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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR
NONHOMOGENEOUS KLEIN-GORDON-MAXWELL EQUATIONS

LIPING XU, HAIBO CHEN

Abstract. This article concerns the nonhomogeneous Klein-Gordon-Maxwell

equation

−∆u+ u− (2ω + φ)φu = |u|p−1u+ h(x), in R3,

∆φ = (ω + φ)u2, in R3,

where ω > 0 is constant, p ∈ (1, 5). Under appropriate assumptions on h(x),

the existence of at least two solutions is obtained by applying the Ekeland’s

variational principle and the Mountain Pass Theorem in critical point theory.

1. Introduction

In this article, we consider the existence of multiple solutions for the nonhomo-
geneous Klein-Gordon-Maxwell equation

−∆u+ u− (2ω + φ)φu = |u|p−1u+ h(x), in R3,

∆φ = (ω + φ)u2, in R3,
(1.1)

where ω > 0 is constant, 1 < p < 5. We assume that the function h(x) satisfies the
following hypotheses.

(H1) 0 ≤ h(x) ∈ L2(R3)
⋂
C1(R3) and h(x) = h(|x|) 6≡ 0.

(H2) ‖h(x)‖L2 < mp, where mp = p−1
2p ( p+1

2pηp+1
p

)
1
p−1 , ηp > 0 is the Sobolev em-

bedding constant.
(H3) 〈∇h(x), x〉 ∈ L2(R3).

Such system was first introduced in [2] as a model which describes the nonlinear
Klein-Gordon field interacting with the electromagnetic field in the electrostatic
case. The unknowns of the system are the field u associated to the particle and
the electric potential φ, while ω denotes the phase. The presence of the nonlin-
ear term simulates the interaction between many particles or external nonlinear
perturbations.
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When h(x) = 0, the homogeneous case, a several works have been devoted to
the Klein-Gordon-Maxwell:

−∆u+ [m2 − (ω + φ)2]u = |u|p−1u, in R3,

∆φ = (ω + φ)u2, in R3.
(1.2)

The first result is due to Benci and Fortunato. In [2], they proved the existence
of infinitely many radially symmetric solutions for (1.2) under the assumption 3 <
p < 5. D’Aprile and Mugnai [5] covered the case 1 < p < 3 and the case p = 3.
Under the assumption 1 < p < 5, Azzollini and Pomponio proved the existence of a
ground state solution for (1.2) in [1]. In [6], some nonexistence results of nontrivial
solutions for (1.2) were obtained when p ≥ 5 or p ≤ 1.

Recently, by combining the minimization of the corresponding Euler-Lagrange
functional on the Nehari manifold with the Brezis and Nirenberg technique, Carrião,
Cunha and Miyagaki proved the existence of positive ground state solutions of
system (1.1) with h(x) = 0 when the nonlinearity exhibits critical growth, see [3].

The nonhomogeneous case, that is h(x) 6= 0. The authors [4] considered the
following nonhomogeneous Klein-Gordon-Maxwell equations:

−∆u+ [m2 − (ω + φ)2]u = |u|p−2u+ h(x) in R3,

∆φ = (ω + φ)u2, in R3,
(1.3)

where m > ω > 0 and 2 < p < 6. This is the first paper dealing with the nonho-
mogeneous Klein-Gordon-Maxwell equations. However, since [4, equality (9)] is in
error, the authors could not obtain the boundedness of {un} under the assumption
2 < p < 6. Then [4, Lemma 3.6 and Theorem 1.3] could not be obtained.

Motivated by the works described above, in the present paper, we establish the
existence of multiple solution results for system (1.1). The method is inspired by [9].

By Ekeland’s variational principle, it is not difficult to get a solution u0 of (1.1)
for all ω > 0, 1 < p < 5 and ‖h‖L2 suitably small. Moreover, u0 is a local minimizer
of Iω and Iω(u0) < 0, where Iω is defined by (2.2). However, under our assumptions
it seems difficult to get a second solution(different from u0) of (1.1) by applying
the Mountain Pass Theorem. So we have to study problem (1.1) in the following
two cases: p ∈ (1, 2] and p ∈ (2, 5), respectively.

