we ought to compare it with already existing results.

First substantial moves in the history of this field were achieved in [11, Theorem
4.1 on page 608] and [12, Theorem 1.6 on page 139], where potential estimates
were established for the elliptic p-Laplacian equation. Beyond that, our conclusion
generalizes some previously obtained estimates for weak solutions of the porous
medium equation. To begin with, if C = 0 in (1.2) and (1.3), respectively, and
additionally µ ≡ 0 and B ≡ 0 in (1.1), then our pointwise estimate (1.6) reduces to
the L∞loc-bound for weak solutions of the porous medium equation [1, (1.6) on page
139]. If merely C = 0 and B ≡ 0, we receive the result from [3, Theorem 1.2 on
page 3285]. Furthermore, for solutions of (1.5), a similar bound was derived earlier
in [15, Theorem 1.1 on page 260], but the estimate is weaker than ours and the one
from [3], since it comprises an extra term

γ sup
t∈(t0−θ,t0)

1
%n

∫
B%(x0)

u(x, t) dx

on the right-hand side. Thus, the sup-bound from [1] cannot be retrieved in the case
µ ≡ 0. Given the preceding observations, our potential estimate (1.6) is natural, in
the sense that it implies the known results from [1], [3] and [15] in the mentioned
special cases.

Moreover, when m = 1 and µ 6≡ 0, our result becomes a bound related to the
potential estimate from [9, Theorem 1.4 on page 1101], which is stronger than ours,
however, the authors postulate that another continuity assumption holds. The only
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distinction in the outcome concerns the exponent 1 + λ > 1 in the integral

γ
[ 1
rn+2

∫∫
Qr,θ(z0)

u1+λ dz
] 1

1+λ
.

Note that we are not allowed to pass to the limit λ ↘ 0, because the constant γ
blows up as λ↘ 0.

As demonstrated in [3, Theorem 1.4 on page 3287], one can expect no more
than very weak solutions to exist. For such solutions, the pointwise estimate (1.6)
follows for the case B ≡ 0 by an approximation procedure (cf. [3, Theorem 1.5 on
page 3287]). If actually µ ∈ L∞(ET ), one can prove the existence of weak solutions
(cf. [10, Theorem 3.1 on page 2739]). In this report, we will not pick up the theory
of very weak solutions, we merely speak of weak solutions instead, being conscious
of the fact that the existence of such a solution is not guaranteed as long as we
consider a general Radon measure µ without any further qualities.

Since, in contrast to [3], in our structure conditions (taken from [8, Chapter
5 on page 33]) there may additionally occur low order terms, we are allowed to
explore even more extensive versions of the porous medium equation, for instance,
equations with principal part

div
(
A(x, t, u,Du)

)
=

n∑
i,j=1

Dxj

(
|u|m−1aij(x, t)Dxiu

)
+

n∑
j=1

Dxj

(
f(x, t)|u|m

Dxju

|Du|

)
,

where f is a bounded, non-negative function, and the matrix (aij)1≤i,j≤n is sup-
posed to be measurable and locally positive definite in ET (cf. [8, Section 5.2 on
page 35]). Next, we go a little bit into detail about the contents of the following
text and outline the strategy of our argumentation.

1.5. Contents and proof strategies. First of all, in Section 2.1 we will declare
the concept of a weak solution of the Cauchy-Dirichlet problem (1.1) for the inho-
mogeneous porous medium type equation. We will then define our notion of the
localized parabolic Riesz potential, which we require for writing down the pointwise
estimate (1.6), and quote a parabolic Sobolev embedding, including an associated
Gagliardo-Nirenberg inequality (2.2). After that, we study three auxiliary functions
Gλ, Vλ and Wλ, which will turn up in the proof of Theorem 1.1. Finally, we will
prepare a mollification in time and on its basis develop the regularized variant (2.8)
of the weak formulation (2.1).
In the third section, we will initially define parabolic cylinders and then deduce the
energy estimate (3.1). To this end, we will insert a purpose-built testing function in
the regularized form (2.8) and analyze all appearing terms by applying, inter alia,
convergence results for the above mollification, standard estimates like Hölder’s
and Young’s inequality, or the ellipticity and growth conditions (1.2)-(1.4), pursu-
ing the objective of gaining an inequality which enables us to properly bound Gλ,
DVλ and DWλ. The idea is to express these functions, which will show up in the
computations of the proof of Theorem 1.1 in a natural way, by terms that one can
reasonably cope with in the further course of the paper.

The fourth paragraph is designated for the proof of the pointwise estimate (1.6)
for weak solutions of the Cauchy-Dirichlet problem (1.1) for the nonhomogeneous
porous medium type equation in terms of a Riesz potential. For the proof, we
firstly define appropriate sequences of cylinders (Qj)j∈N0 and parameters (aj)j∈N0

and (dj)j∈N0 and record simple but beneficial tools for our upcoming reflections.
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The matter of Chapter 4.2 is to establish the recursive bound (4.10) for dj . To
achieve this, we apply, among others, the Gagliardo-Nirenberg inequality and the
energy estimate (3.1) in its version (4.21) with the previously designed cylinders
2Qj and the quantities aj and dj . Here, the presence of the low order terms from
the structure conditions (1.2)-(1.4) causes extra difficulties, since in principle we
have to replace |u| by |u − aj−1|. Eventually adding up (4.10) yields a convenient
bound for aj and subsequently passing to the limit j → ∞ results in the asserted
bound (1.6) for u(z0), which ends the proof.

2. Preliminaries

In this section, we characterize precisely the terms weak solution and Riesz poten-
tial. Moreover, we will state a parabolic Sobolev embedding, including a Gagliardo-
Nirenberg inequality, and introduce some auxiliary functions, together with three
lemmata concerning their properties. At last, we create a regularized version of
the weak formulation of the Cauchy-Dirichlet problem for the porous medium type
equation by means of a special time mollification.

2.1. Weak solutions, Riesz potentials and a Sobolev embedding. This
part deals with weak solutions, Riesz potentials, and a Sobolev embedding with a
Gagliardo-Nirenberg inequality. To begin with, we declare the definition of a weak
solution of the Cauchy-Dirichlet problem for the inhomogeneous porous medium
type equation, remarking that our notion of a weak solution differs from the one
used in [3, Definition 1.1 on page 3284], where the regularity condition on um is
replaced by the assumption u

m+1
2 ∈ L2

(
(0, T );W 1,2

0 (E)
)
.

Definition 2.1. A non-negative function u : ET → R satisfying

u ∈ C0
(
[0, T ];L2(E)

)
, um ∈ L2

(
(0, T );W 1,2

0 (E)
)

and u(·, 0) = 0 in E

is termed a weak solution of the Cauchy-Dirichlet problem (1.1) for the inhomoge-
neous porous medium type equation if and only if the identity∫

E

uϕ
∣∣∣T
0
dx+

∫∫
ET

[−u∂tϕ+ A(x, t, u,Du) ·Dϕ−B(x, t, u,Du)ϕ] dz

=
∫∫

ET

ϕdµ

(2.1)

holds for any testing function ϕ ∈ C∞(ET ) vanishing on ∂E × (0, T ).

At this point, we have to give a meaning to the symbol Du and become aware
of the sense which it has to be understood in, because in Definition 2.1 we have
imposed Dum ∈ L2(ET ), among others, as a condition on u, hence, the existence
of Du cannot be assured. Formally, we set

Du :=
1
m
χ{u>0}u

1−mDum

and like to interpret Du in that way. On {u > σ}, where σ > 0, Du indeed is
the weak derivative of u, and we have Du ∈ L2(ET ∩ {u > σ}). In other words,
whenever we will integrate over a superlevel set of the form {u > σ} with σ > 0,
writing Du under the integral sign is permissible and unproblematic (in the proofs
of Theorem 3.2 and Theorem 1.1, the parameter a > 0 and the members aj > 0
of the yet to be defined sequence (aj)j∈N0 , respectively, will take on the role of σ).
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After that succinct discussion about the problems associated with Du, we get to
the so-called localized parabolic Riesz potential.