For p ∈ [3, 5), we can directly prove the boundedness of {un} and the (PS)c
condition. But for p ∈ (2, 3), it is difficult to show if the (PS)c condition satisfies.
To overcome the difficulty, by introducing a suitable approximation problem, we
use an indirect method to obtain the boundedness of {un} sequence for Iω based on
the weak solutions of the approximation problem, and then show that this special
(PS) sequence converges to a solution of problem (1.1). However, when p ∈ (1, 2],
it is more delicate. For this case, we note that (1.1) has no positive energy solution
for ω > 0 large enough (see Theorem 5.1). Based on this observation, by using
the cut-off technique as in [7], we finally get a positive energy solution for problem
(1.1) with ω > 0 small enough.

Our main results read as follows.

Theorem 1.1. Let p ∈ (2, 5) and (H1)–(H3) hold. Then, for all ω > 0, problem
(1.1) has at least two nontrivial solutions u0 and u1 such that Iω(u0) < 0 < Iω(u1).

Theorem 1.2. Assume that p ∈ (1, 2] and (H1)–(H2) hold. Then, if ω > 0 small,
problem (1.1) possesses two nontrivial solutions u0 and ũ1 such that Iω(u0) < 0 <
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Iω(ũ1). However, if ω > 0 large enough, problem (1.1) has no solution with positive
energy.

Remark 1.3. According to our results, for any ω > 0, problem (1.1) has always a
solution with negative energy.

Throughout this article mC denotes various positive constants.

2. Variational setting

In this section, we introduce some preliminary results concerning the variational
structure for (1.1). Our working space is E := H1(R3) equipped with the inner
product and norm

〈u, v〉 :=
∫

R3
(∇u · ∇v + uv)dx, ‖u‖ := 〈u, u〉1/2.

Let D1,2(R3) be the completion of C∞0 (R3, R) with respect to the norm

‖u‖D1,2 = (
∫

R3
|∇u|2dx)

1
2 .

And for any 1 ≤ s < ∞, ‖u‖Ls := (
∫

R3 |u|sdx)
1
s denotes the usual norm of the

Lebesgue space Ls(R3).
Due to the variational nature of problem (1.1), its weak solutions (u, φ) ∈ E ×

D1,2(R3) are critical points of the functional J : E ×D1,2(R3)→ R defined by

J(u, φ) =
1
2
‖u‖2 − 1

2

∫
R3
|∇φ|2dx− 1

2

∫
R3

(2ω + φ)φu2dx

− 1
p+ 1

∫
R3
|u|p+1dx−

∫
R3
h(x)u dx.

Obviously, the action functional J belongs to C1(E ×D1,2(R3), R) and exhibits a
strong indefiniteness. To avoid the indefiniteness we apply a reduction method, as
has been done by the aforementioned authors.

Lemma 2.1 ( [5, 6]). For every u ∈ E there exists a unique φ = φu ∈ D1,2(R3)
which solves ∆φ = (w + φ)u2. Furthermore

(i) in the set {x : u(x) 6= 0} we have −ω ≤ φu ≤ 0 for ω > 0;
(ii) if u is radially symmetric, φu is radial too.

According to Lemma 2.1, we can consider the functional Iω : E → R defined by
Iω(u) = J(u, φu). After multiplying both members of the second equation in equa-
tions (1.1) by φu and integrating by parts, we obtain∫

R3
|∇φu|2dx = −

∫
R3
ωφuu

2dx−
∫

R3
φ2
uu

2dx. (2.1)

Then, the reduced functional takes the form

Iω(u) =
1
2

∫
R3

(|∇u|2 + u2 − ωφuu2)dx− 1
p+ 1

∫
R3
|u|p+1dx−

∫
R3
h(x)u dx. (2.2)

Furthermore I is C1 and we have for any u, v ∈ E,

〈I ′ω(u), v〉 =
∫

R3
(∇u · ∇v + uv − (2ω + φu)φuuv)dx

−
∫

R3
|u|p−1uvdx−

∫
R3
h(x)v dx.

(2.3)
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Remark 2.2. By (2.1), we can note that

‖φu‖2D1,2(R3) ≤
∫

R3
ω|φu|u2dx ≤ ω‖φu‖L6‖u‖2L12/5 ,

then

‖φu‖D1,2(R3) ≤ C1ω‖u‖2L12/5 ,

∫
R3
ω|φu|u2dx ≤ ωC1‖u‖4.

Now, we can apply [6, Lemma 2.2] to our functional Iω and obtain the following
result.

Lemma 2.3. The following statements are equivalent:
(1) (u, φ) ∈ E × D1,2(R3) is a critical point of J (i.e.(u, φ) is a solution of

(1.1).
(2) u is a critical point of Iω and φ = φu.

Set
H1
r (R3) := {u ∈ H1(R3) : u = u(r), r = |x|}.

We shall consider the functional Iω on H1
r (R3). Then any critical point u ∈ H1

r (R3)
of Iω|H1

r (R3) is also a critical point of Iω since H1
r (R3) is a natural constraint for Iω.

Thus we are reduced to look for critical points of Iω|H1
r (R3). In the following, we still

denote Iω|H1
r (R3) by Iω. It follows from [2] that for 2 < s < 6, H1

r (R3) is compactly
embedded into Ls(R3). Therefore, there exists a positive constant ηs > 0 such that

‖u‖Ls ≤ ηs‖u‖, ∀u ∈ H1
r (R3).

To obtain our results, the following theorem will be needed in our argument.

Theorem 2.4 ( [8]). (X, ‖ · ‖) is a Banach space and S ⊂ R+ an interval. Let us
consider the family of C1 functionals on X

Iλ(u) = A(u)− λB(u), λ ∈ S,

with B nonnegative and either A(u)→ +∞ or B(u)→ +∞ as ‖u‖ → ∞ and such
that Iλ(0) = 0. Set

Γλ = {γ ∈ C([0, 1], X) : γ(0) = 0, Iλ(γ(1)) < 0}, for any λ ∈ S.

If for every λ ∈ S the set Γλ is nonempty and cλ = infγ∈Γλ maxt∈[0,1] Iλ(γ(t)) > 0,
then for almost every λ ∈ S, there exists a sequence {un} ⊂ X satisfying

(i) {un} is bounded;
(ii) Iλ(un)→ cλ;

(iii) I ′λ(un)→ 0 in the dual X−1 of X.

3. A weak solution with negative energy

In this section, we prove that (1.1) has a weak solution with negative energy for
any ω > 0 and p ∈ (1, 5). With the aid of Ekeland’s variational principle, this weak
solution is obtained by seeking a local minimum of the energy functional Iω.

Lemma 3.1. Suppose that p ∈ (1, 5) and (H1)–(H2) hold. Then there exist ρ, α,
and mp positive such that Iω(u)|‖u‖=ρ ≥ α > 0 for all h satisfying ‖h‖L2 < mp,
where mp = p−1

2p ( p+1

2pηp+1
P

)
1
p−1 .
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Proof. For all ω > 0 and u ∈ H1(R3), by Lemma 2.1, the Hölder inequality and
Sobolev’s embedding theorem, we have

Iω(u) ≥ 1
2
‖u‖2 − 1

p+ 1
‖u‖p+1

Lp − ‖h‖L2‖u‖

≥ 1
2
‖u‖2 −

ηp+1
p

p+ 1
‖u‖p+1 − ‖h‖L2‖u‖

= ‖u‖(1
2
‖u‖ −

ηp+1
p

p+ 1
‖u‖p − ‖h‖L2).

(3.1)

Set

g(t) =
1
2
t−

ηp+1
p

p+ 1
tp for t ≥ 0.