Definition 2.2. For β ∈ (0, n+ 2], z0 ∈ ET and r, θ > 0 such that Qr,θ(z0) b ET ,
we define the localized parabolic Riesz potential by

Iµβ(z0, r, θ) :=
∫ r

0

µ(Q%,%2θ/r2(z0))
%n+2−β

d%

%
.

Next, we cite a parabolic Sobolev embedding (cf. [6, Proposition 3.7 on page 7]),
which we will employ later many a time.

Theorem 2.3. Let Q%,θ(z0) be a parabolic cylinder with %, θ > 0 and let 1 < p <∞
and 0 < r <∞. Then, there exists a constant γ ≡ γ(n, p, r) such that for every

u ∈ L∞
(
(t0 − θ, t0);Lr(B%(x0))

)
∩ Lp

(
(t0 − θ, t0);W 1,p(B%(x0))

)
there holds the Gagliardo-Nirenberg inequality∫∫

Q%,θ(z0)

|u|q dz

≤ γ
(

sup
t∈(t0−θ,t0)

∫
B%(x0)×{t}

|u|r dx
)p/n ∫∫

Q%,θ(z0)

[∣∣∣u
%

∣∣∣p + |Du|p
]
dz,

(2.2)

where q is given by q = p(n+r)
n .

Having specified the terms weak solution and localized parabolic Riesz poten-
tial and displayed the helpful Gagliardo-Nirenberg inequality, we hereby finish this
section.

2.2. Auxiliary functions. In this part, we will introduce some mappings which
will occur in the third section in the energy estimate (3.1). The assertions collected
in the following lemmata will turn out to be useful in the proof of Theorem 1.1.
We start our reflections by announcing the auxiliary functions.

Definition 2.4. For λ ∈ (0, 1) and s ≥ 0, we define the functions Gλ, Vλ and Wλ

by

Gλ(s) :=
∫ s

0

[
1− (1 + σ)−λ

]
dσ = s− 1

1− λ
[
(1 + s)1−λ − 1

]
,

Vλ(s) :=
∫ s

0

σ
m−1

2 (1 + σ)−
1+λ
2 dσ,

Wλ(s) :=
∫ s

0

(1 + σ)−
1+λ
2 dσ =

2
1− λ

[
(1 + s)

1−λ
2 − 1

]
.

We now mention one lemma for each of those auxiliary functions containing
some characteristics which are required afterwards. The corresponding proofs can
be found in [3, Section 2.3 on page 3291].

Lemma 2.5. For any ε ∈ (0, 1] and s ≥ 0, there holds

s ≤ ε+ γεGλ(s) (2.3)

for a constant γε ≡ γ(λ)
ε .
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Lemma 2.6. For any ε ∈ (0, 1] and s ≥ 0, there hold

Vλ(s) ≤ 2
m− λ

s
m−λ

2 , (2.4)

sm+λ ≤ ε1+λsm−1 + γεVλ(s)
2(m+λ)
m−λ , (2.5)

where the constant γε ≡ γ(m,λ, ε) blows up as ε−(1+λ)m+λ
m−λ in the limit ε↘ 0.

Lemma 2.7. For any ε ∈ (0, 1] and s ≥ 0, there hold

Wλ(s) ≤ 2
1− λ

s
1−λ

2 , (2.6)

s1+λ ≤ ε1+λ + γεWλ(s)
2(1+λ)
1−λ , (2.7)

where the constant γε ≡ γ(λ, ε) blows up as ε−
(1+λ)2

1−λ in the limit ε↘ 0.

We conclude the segment about the auxiliary functions and their properties on
this occasion and arrive at the passage that treats the time mollification.

2.3. Regularization via time mollification. In this subsection, we write down
the weak form (2.1) in a regularized way with the aid of a particular mollification,
because the weak formulation proves to be unsuitable for inserting the testing func-
tion ϕ as defined in the proof of Theorem 3.2. Basically, the trouble arises from
the time derivative of u, which does not need to exist, but would appear when cal-
culating ∂tϕ. Thus, the objective of this paragraph is to find a regularized version
of (2.1) where choosing the desired testing function in the proof of Theorem 3.2 is
no longer an issue. At first, we describe what we mean by the mollification of a
function.

Definition 2.8. For v ∈ L1(ET ), we define the mollification in time by

JvKh(·, t) :=
1
h

∫ t

0

e
s−t
h v(·, s) ds

and its time reversed analogue by

JvKh(·, t) :=
1
h

∫ T

t

e
t−s
h v(·, s) ds

for any h ∈ (0, T ] and t ∈ [0, T ].

Before establishing the regularized version (2.8) of (2.1), we like to provide in
the next lemma various useful attributes of the mollification (cf. [4, Lemma B.2 on
page 261], [13, Lemma 2.2 on page 417]).

Lemma 2.9. Let p ≥ 1 and v ∈ L1(ET ). Then, the mollification JvKh as introduced
in Definition 2.8 has the following properties:

(i) If v ∈ Lp(ET ), then also JvKh ∈ Lp(ET ), and the convergence JvKh → v in
Lp(ET ) as h↘ 0 holds.

(ii) If v ∈ Lp
(
(0, T );W 1,p(E)

)
, then also JvKh ∈ Lp

(
(0, T );W 1,p(E)

)
, and the

convergence JvKh → v in Lp
(
(0, T );W 1,p(E)

)
as h ↘ 0 holds. Moreover,

we have the componentwise identity DJvKh = JDvKh.
(iii) If v ∈ L∞

(
(0, T );L2(E)

)
, then ∂tJvKh ∈ L∞

(
(0, T );L2(E)

)
.

(iv) With analogous proofs, these properties hold for the time reversed mollifi-
cation JvKh as well.
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After this overview of the most important features of the mollification, we can go
a little bit more into detail about the regularized version (2.8), which later on allows
us to apply testing functions ϕ whose time derivative does not necessarily have to
exist. This is the essential benefit of the formulation exposed in the upcoming
theorem and makes the mollification argument inevitable.

Theorem 2.10. If u is a weak solution of the Cauchy-Dirichlet problem (1.1), then
its time mollification JuKh satisfies the regularized variant of the inhomogeneous
porous medium type equation∫∫

ET

[
∂tJuKhϕ+ JA(x, t, u,Du)Kh ·Dϕ− JB(x, t, u,Du)Khϕ

]
dz

=
∫∫

ET

JϕKh dµ
(2.8)

for any testing function ϕ ∈ L2
(
(0, T );W 1,2(E)

)
∩ L∞(ET ) with compact support

in ET .

Proof. Let ϕ ∈ L2
(
(0, T );W 1,2(E)

)
∩L∞(ET ) be an arbitrary testing function with

compact support in ET . To prove the identity (2.8), we insert JϕKh as a testing
function in the weak form (2.1). In this context, we have to note that JϕKh is a valid
testing function in (2.1) by Lemma 2.9 and a standard approximation argument.
Analyzing all involved terms (as performed in [3, Chapter 2.4 on page 3293]), one
will easily receive the result (2.8). �

Having at hand the terms weak solution and Riesz potential, the Sobolev embed-
ding, the auxiliary functions, and the time regularized version of the weak formu-
lation of the porous medium type equation, we finish this part so as to reach the
next segment, which revolves around another tool, i. e. an energy estimate, for the
proof of the pointwise estimate (1.6).

3. Energy estimates

In this section, we deduce the energy estimate (3.1), which we require in the proof
of Theorem 1.1. In view of this aim, we first of all present parabolic cylinders, which
we will use in the course of the following observations. For this purpose, we recall
the upper bound R0 > 0 for the radius, which was determined at the beginning of
Paragraph 1.3.

Definition 3.1. For a > 0, % ∈ (0, R0] and z0 = (x0, t0) ∈ Rn+1, we define
parabolic cylinders by

Q(a)
% (z0) := B%(x0)× Λ(a)

% (t0) := B%(x0)× (t0 − a1−m%2, t0).

For the sake of simplicity, we omit the (fixed) point z0 in our notation from
now on; for instance, we will write Q

(a)
% or B% instead of Q(a)

% (z0) and B%(x0),
respectively. Next, we derive the energy estimate.

Theorem 3.2. Let λ ∈ (0, 1), d > 0 and further suppose that z0 ∈ Rn+1, a > 0
and % ∈ (0, R0] are such that Q(a)

% (z0) ≡ Q
(a)
% ⊂ ET . Then, for a weak solution u
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of the Cauchy-Dirichlet problem (1.1), the energy estimate

sup
t∈Λ

(a)
%/2

∫
B%/2×{t}∩{u>a}

Gλ

(u− a
d

)
dx

+
∫∫

Q
(a)
%/2∩{u>a}

[
dm−1

∣∣∣DVλ(u− a
d

)∣∣∣2 + am−1
∣∣∣DWλ

(u− a
d

)∣∣∣2]dz
≤ γ

%2

∫∫
Q

(a)
% ∩{u>a}

um−1
(

1 +
u− a
d

)1+λ

dz +
γ

d%

∫∫
Q

(a)
% ∩{u>a}

um dz

+
γ

d2

∫∫
Q

(a)
% ∩{u>a}

um+1

(1 + u−a
d )1+λ

dz +
γµ
(
Q

(a)
%

)
d

(3.1)

holds with a constant γ ≡ γ(C0, C1, C,m, λ,R0).

Proof. Let u be a weak solution of (1.1) in the sense of Definition 2.1. In the
regularized form (2.8), we choose the testing function ϕ := η2ζv, where v is given
by

v := g(u) := 1−
(

1 +
(u− a)+

d

)−λ
,

η ∈ C1
0 (B%(x0), [0, 1]) is a function with η ≡ 1 on B%/2(x0) and |Dη| ≤ 4

% , and
ζ ∈W 1,∞

0 (R, [0, 1]) fulfills

ζ(t) :=


0 for t ∈ (−∞, t0 − a1−m%2) ∪ [τ,∞),
4am−1

3%2

(
t− (t0 − a1−m%2)

)
for t ∈ [t0 − a1−m%2, t0 − a1−m(%2 )2),

1 for t ∈ [t0 − a1−m(%2 )2, τ − ε),
1
ε (τ − t) for t ∈ [τ − ε, τ)

for a fixed τ ∈ Λ(a)
%/2 and ε > 0. To avoid an overburdened notation, we employ the

abbreviations

Q+ := Q(a)
% (z0) ∩ {u > a} =

(
B%(x0)× (t0 − a1−m%2, t0)

)
∩ {u > a},

B+(t) := B%(x0) ∩ {u(·, t) > a}.

Since u is a weak solution of (1.1), by Theorem 2.10 the identity (2.8) holds, which
we now insert the above concrete testing function ϕ in. Using the shortcuts

I(1) :=
∫∫

ET

∂tJuKhϕdz, (3.2)

II(1) :=
∫∫

ET

JA(x, t, u,Du)Kh ·Dϕdz, (3.3)

III(1) :=
∫∫

ET

JB(x, t, u,Du)Khϕdz, (3.4)

IV(1) :=
∫∫

ET

JϕKh dµ, (3.5)

we obtain the equation

I(1) + II(1) − III(1) − IV(1) = 0. (3.6)
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In the following, we will separately estimate the terms (3.2)-(3.5), starting with
(3.2). As g is increasing, the identity ∂tJuKh = − 1

h (JuKh − u) implies

∂tJuKh
(
g(u)− g(JuKh)

)
=

1
h

(
JuKh − u

)(
g(JuKh)− g(u)

)
≥ 0

which yields

I(1) =
∫∫

ET

∂tJuKhϕdz

≥
∫∫

Q+
η2ζ∂tJuKhg(JuKh) dz

=
∫∫

Q+
η2ζ

∂

∂t

[ ∫ JuKh

a

g(σ) dσ
]
dz

= −
∫∫

Q+
η2∂tζ

∫ JuKh

a

g(σ) dσ dz

= −4am−1

3%2

∫ t0−a1−m(%/2)2

t0−a1−m%2

∫
B+(t)

η2

∫ JuKh

a

g(σ) dσ dx dt

+
1
ε

∫ τ

τ−ε

∫
B+(t)

η2

∫ JuKh

a

g(σ) dσ dx dt

=: I(2)(h) + II(2)(h, ε).

(3.7)

First, we consider II(2)(h, ε). Passing to the limits ε ↘ 0 and h ↘ 0, by the
Lebesgue differentiation theorem we receive

lim
h↘0

lim
ε↘0

II(2)(h, ε) = lim
h↘0

lim
ε↘0
−
∫ τ

τ−ε

∫
B+(t)

η2

∫ JuKh(x,t)

a

g(σ) dσ dx dt

= lim
h↘0

∫
B+(τ)

η2

∫ JuKh(x,τ)

a

[
1−

(
1 +

σ − a
d

)−λ]
dσ dx

= d

∫
B+(τ)

η2
[u− a

d
− 1

1− λ

((
1 +

u− a
d

)1−λ
− 1
)]
dx

= d

∫
B+(τ)

η2Gλ

(u− a
d

)
dx

(3.8)

for a. e. τ ∈ Λ(a)
%/2, where we have exploited the L2-convergence JuKh → u as h↘ 0

(cf. Lemma 2.9). Next, we let h↘ 0 also in the term I(2)(h) which results in

lim
h↘0
|I(2)(h)| ≤ 4d

3%2

∫ t0

t0−a1−m%2

∫
B+(t)

η2am−1u− a
d

dx dt

≤ 4d
3%2

∫ t0

t0−a1−m%2

∫
B+(t)

um−1
(

1 +
u− a
d

)1+λ

dx dt.

(3.9)

To get this, we have used the inequality g(σ) ≤ 1 for σ ≥ a, enlarged the domain
of integration, and in the last step estimated η ≤ 1, a ≤ u and

u− a
d
≤ 1 +

u− a
d
≤
(

1 +
u− a
d

)1+λ
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on the domain of integration. Inserting (3.8) and (3.9) in (3.7), we can record as
an interim conclusion the lower bound

lim
h↘0

lim
ε↘0

I(1) ≥ d
∫
B+(τ)

η2Gλ

(u− a
d

)
dx

− 4d
3%2

∫ t0

t0−a1−m%2

∫
B+(t)

um−1
(

1 +
u− a
d

)1+λ

dx dt

(3.10)

for I(1), which holds for a. e. τ ∈ Λ(a)
%/2. In the following, we deal with the term II(1).

Again building the limits ε↘ 0 and h↘ 0, we find

lim
h↘0

lim
ε↘0

II(1) =
∫∫

Q+
A(x, t, u,Du) ·Dϕdz

=
∫∫

Q+
η2ζA(x, t, u,Du) ·Dv dz

+ 2
∫∫

Q+
ηζvA(x, t, u,Du) ·Dη dz

=: I(3) + II(3).