By direct calculations, we see that maxt≥0 g(t) = g(ρ) = p−1
2p ( p+1

2pηp+1
p

)
1
p−1 := mp,

where ρ = ( p+1

2pηp+1
p

)
1
p−1 . Then it follows from (3.1) that, if ‖h‖L2 < mp, there exists

α = ρ(g(ρ)− ‖h‖L2) > 0 such that Iω(u)|‖u‖=ρ ≥ α > 0 for all ω > 0. �

Lemma 3.2. If p ∈ (1, 5) and (H1)–(H2) hold. Then, for any ω > 0, there exists
u0 ∈ H1

r (R3) such that

Iω(u0) = inf{Iω(u) : u ∈ H1
r (R3) and ‖u‖ ≤ ρ} < 0.

where ρ is given by Lemma 3.1. Moreover, u0 is a solution of problem (1.1).

Proof. By (H1), we can choose a function ϕ ∈ H1
r (R3) such that

∫
R3 h(x)ϕdx > 0.

Hence, for t > 0 small enough, we obtain

Iω(tϕ) =
t2

2

∫
R3

(|∇ϕ|2 + ϕ2)dx− 1
2

∫
R3
ωφtϕ(tϕ)2dx

− tp+1

p+ 1

∫
R3
|ϕ|p+1dx− t

∫
R3
h(x)ϕdx

≤ t2

2
‖ϕ‖2 +

t4C1ω

2
‖ϕ‖4 − tp+1

p+ 1

∫
R3
|ϕ|p+1dx− t

∫
R3
h(x)ϕdx < 0,

which shows that c0 = inf{Iω(u) : u ∈ B̄ρ} < 0, where

B̄ρ = {u ∈ H1
r (R3) and ‖u‖ ≤ ρ}.

By the Ekeland’s variational principle, there exists a sequence {un} ⊂ B̄ρ such that

c0 ≤ Iω(un) ≤ c0 +
1
n
, Iω(ϑ) ≥ Iω(un)− 1

n
‖ϑ− un‖ ∀ϑ ∈ B̄ρ.

By a standard procedure, see, for example [12], we can show that {un} is bounded
(PS) sequence of Iω. Then, by the compactness of the embedding H1

r (R3) ↪→
Ls(R3)(2 < s < 6), there exists u0 ∈ H1

r (R3) such that {un} → u0 strongly in
H1
r (R3). Hence Iω(u0) = c0 < 0, I ′ω(u0) = 0. �

4. Positive energy solution for p ∈ (2, 5)

In this section, we aim to prove that problem (1.1) has a positive energy solution
for any ω > 0, p ∈ (2, 5). It is well-known that, for p ∈ [3, 5), we can directly prove
the boundedness of {un} of the functional Iω. But for p ∈ (1, 3), it is not easy to
do this. Particularly, p ∈ (1, 2) is the hardest case. To show the boundedness of a
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(PS) sequence of Iω when p ∈ (2, 5) is also nontrivial. Here we have to use Theorem
2.4. Consider the approximation problem

−∆u+ u− (2ω + φ)φu = λ|u|p−1u+ h(x), in R3,

∆φ = (ω + φ)u2, in R3,
(4.1)

where p ∈ (2, 5) and λ ∈ [1/2, 1]. Set X = H1
r (R3),

A(u) =
1
2
‖u‖2 − 1

2

∫
R3
ωφuu

2dx−
∫

R3
h(x)u dx

and B(u) = 1
p+1

∫
R3 |u|p+1dx. Thus we study the perturbed functional

Iω,λ(u) =
1
2

∫
R3

(|∇u|2 + u2 − ωφuu2)dx−
∫

R3
h(x)u dx− λ

p+ 1

∫
R3
|u|p+1dx.

Then, Iω,λ is a family of C1-functionals on X, B(u) ≥ 0 and A(u) ≥ 1
2‖u‖

2 −
‖h‖L2‖u‖ → +∞ as ‖u‖ → ∞.