(3.11)

Before turning towards the term II(3), we treat the term I(3). Having in mind the
ellipticity condition (1.2), we compute for the latter

I(3) =
λ

d

∫∫
Q+

η2ζ
(

1 +
u− a
d

)−1−λ
A(x, t, u,Du) ·Dudz

≥ λC0m

d

∫∫
Q+

η2ζ
um−1|Du|2

(1 + u−a
d )1+λ

dz − λC2

d

∫∫
Q+

um+1

(1 + u−a
d )1+λ

dz.

(3.12)

For the other term, we exploit in turn the fact that v ≤ 1, the growth condition
(1.3), the bounds |Dη| ≤ 4

% and ηζ ≤ 1, Young’s inequality, and ζ ≤ 1 to conclude
that

|II(3)| ≤ 2
∫∫

Q+
ηζv|A(x, t, u,Du)||Dη| dz

≤ 8C1m

%

∫∫
Q+

ηζum−1|Du| dz +
8C
%

∫∫
Q+

um dz

≤ λC0m

2d

∫∫
Q+

η2ζ
um−1|Du|2

(1 + u−a
d )1+λ

dz

+
64mC2

1d

2λC0%2

∫∫
Q+

um−1
(

1 +
u− a
d

)1+λ

dz +
8C
%

∫∫
Q+

um dz.

(3.13)

Combining (3.12) and (3.13) with (3.11) leads us to the estimate

lim
h↘0

lim
ε↘0

II(1)

≥ λC0m

2d

∫∫
Q+

η2ζ
um−1|Du|2

(1 + u−a
d )1+λ

dz − λC2

d

∫∫
Q+

um+1

(1 + u−a
d )1+λ

dz

− 32mC2
1d

λC0%2

∫∫
Q+

um−1
(

1 +
u− a
d

)1+λ

dz − 8C
%

∫∫
Q+

um dz

(3.14)

as an outcome of our thoughts on the term II(1). We now give our attention to
the third summand of (3.6), initially letting ε ↘ 0 and h ↘ 0 and subsequently
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using v ≤ 1, the growth condition (1.4), the fact that η2ζ ≤ 1, and finally Young’s
inequality to obtain

| lim
h↘0

lim
ε↘0

III(1)|

≤
∫∫

Q+
η2ζv|B(x, t, u,Du)| dz

≤ Cm
∫∫

Q+
η2ζum−1|Du| dz + C2

∫∫
Q+

um dz

≤ λC0m

4d

∫∫
Q+

η2ζ
um−1|Du|2

(1 + u−a
d )1+λ

dz

+
dmC2

λC0

∫∫
Q+

um−1
(

1 +
u− a
d

)1+λ

dz + C2

∫∫
Q+

um dz.

(3.15)

It remains to estimate the term IV(1). Passing to the limits first and then applying
Lemma 2.9 and ϕ ≤ 1, we have

lim
h↘0

lim
ε↘0

IV(1) = lim
h↘0

∫∫
Q+

JϕKh dµ =
∫∫

Q+
ϕdµ ≤ µ(Q+). (3.16)

This completes the evaluations of the terms appearing in (3.6), and we can insert the
results (3.10) and (3.14)-(3.16) there. Noting that the inclusions Q+ ⊃ Q∗ (where
Q∗ := B%/2× (t0− a1−m(%2 )2, τ)∩{u > a}) and B+(τ) ⊃ B%/2 ∩{u(·, τ) > a} hold,
(3.6) gives∫

B%/2×{τ}∩{u>a}
η2Gλ

(u− a
d

)
dx+

λC0m

4d2

∫∫
Q∗

η2ζ
um−1|Du|2

(1 + u−a
d )1+λ

dz

≤
( 4

3%2
+

32mC2
1

λC0%2
+
mC2

λC0

)∫∫
Q+

um−1
(

1 +
u− a
d

)1+λ

dz

+
1
d

(8C
%

+ C2
)∫∫

Q+
um dz +

λC2

d2

∫∫
Q+

um+1

(1 + u−a
d )1+λ

dz +
µ(Q+)
d

(3.17)

for a. e. τ ∈ Λ(a)
%/2. Since η ≡ 1 on B%/2 and ζ ≡ 1 on (t0 − a1−m(%2 )2, τ), by

respectively taking the supremum over all τ ∈ Λ(a)
%/2 we infer from (3.17) that both

sup
t∈Λ

(a)
%/2

∫
B%/2×{t}∩{u>a}

Gλ

(u− a
d

)
dx,

λC0m

4d2

∫∫
Q

(a)
%/2∩{u>a}

um−1|Du|2

(1 + u−a
d )1+λ

dz

can be bounded by the right-hand side of (3.17) which easily leads us to

sup
t∈Λ

(a)
%/2

∫
B%/2×{t}∩{u>a}

Gλ

(u− a
d

)
dx+

λ

d2

∫∫
Q

(a)
%/2∩{u>a}

um−1|Du|2

(1 + u−a
d )1+λ

dz

≤ γ

%2

∫∫
Q

(a)
% ∩{u>a}

um−1
(

1 +
u− a
d

)1+λ

dz +
γ

d%

∫∫
Q

(a)
% ∩{u>a}

um dz

+
γ

d2

∫∫
Q

(a)
% ∩{u>a}

um+1

(1 + u−a
d )1+λ

dz +
γµ
(
Q

(a)
%

)
d

(3.18)
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with a constant γ ≡ γ(C0, C1, C,m, λ,R0). On the set Q(a)
%/2 ∩ {u > a}, we have

DVλ

(u− a
d

)
=
(u− a

d

)m−1
2
(

1 +
u− a
d

)− 1+λ
2 Du

d
,

on the other hand, there holds

DWλ

(u− a
d

)
=
(

1 +
u− a
d

)− 1+λ
2 Du

d
which together yields

dm−1
∣∣∣DVλ(u− a

d

)∣∣∣2 + am−1
∣∣∣DWλ

(u− a
d

)∣∣∣2
=
|Du|2

d2

(
1 +

u− a
d

)−(1+λ) [
(u− a)m−1 + am−1

]
≤ |Du|

2

d2

(
1 +

u− a
d

)−(1+λ)

2um−1.

Hence, we are allowed to rewrite (3.18) in the form

sup
t∈Λ

(a)
%/2

∫
B%/2×{t}∩{u>a}

Gλ

(u− a
d

)
dx

+
λ

2

∫∫
Q

(a)
%/2∩{u>a}

[
dm−1

∣∣∣DVλ(u− a
d

)∣∣∣2 + am−1
∣∣∣DWλ

(u− a
d

)∣∣∣2]dz
≤ γ

%2

∫∫
Q

(a)
% ∩{u>a}

um−1
(

1 +
u− a
d

)1+λ

dz +
γ

d%

∫∫
Q

(a)
% ∩{u>a}

um dz

+
γ

d2

∫∫
Q

(a)
% ∩{u>a}

um+1

(1 + u−a
d )1+λ

dz +
γµ
(
Q

(a)
%

)
d

.

(3.19)

As λ ∈ (0, 1), the inequality (3.19) remains true if we multiply the term involving
the supremum by λ

2 . After that, the assertion (3.1) eventually results from dividing
the whole inequality by λ

2 . �

The energy estimate (3.1) is now at our disposal, and we end this paragraph.
Moreover, we have finished the preparations for the proof of Theorem 1.1, which
permits us to head for this central statement.

4. Proof of Theorem 1.1

We arrive at the core of this report. The instruments developed in the previous
two sections enable us to explicitly prove the pointwise estimate (1.6) for weak
solutions of the Cauchy-Dirichlet problem (1.1) for the nonhomogeneous porous
medium type equation.

Proof. We will proceed as described in Section 1.5.