Lemma 4.1. Assume p ∈ (1, 5) and (H1)–(H2) satisfy. Then, the following hold.

(i) Γλ 6= ∅, for any λ ∈ [1/2, 1];
(ii) There exists a constant c̃ such that cλ ≥ c̃ > 0 for all λ ∈ [1/2, 1].

Proof. (i) For any λ ∈ [1/2, 1], we choose a function ψ ∈ X ≥ (6≡ 0). Then, by
Lemma 2.1, we obtain

Iω,λ(tψ) ≤ t2

2
‖ψ‖2 +

t2

2
ω2

∫
R3
ψ2dx− tp+1

p+ 1

∫
R3
|ψ|p+1dx.

Since p ∈ (1, 5), there exists t0 large enough such that Iω,λ(t0ψ) < 0. Hence (i)
holds.

(ii) By Lemma 2.1, for any u ∈ X and λ ∈ [1/2, 1], we have

Iω,λ(u) ≥ 1
2
‖u‖2 − 1

p+ 1

∫
R3
|u|p+1dx

Since p > 1, we conclude that there exists ρ > 0 such that Iω,λ(u) > 0 for any
u ∈ X and λ ∈ [1/2, 1] with ‖u‖ ≤ ρ. In particular, for any ‖u‖ = ρ, we have
I
ω,λ(u) > c̃ > 0. Now fix λ ∈ [1/2, 1] and γ ∈ Γλ, by the definition of Γλ, certainly
‖γ(1)‖ > ρ. By continuity, we deduce that there exists tγ ∈ (0, 1) such that
‖γ(tγ)‖ = ρ. Therefore, for any λ ∈ [1/2, 1], we have

cλ ≥ inf
γ∈Γλ

Iω,λ(γ(tγ)) ≥ c̃ > 0.

Thus, (ii) holds. �

Since Iω,λ(0) = 0, then by Lemma 4.1 and Theorem 2.4, there exist (i) {λj} ⊂
[1/2, 1] such that λj → 1 as j → ∞ and (ii) a bounded sequence {vjn} of the
functional Iω,λj . By the compactness of the embedding H1

r (R3) ↪→ Ls(R3)(2 < s <

6) and [11, Lemma 2.1], we can show that for each j ∈ N there exists vj ∈ H1
r (R3)

such that vjn → vj strongly in H1
r (R3). Moreover, for all j ∈ N, we have

0 < c̃ ≤ Iω,λj (vj) = cω,λj ≤ cω, 12 , I ′ω,λj (vj) = 0. (4.2)
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Lemma 4.2. If vj ∈ X solves the problem (∗), then the following Pohoz̆aev type
identity

1
2

∫
R3
|∇vj |2dx+

3
2

∫
R3
v2
jdx−

∫
R3

(
5
2
ω + φvj )φvjv

2
jdx

=
∫

R3
[

3λ
p+ 1

|vj |p+1 + (3h(x) + 〈x,∇h(x)〉)vj ]dx.
(4.3)

holds.

The proof can be done as in [6, Lemma 3.1] and details are omitted here. In
what follows, we turn to showing that {vj} converges to a solution of problem (1.1).
For this purpose, we have to prove {vj} is the bounded in H1

r (R3).

Lemma 4.3. Under the conditions of Theorem 1.1, if p ∈ (2, 5), then {vj} is
bounded in H1

r (R3).

Proof. The proof of this theorem is divided into two steps.
Step 1: {‖vj‖L2} is bounded. By contradiction, we assume that ‖vj‖L2 → ∞
as j → ∞. Set uj = vj