4.1. Choice of parameters. In this segment, we will provide cylinders and pa-
rameters which later on will turn out to be suitable, when inserted in the energy
estimate (3.1). Therefore, we have to mention the quantities Kj and kj that will
show up in a natural way in the proof, which is why we will additionally detect some
of their features in this passage. What is more, we will outline several expedient
relations between functions, cylinders etc. that will emerge in the further course of
the proof.
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Let λ ∈ (0, 1
n ] and Qr,θ(z0) b ET , where r ∈ (0, R0] and θ > 0. As before, we

omit the center z0 in our notation. For j ∈ N0, we define sequences of radii

rj :=
r

2j
,

parameters

θj :=
θ

22j
,

and cylinders
Qj := Bj × Λj := Brj × (t0 − a1−m

j r2
j , t0),

where the quantities aj will be chosen inductively below. We set

a0 :=
(r2

θ

) 1
m−1

and assume for j ≥ 0 that a0, . . . , aj have already been specified. For the purpose
of selecting aj+1, we first define

Kj(a) :=
1

rn+2
j

∫∫
Qj∩{u>aj}

um−1
(u− aj
a− aj

)1+λ

dz

for a > aj and observe the convergence Kj(a) → 0 as a → ∞. Let κ ∈ (0, 1) be a
fixed parameter which we will determine later. Then we choose

aj+1 :=
[
1 + 2−(j+2)

]
aj (4.1)

if
Kj

(
[1 + 2−(j+2)]aj

)
≤ κ (4.2)

holds, and
aj+1 := sup

{
a ∈

(
[1 + 2−(j+2)]aj ,∞

)
: Kj(a) > κ

}
, (4.3)

provided that we have
Kj

(
[1 + 2−(j+2)]aj

)
> κ.

When aj+1 is defined as in (4.3), there hold

Kj(aj+1) = κ (4.4)

and aj+1 >
[
1 + 2−(j+2)

]
aj , because the mapping Kj : (aj ,∞) → R is continuous

and decreasing. In both cases, (4.1) and (4.3), we set dj := aj+1 − aj for j ∈ N0

and define
kj := Kj(aj+1),

which satisfies

kj =
1

rn+2
j

∫∫
Qj∩{u>aj}

um−1
(u− aj

dj

)1+λ

dz ≤ κ (4.5)

for any j ∈ N0, since we have (4.2) if aj+1 is defined via (4.1), and, in the case that
aj+1 is given by (4.3), there even holds equality in (4.5) by (4.4). In order to be
enabled to replace u by u− aj−1 later in the proof, we need the estimation

u ≤ 2j+2(u− aj−1) (4.6)

for any j ∈ N on the set {u > aj}, which we briefly establish in the following. Both if
aj is defined as in (4.1) and if aj is stated in (4.3), there holds aj ≥

[
1+2−(j+1)

]
aj−1,

or equivalently, aj − aj−1 ≥ 2−(j+1)aj−1. This leads us to the estimate
aj

aj − aj−1
= 1 +

aj−1

aj − aj−1
≤ 2j+2. (4.7)
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On {u > aj}, we compute
(
1 − aj−1

aj

)
u = u − aj−1 + aj−1

aj
(aj − u) ≤ u − aj−1,

and using the inequality (4.7), we obtain u ≤ aj
aj−aj−1

(u− aj−1) ≤ 2j+2(u− aj−1).
We terminate this paragraph with two statements regarding the previously ini-

tiated cylinders. To begin with, due to the fact that 2rj+1 = rj and aj+1 > aj , we
infer the inclusion

2Qj+1 ⊂ Qj (4.8)

for any j ∈ N0, and, furthermore, we have

Qj ⊂ Qrj ,θj (4.9)

for any j ∈ N0, since aj ≥ a0 = (r2/θ)
1

m−1 and thus a1−m
j r2

j ≤ θ
r2 r

2
j = θj holds.

4.2. Recursive bounds for dj. Having prepared the sequences (Qj)j∈N0 , (aj)j∈N0

and (dj)j∈N0 , we arrive at this section whose objective is to show that the inequality

dj ≤
1
2
dj−1 + 2−(j+2)aj +

γµ(2Qrj ,θj )
rnj

(4.10)

is valid for any j ∈ N, where γ ≡ γ(n,C0, C1, C,m, λ,R0) is a constant. We will
roughly proceed as follows: After various introductory comments, we will apply the
energy estimate (3.1) with the concrete cylinders and parameters from Chapter 4.1
and modify the outcome until we reach the assertion (4.21). Next, we estimate by
the right-hand side of (4.33) the terms I(5) and II(5) which will occur in a natural
way in (4.22). To achieve this, we will repeatedly avail ourselves to the Gagliardo-
Nirenberg inequality (2.2) and the energy estimate in its version (4.21). Then,
immediately after rewriting (4.33) in the more convenient form (4.35) and a simple
case analysis, the conclusion (4.10) ensues.

We start our considerations by excluding certain trivial cases. According to
(4.5), we have kj ≤ κ for any j ∈ N0. If kj < κ holds, aj+1 is defined via (4.1),
meaning that we have aj+1 = [1+2−(j+2)]aj , which is equivalent to dj = 2−(j+2)aj ,
so that (4.10) is obviously satisfied. Consequently, let

kj = κ (4.11)

from now on. Moreover, we can assume without loss of generality that

dj >
1
2
dj−1 (4.12)

holds, since otherwise we would have dj ≤ 1
2dj−1 which again instantly implies

(4.10). Before approaching the proof of the bound (4.10), we shall establish some
helpful estimates which we will frequently require later on. For one thing, we have

1 =
aj − aj−1

dj−1
≤ u− aj−1

dj−1
(4.13)

on the set 2Qj ∩ {u > aj}, for another thing, the inequality

u− aj
dj

≤ u− aj−1

dj
≤ 2

u− aj−1

dj−1
(4.14)

holds on 2Qj ∩ {u > aj} by the fact that aj > aj−1 and the assumption (4.12)
from above. Beyond that, we use the observation (4.13) and the identity 1

rj
= 2

rj−1
,
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extend the domain of integration (note that aj > aj−1 and 2Qj ⊂ Qj−1 by (4.8)),
and finally consult the property (4.5) of kj−1 to obtain

1
rn+2
j

∫∫
Qj∩{u>aj}

um−1 dz

≤ 1
rn+2
j

∫∫
2Qj∩{u>aj}

um−1 dz

≤ 1
rn+2
j

∫∫
2Qj∩{u>aj}

um−1
(u− aj−1

dj−1

)1+λ

dz

≤ 2n+2

rn+2
j−1

∫∫
Qj−1∩{u>aj−1}

um−1
(u− aj−1

dj−1

)1+λ

dz

= 2n+2kj−1 ≤ 2n+2κ.

(4.15)

This completes the preliminary thoughts of this section, and we now devote our-
selves to the energy estimate with the concrete quantities from Section 4.1. To this
end, we fix λ ∈ (0, 1

n ] and apply (3.1) with the cylinder 2Qj in lieu of Q(a)
% , also

replacing the parameters (a, d) from Theorem 3.2 by (aj , dj). This yields

sup
t∈Λj

∫
Bj×{t}∩{u>aj}

Gλ

(u− aj
dj

)
dx

+
∫∫

Qj∩{u>aj}

[
dm−1
j

∣∣∣DVλ(u− aj
dj

)∣∣∣2 + am−1
j

∣∣∣DWλ

(u− aj
dj

)∣∣∣2] dz
≤ γ

r2
j

∫∫
2Qj∩{u>aj}

um−1
(

1 +
u− aj
dj

)1+λ

dz +
γ

djrj

∫∫
2Qj∩{u>aj}

um dz

+
γ

d2
j

∫∫
2Qj∩{u>aj}

um+1

(1 + u−aj
dj

)1+λ
dz +

γµ(2Qj)
dj

=: I(4) + II(4) + III(4) +
γµ(2Qj)

dj
.