‖vj‖L2
, Xj =

∫
R3 |∇uj |2dx, Yj =

∫
R3 ωφvju

2
jdx, Zj =∫

R3 φ
2
vju

2
jdx, and Tj = λj‖uj‖p+1

Lp+1‖vj‖p−1
L2 . By (4.2), we have

1
2

∫
R3

(|∇vj |2 + v2
j − ωφvjv2

j )dx−
∫

R3
h(x)vjdx−

λj
p+ 1

∫
R3
|vj |p+1dx = cω,λj ,∫

R3
|∇vj |2 + v2

j − (2ω + φvj )φvjv
2
j )dx−

∫
R3
h(x)vjdx = λj

∫
R3
|vj |p+1dx,

(4.4)
and {cω,λj} is bounded. Note that h(x), 〈x, h(x)〉 ∈ L2(R3). Multiplying (4.3) and
(4.4) by 1

‖vj‖L2
, we obtain

1
2
Xj −

5
2
Yj − Zj −

3
p+ 1

Tj = o(1)− 3
2
,

1
2
Xj −

1
2
Yj −

1
p+ 1

Tj = o(1)− 1
2
,

Xj − 2Yj − Zj − Tj = o(1)− 1,

(4.5)

where o(1) denotes that the quantity tends to zero as j → ∞. Solving (4.5), we
have

Xj =
(1− p)(1 + Zj)

2(p− 2)
+ o(1), for p ∈ (2, 5).

Since Zj ≥ 0 and Xj ≥ 0 for all j ∈ N, (4.5) is a contradiction for j large enough.
Thus, {‖vj‖L2} is bounded for p ∈ (2, 5).
Step 2: ‖∇vj‖L2 is bounded. Similarly, by contradiction, we can assume that
‖∇vj‖L2 → ∞ as j → ∞. Set wj = vj

‖∇vj‖L2
, Mj =

∫
R3 ωφvjw

2
jdx, Nj =∫

R3 φ
2
vjw

2
jdx, Sj = λj‖wj‖p+1

Lp+1‖∇vj‖p−1
L2 . Then, multiplying (4.3) and (4.4) by

1
‖∇vj‖2

L2
, and noting that ‖vj‖L2 is bounded, we obtain

−5
2
Mj −Nj −

3
p+ 1

Sj = o(1)− 1
2
,

−1
2
Mj −

1
p+ 1

Sj = o(1)− 1
2
,

−2Mj −Nj − Sj = o(1)− 1.

(4.6)
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For p ∈ (2, 5), solving (4.6), we obtain

Nj =
2(2− p)
(p− 1)

+ o(1), for p ∈ (2, 5),

which implies a contradiction for j large enough since Nj ≥ 0 for all j ∈ N. Thus,
{‖∇vj‖L2} is bounded for p ∈ (2, 5). The proof is complete. �

Proof of Theorem 1.1. Lemma 4.3 implies that {vj} is a bounded sequence of Iω.
Then, by the compactness of the embedding H1

r (R3) ↪→ Ls(R3)(2 < s < 5), for
any ω > 0, we show that problem (1.1) has a solution u1 satisfying Iω(u1) > 0.
Combining with Lemma 3.2, we complete the proof. �

5. Positive energy solution for p ∈ (1, 2]

In this section, we first prove that (1.1) with 1 < p ≤ 2 has no solution with
positive energy for ω > 0 large enough.

Theorem 5.1. Assume that p ∈ (1, 2] and (H1)–(H2) hold (in fact, h(x) may not
be radially symmetric). Then (1.1) has no solution with positive energy if ω > 0 is
large enough.

Proof. Let u ∈ H1(R3) be a solution of (1.1). Then 〈I ′ω(u), u〉 = 0. By (2.2) and
(2.3), we have

Iω(u) = −(
1
2

∫
R3
|∇u|2dx− 3

2

∫
R3
ωφuu

2dx−
∫

R3
φ2
uu

2dx)

− 1
2

∫
R3
u2dx+

p

p+ 1

∫
R3
|u|p+1dx.