(4.16)

In turn, we examine the terms I(4), II(4) and III(4), starting with I(4). With the
aid of the inequalities (4.13) and (4.14) in the first and (4.15) in the second step,
respectively, we compute

I(4) ≤ γ 1
r2
j

∫∫
2Qj∩{u>aj}

um−1
(u− aj−1

dj−1

)1+λ

dz ≤ γrnj κ (4.17)

for a constant γ ≡ γ(n,C0, C1, C,m, λ,R0). Estimating u via (4.6) and successively
using the assumption (4.12), the fact that 2j = r

rj
≤ R0

rj
, the observation (4.13),

and ultimately the inequality (4.15), we find

II(4) =
γ

djrj

∫∫
2Qj∩{u>aj}

um−1u dz

≤ γ 2j

rj

∫∫
2Qj∩{u>aj}

um−1u− aj−1

dj
dz

≤ γ 1
r2
j

∫∫
2Qj∩{u>aj}

um−1
(u− aj−1

dj−1

)1+λ

dz ≤ γrnj κ

(4.18)
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for the second term. Before discussing the term III(4), we convince ourselves that
on the domain of integration, there holds

u

1 + u−aj
dj

≤ 2j+2 (u− aj−1)dj
dj + u− aj

= 2j+2
[ (u− aj)dj
dj + u− aj

+
(aj − aj−1)dj
dj + u− aj

]
≤ 2j+2(dj + dj−1) ≤ 12 · 2jdj ≤ 12R0

dj
rj
,

(4.19)

where we have deployed the result (4.6), the fact that dj ≥ 0 and u − aj ≥ 0
hold true, and the assumption (4.12). Initially decreasing the denominator of the
fraction in III(4) and subsequently consulting (4.19) and the bound for II(4) from
(4.18), we are enabled to establish the estimate

III(4) ≤ γ

d2
j

∫∫
2Qj∩{u>aj}

um
u

1 + u−aj
dj

dz

≤ γ

djrj

∫∫
2Qj∩{u>aj}

um dz ≤ γrnj κ.
(4.20)

We insert the outcomes (4.17), (4.18) and (4.20) in (4.16) to obtain the energy
estimate

sup
t∈Λj

∫
Bj×{t}∩{u>aj}

Gλ

(u− aj
dj

)
dx

+
∫∫

Qj∩{u>aj}

[
dm−1
j

∣∣∣DVλ(u− aj
dj

)∣∣∣2 + am−1
j

∣∣∣DWλ

(u− aj
dj

)∣∣∣2] dz
≤ γ

[
rnj κ+

µ(2Qj)
dj

]
(4.21)

for a constant γ ≡ γ(n,C0, C1, C,m, λ,R0).
Since we have reduced the situation to the case in which (4.11) holds, we can

now proceed as follows:

κ = kj =
1

rn+2
j

∫∫
Qj∩{u>aj}

[
(u− aj) + aj

]m−1
(u− aj

dj

)1+λ

dz

≤
γdm−1

j

rn+2
j

∫∫
Qj∩{u>aj}

(u− aj
dj

)m+λ

dz

+
γam−1

j

rn+2
j

∫∫
Qj∩{u>aj}

(u− aj
dj

)1+λ

dz

=: I(5) + II(5)

(4.22)

for a constant γ ≡ γ(m). In the sequel, we first consider I(5) and then II(5). For
the former, we have

I(5) ≤
γdm−1

j

rn+2
j

[
ε1+λ

∫∫
Qj∩{u>aj}

(u− aj
dj

)m−1

dz

+ γε

∫∫
Qj∩{u>aj}

(
Vλ

(u− aj
dj

)) 2(m+λ)
m−λ

dz
]

≤ γε1+λ 1
rn+2
j

∫∫
Qj∩{u>aj}

um−1 dz
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+
γεd

m−1
j

rn+2
j

∫∫
Qj∩{u>aj}

(
Vλ

(u− aj
dj

)) 2(m+λ)
m−λ

dz

≤ γε1+λκ+
γεd

m−1
j

rn+2
j

∫∫
Qj

(
Vλ

( (u− aj)+

dj

)) 2(m+λ)
m−λ

dz

for constants γ ≡ γ(n,m) and γε ≡ γ(m,λ, ε), using the inequality (2.5) from
Lemma 2.6 for some ε ∈ (0, 1) to be chosen later and (4.15) as well as noting that
Vλ(0) = 0 holds. Next, we apply the Gagliardo-Nirenberg inequality with p = 2,
q = 2(m+λ)

m−λ and r = 2λn
m−λ to receive

I(5) ≤ γε1+λκ+ γε

[
sup
t∈Λj

1
rnj

∫
Bj×{t}

∣∣∣Vλ( (u− aj)+

dj

)∣∣∣ 2λn
m−λ

dx
]2/n

×
dm−1
j

rnj

∫∫
Qj

[ 1
r2
j

∣∣∣Vλ( (u− aj)+

dj

)∣∣∣2 +
∣∣∣DVλ( (u− aj)+

dj

)∣∣∣2]dz
=: γε1+λκ+ γεI(6)

(
II(6) + III(6)

)
(4.23)

for constants γ ≡ γ(n,m) and γε ≡ γ(n,m, λ, ε). At this point, we shall take a brief
snapshot of the progress of the proof. We have begun to work on the expression
I(5), where further terms I(6), II(6) and III(6), which are to be discussed in what
follows, arose in (4.23). Our next goal is to estimate these terms, before we cope
with II(5) from (4.22). We continue the proof by looking at the term I(6). With
the help of inequality (2.4), Hölder’s inequality, the statement (2.3) for some fixed
ε1 ∈ (0, 1) to be chosen later, and the energy estimate (4.21), we deduce

I(6) =
[

sup
t∈Λj

1
rnj

∫
Bj×{t}∩{u>aj}

∣∣∣Vλ(u− aj
dj

)∣∣∣ 2λn
m−λ

dx
]2/n

≤ γ
[

sup
t∈Λj

1
rnj

∫
Bj×{t}∩{u>aj}

(u− aj
dj

)λn
dx
]2/n

≤ γ
[

sup
t∈Λj

1
rnj

∫
Bj×{t}∩{u>aj}

u− aj
dj

dx
]2λ

≤ γε2λ
1 + γε−2λ

1

[
sup
t∈Λj

1
rnj

∫
Bj×{t}∩{u>aj}

Gλ

(u− aj
dj

)
dx
]2λ

≤ γε2λ
1 + γε−2λ

1

[
κ+

µ(2Qj)
djrnj

]2λ

(4.24)

for a constant γ ≡ γ(n,C0, C1, C,m, λ,R0). This completes our thoughts on the
term I(6), and we now turn towards II(6) by applying the inequality (2.4), enlarging
the domain of integration, and using the fact that u − aj ≤ u and (4.14). Addi-
tionally enlarging the exponent from 1 − λ to 1 + λ (note that (4.13) holds) and
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exploiting (4.15), we obtain

II(6) =
dm−1
j

rn+2
j

∫∫
Qj∩{u>aj}

∣∣∣Vλ(u− aj
dj

)∣∣∣2 dz
≤
γdm−1

j

rn+2
j

∫∫
Qj∩{u>aj}

(u− aj
dj

)m−λ
dz

≤ γ

rn+2
j

∫∫
2Qj∩{u>aj}

um−1
(u− aj

dj

)1−λ
dz

≤ γ

rn+2
j

∫∫
2Qj∩{u>aj}

um−1
(u− aj−1

dj−1

)1−λ
dz

≤ γ

rn+2
j

∫∫
2Qj∩{u>aj}

um−1
(u− aj−1

dj−1

)1+λ

dz ≤ γκ

(4.25)

for a constant γ ≡ γ(n,m, λ). Studying the term III(6), we find

III(6) =
dm−1
j

rnj

∫∫
Qj∩{u>aj}

∣∣∣DVλ(u− aj
dj

)∣∣∣2 dz ≤ γ[κ+
µ(2Qj)
djrnj

]
(4.26)

for a constant γ ≡ γ(n,C0, C1, C,m, λ,R0), where we made use of (4.21). We insert
the results (4.24), (4.25) and (4.26) in (4.23) and gain

I(5) ≤ γε1+λκ+ γε

[
ε2λ

1 + ε−2λ
1

(
κ+

µ(2Qj)
djrnj

)2λ][
κ+

µ(2Qj)
djrnj

]
(4.27)

for constants γ ≡ γ(n,m) and γε ≡ γ(n,C0, C1, C,m, λ,R0, ε), which qualifies us to
put aside the considerations of the first summand from (4.22) to address ourselves
to some illustrations of II(5). For the term II(5), we involve in turn the inequalities
(2.7) and am−1

j ≤ um−1 (the latter holds on the domain of integration), the fact
that Wλ(0) = 0, and (4.15) to derive the estimate

II(5) ≤ γε1+λ

rn+2
j

∫∫
Qj∩{u>aj}

am−1
j dz

+
γεa

m−1
j

rn+2
j

∫∫
Qj∩{u>aj}

(
Wλ

(u− aj
dj

)) 2(1+λ)
1−λ

dz

≤ γε1+λ 1
rn+2
j

∫∫
Qj∩{u>aj}

um−1 dz

+
γεa

m−1
j

rn+2
j

∫∫
Qj

(
Wλ

( (u− aj)+

dj

)) 2(1+λ)
1−λ

dz

≤ γε1+λκ+
γεa

m−1
j

rn+2
j

∫∫
Qj

(
Wλ

( (u− aj)+

dj

)) 2(1+λ)
1−λ

dz

for constants γ ≡ γ(n,m) and γε ≡ γ(m,λ, ε). Once again applying the Gagliardo-
Nirenberg inequality from Theorem 2.3, this time for the choices p = 2, q = 2(1+λ)

1−λ
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and r = 2λn
1−λ , we acquire

II(5) ≤ γε1+λκ+ γε

[
sup
t∈Λj

1
rnj

∫
Bj×{t}

∣∣∣Wλ

( (u− aj)+

dj

)∣∣∣ 2λn
1−λ

dx
]2/n

×
am−1
j

rnj

∫∫
Qj

[ 1
r2
j

∣∣∣Wλ

( (u− aj)+

dj

)∣∣∣2 +
∣∣∣DWλ

( (u− aj)+

dj

)∣∣∣2]dz
=: γε1+λκ+ γεI(7)(II(7) + III(7))

(4.28)

for constants γ ≡ γ(n,m) and γε ≡ γ(n,m, λ, ε). Analogous to the approach in
(4.23), we have to develop in the following some appropriate bounds for the terms
I(7), II(7) and III(7) as well. Fortunately, the former two can by little moves be
reduced to the terms I(6) and II(6), with the result that we are enabled to employ
the inequalities (4.24) and (4.25), respectively, which we have already deduced.
For the term III(7), the same argumentation as the one used for III(6) is operating
effectively. After this synoptic view of the further proof strategy, we commence the
evaluation of I(7). Consulting (2.6) and the accomplishments for I(6) from above
(cf. (4.24)), we find

I(7) =
[

sup
t∈Λj

1
rnj

∫
Bj×{t}∩{u>aj}

∣∣∣Wλ

(u− aj
dj

)∣∣∣ 2λn
1−λ

dx
]2/n

≤ γ
[

sup
t∈Λj

1
rnj

∫
Bj×{t}∩{u>aj}

(u− aj
dj

)λn
dx
]2/n

≤ γε2λ
1 + γε−2λ

1

[
κ+

µ(2Qj)
djrnj

]2λ
(4.29)

for a constant γ ≡ γ(n,C0, C1, C,m, λ,R0). To deal with the term II(7), we also
exploit the inequality (2.6), replace aj by u, and exert the observations for II(6)

from (4.25) to obtain

II(7) =
am−1
j

rn+2
j

∫∫
Qj∩{u>aj}

∣∣∣Wλ

(u− aj
dj

)∣∣∣2 dz
≤ γ

rn+2
j

∫∫
Qj∩{u>aj}

am−1
j

(u− aj
dj

)1−λ
dz

≤ γ

rn+2
j

∫∫
Qj∩{u>aj}

um−1
(u− aj

dj

)1−λ
dz ≤ γκ

(4.30)

for a constant γ ≡ γ(n, λ). Eventually, working with the same arguments as in
(4.26), we get the estimate

III(7) =
am−1
j

rnj

∫∫
Qj∩{u>aj}

∣∣∣DWλ

(u− aj
dj

)∣∣∣2 dz ≤ γ[κ+
µ(2Qj)
djrnj

]
(4.31)

for a constant γ ≡ γ(n,C0, C1, C,m, λ,R0). We insert (4.29)-(4.31) in (4.28) to find
that

II(5) ≤ γε1+λκ+ γε

[
ε2λ

1 + ε−2λ
1

(
κ+

µ(2Qj)
djrnj

)2λ][
κ+

µ(2Qj)
djrnj

]
(4.32)

holds for constants γ ≡ γ(n,m) and γε ≡ γ(n,C0, C1, C,m, λ,R0, ε), in other words,
II(5) can be bounded by the right-hand side of (4.27) as well. This closes our
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calculations for the term II(5), and we join both the estimates (4.27) and (4.32).
Afterwards, we will specify the parameters ε, ε1 and κ. By means of a case analysis,
the desired recursive bound (4.10) for dj finally becomes apparent. Embedding the
estimates (4.27) and (4.32) for I(5) and II(5) in (4.22) yields

κ ≤ γε1+λκ+ γε

[
ε2λ

1 + ε−2λ
1

(
κ+

µ(2Qj)
djrnj

)2λ][
κ+

µ(2Qj)
djrnj

]
(4.33)

for constants γ ≡ γ(n,m) and γε ≡ γ(n,C0, C1, C,m, λ,R0, ε). Before deciding on
the values of the quantities ε, ε1, κ ∈ (0, 1), we shall detect an alternative represen-
tation for (4.33). If κ ≤ µ(2Qj)

djrnj
holds, we conclude

κ ≤ γε1+λκ+ γε

[
ε2λ

1 + ε−2λ
1

(
2
µ(2Qj)
djrnj

)2λ][
2
µ(2Qj)
djrnj

]
,

whereas in the case that κ > µ(2Qj)
djrnj

is valid, one can infer

κ ≤ γε1+λκ+ γε
[
ε2λ

1 + ε−2λ
1 (2κ)2λ

][
2κ
]
.

We note that ε2λ
1 ≤ ε−2λ

1 to find that in any case, by adding the right-hand sides
of the last two inequalities, (4.33) implies

κ ≤
(
γε1+λ + γεε

2λ
1 + γεε

−2λ
1 κ2λ

)
κ+ γεε

−2λ
1

[µ(2Qj)
djrnj

+
(µ(2Qj)
djrnj

)1+2λ]
. (4.34)

We now determine the still available parameters ε, ε1 and κ as follows: First, we
choose ε such that γε1+λ = 1

6 , then ε1 such that γεε2λ
1 = 1

6 , and finally κ to satisfy
γεε
−2λ
1 κ2λ = 1

6 , where one can easily verify that all three quantities actually lie
within the demanded interval (0, 1). Besides, ε, ε1 and κ only depend on n, C0,
C1, C, m, λ and R0. That way, the preceding inequality (4.34) evolves into

κ ≤ γ
[µ(2Qj)
djrnj

+
(µ(2Qj)
djrnj

)1+2λ]
(4.35)

for a constant γ ≡ γ(n,C0, C1, C,m, λ,R0). With the aid of a case analysis, the
inequality (4.10) will relatively quickly come out of (4.35). Indeed, if there holds
α := µ(2Qj)/(djrnj ) ≤ 1, we have α1+2λ ≤ α, and, consequently, one can infer

dj ≤ γ
µ(2Qj)
rnj

(4.36)

from (4.35), since κ, just like γ, solely depends on n, C0, C1, C, m, λ and R0. If
otherwise α > 1 holds, we have α ≤ α1+2λ, and (4.35) likewise yields (4.36). In
both cases, this leads to

dj ≤ 2γ
µ(2Qj)
rnj

≤
γµ(2Qrj ,θj )

rnj
,

where we have used (4.9). Eventually, the claim (4.10) ensues from this estimate.
We hereby terminate this passage on the recursive bound for dj and move on to
the last subsection to establish the proposition (1.6).
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4.3. Potential estimates. In this segment, we resort to the property (4.10) of dj
to deduce the alleged inequality (1.6). More precisely, we will add up (4.10) which
gives us the bound (4.38) for the members of the sequence (aj)j∈N0 . Appropriately
estimating in (4.38) both a1 and the involved sum (the latter in terms of a Riesz
potential), subsequently passing to the limit j →∞, and additionally employing a
short argument which allows to associate u(z0) with the limit a∞, we obtain the
assertion of Theorem 1.1.

Summing up the result (4.10) proved in Section 4.2, we receive

a` − a1 =
`−1∑
j=1

dj ≤
1
2

`−1∑
j=1

dj−1 +
`−1∑
j=1

2−(j+2)aj + γ

`−1∑
j=1

µ(2Qrj ,θj )
rnj

≤ 3
4
a` + γ

∑̀
j=1

µ(2Qrj ,θj )
rnj

(4.37)

for any ` ≥ 2, where we have worked with the estimates (note that (aj)j∈N0 is an
increasing sequence)

`−1∑
j=1

dj−1 = a`−1 − a0 ≤ a`−1 ≤ a`,

`−1∑
j=1

2−(j+2)aj ≤
a`
4

`−1∑
j=1

2−j ≤ a`
4
.

The inequality (4.37) connotes

a` ≤ 4a1 + γ
∑̀
j=1

µ(2Qrj ,θj )
rnj

(4.38)

for any ` ≥ 2. In the following, we are interested in a bound for the parameter a1,
which is why we recall its definition. If K0( 5

4a0) ≤ κ, we have set a1 = 5
4a0, hence,

(4.38) gives

a` ≤ 5
(r2

θ

) 1
m−1

+ γ
∑̀
j=1

µ(2Qrj ,θj )
rnj

, (4.39)

whereas in the case that K0( 5
4a0) > κ holds, the equation (4.4) for j = 0 reads as

1
rn+2

∫∫
Q0∩{u>a0}

um−1
( u− a0

a1 − a0

)1+λ

dz = κ.

We multiply both sides by (a1−a0)1+λ

κ and subsequently raise them to the power
1

1+λ to acquire

a1 = a0 +
[ 1
κrn+2

∫∫
Q0∩{u>a0}

um−1(u− a0)1+λ dz
] 1

1+λ

≤
(r2

θ

) 1
m−1

+
[ 1
κrn+2

∫∫
Qr,θ

um+λ dz
] 1

1+λ
,
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where in the second step we have replaced u− a0 by u and enlarged the domain of
integration via (4.9). Inserting this in (4.38), we find

a` ≤ 4
(r2

θ

) 1
m−1

+ 4
[ 1
κrn+2

∫∫
Qr,θ

um+λ dz
] 1

1+λ
+ γ

∑̀
j=1

µ(2Qrj ,θj )
rnj

. (4.40)

Thus, regardless of whether K0( 5
4a0) ≤ κ or not, we derive

a` ≤ 5
(r2

θ

) 1
m−1

+ γ
[ 1
rn+2

∫∫
Qr,θ

um+λ dz
] 1

1+λ
+ γ

∞∑
j=1

µ(2Qrj ,θj )
rnj

(4.41)

for a constant γ ≡ γ(n,C0, C1, C,m, λ,R0) from (4.39) and (4.40). Next, we esti-
mate the series in (4.41) by a Riesz potential. For this purpose, we set r−1 := 2r
and compute

∞∑
j=1

µ(2Qrj ,θj )
rnj

=
∞∑
j=1

1
rj−2 − rj−1

∫ rj−2

rj−1

µ(Qrj−1,r2j−1θ/r
2)

rnj
d%

≤ 22n
∞∑
j=1

∫ rj−2

rj−1

µ(Q%,%2θ/r2)
rnj−2(rj−2 − rj−1)

d%

≤ 22n+1
∞∑
j=1

∫ rj−2

rj−1

µ(Q%,%2θ/r2)
%n%

d%

= 22n+1

∫ 2r

0

µ(Q%,%2θ/r2)
%n

d%

%

= 22n+1Iµ2 (z0, 2r, 4θ) ,

which, inserted in (4.41), yields the inequality

a` ≤ 5
(r2

θ

) 1
m−1

+ γ
[ 1
rn+2

∫∫
Qr,θ

um+λ dz
] 1

1+λ
+ γIµ2 (z0, 2r, 4θ)

≤ 5
( (2r)2

4θ

) 1
m−1

+ γ
[ 1

(2r)n+2

∫∫
Q2r,4θ

um+λ dz
] 1

1+λ
+ γIµ2 (z0, 2r, 4θ) .

Substituting 2r by r and 4θ by θ, this implies in particular that

a∞ := lim
j→∞

aj ≤ 5
(r2

θ

) 1
m−1

+ γ
[ 1
rn+2

∫∫
Qr,θ

um+λ dz
] 1

1+λ

+ γIµ2 (z0, r, θ) <∞
(4.42)

for a constant γ ≡ γ(n,C0, C1, C,m, λ,R0). By the definition of dj (= aj − aj−1),
we infer the convergence dj → 0 as j →∞. Now, let z0 be a Lebesgue point of u.
Defining for short ωn := Hn−1(Sn−1), we then have

0 ≤
(u(z0)
a∞

)m−1(
u(z0)− a∞

)1+λ

+

= lim
j→∞

−−
∫∫

Qj

( u
aj

)m−1(
u− aj

)1+λ

+
dz

= lim
j→∞

nd1+λ
j

ωn

1
rn+2
j

∫∫
Qj∩{u>aj}

um−1
(u− aj

dj

)1+λ

dz
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≤ nκ

ωn
lim
j→∞

d1+λ
j = 0

by the inequality (4.5) and the limit dj → 0 as j → ∞, which we have just
established above. Hence, u(z0) − a∞ ≤ 0 necessarily holds. Taking into account
the estimate (4.42), this leads us to

u(z0) ≤ a∞ ≤ 5
(r2

θ

) 1
m−1

+ γ
[ 1
rn+2

∫∫
Qr,θ

um+λ dz
] 1

1+λ
+ γIµ2 (z0, r, θ)

for any Lebesgue point z0 of u with a constant γ ≡ γ(n,C0, C1, C,m, λ,R0) which
proves the assertion of Theorem 1.1. �
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