(5.1)

Similar to [11, (20)], we obtain√
3
4

∫
R3

(ω + φu)|u|3 ≤ 1
4

∫
R3
|∇u|2dx+

3
4

∫
R3
|∇φ|2dx. (5.2)

Then, by Lemma 2.1, one has
√

3
∫

R3
(ω + φu)|u|3 ≤ 1

2

∫
R3
|∇u|2dx+

3
2

∫
R3
|∇φ|2dx

=
1
2

∫
R3
|∇u|2dx− 3

2

∫
R3
ωφuu

2dx− 3
2

∫
R3
φ2
uu

2dx

≤ 1
2

∫
R3
|∇u|2dx− 3

2

∫
R3
ωφuu

2dx−
∫

R3
φ2
uu

2dx.

(5.3)

For p ∈ (1, 2] and ω > 0 large enough such that ω + φu > 0, it follows from (5.1)
and (5.3) that

Iω(u) ≤ −{
√

3
∫

R3
[(ω + φu)|u|3 +

1
2
u2 − p

p+ 1
|u|p+1]dx} < 0.

Hence, problem (1.1) must have no solution with positive energy if ω > 0 is large
enough. �

Obviously, when p ∈ (1, 2], Theorem 5.1 implies that we may find a solution
with positive energy to problem (1.1) only for ω > 0 small. To overcome the
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difficulty in finding bounded (PS)c(c > 0) sequence for the associated functional
Iω, following [10], we introduce the cut-off function η ∈ C∞(R+,R+) satisfying

η(t) = 1, for t ∈ [0, 1],

0 ≤ η(t) ≤ 1, for t ∈ (1, 2),

η(t) = 0, for t ∈ [2,+∞),

|η′|∞ ≤ 2,

and consider the modified functional

Iω,T (u) =
1
2

∫
R3

(|∇u|2 + u2)dx− ω

2

∫
R3
KT (u)φuu2dx

− 1
p+ 1

∫
R3
|u|p+1dx−

∫
R3
h(x)u dx.

(5.4)

where, for T > 0, KT (u) = η(‖u‖
2

T 2 ). If h(x) = h(|x|) ∈ L2(R3) and p ∈ (1, 5], then
Iω,T is a C1 functional, and

〈I ′ω,T (u), v〉 =
∫

R3
(∇u∇v + uv)dx−

∫
R3
KT (u)(2ω + φu)φuuv dx

− ω

T 2
η′(
‖u‖2

T 2
)
∫

R3
φuu

2dx

∫
R3

(∇u∇v + uv)dx

−
∫

R3
|u|p−1uv dx−

∫
R3
h(x)v dx,

(5.5)

for every u, v ∈ E.

Lemma 5.2. Assume that p ∈ (1, 5) and (H1)–(H2). Then the functional Iω,T
satisfies the following:

(i) Iω,T |‖u‖=ρ > α > 0 for all ω, T > 0.
(ii) For each T > 0, there exists a function eT ∈ H1

r (R3) with ‖eT ‖ > ρ such
that Iω,T (eT ) < 0, where ρ, α is given by Lemma 3.1.

Proof. The proof of (i) is similar to that of Lemma 3.1.
(ii) we choose ϕ ∈ E with ϕ ≥ 0, ‖ϕ‖ = 1. By (5.4) and the definition of η,

there exists tT ≥ 2T > 0 large enough such that KT (tTϕ) = 0 and Iω,T (tTϕ) < 0.
Hence, (ii) holds by taking eT = tTϕ. Set

cω,T = inf
γ∈Γω,T

max
t∈[0,1]

Iω,T (γ(t)),

where Γω,T := {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = eT }. Then, by Lemma 5.2, we
have

cω,T ≥ α > 0, for all ω, T > 0. (5.6)
Applying the Mountain Pass Theorem, there exists {unω,T } ∈ H1

r (R3) (denoted by
{un} for simplicity) such that

Iω,T (un)→ cω,T , (1 + ‖un‖)‖I ′ω,T (un)‖H−1
r
→ 0 (5.7)

as n→∞, where H−1
r denotes the dual space of H1

r (R3). �

Lemma 5.3. Suppose that p ∈ (1, 5) and (H1)–(H2) hold. Let {un} be given by
(5.7). Then there exists T0 > 0 such that

lim
n→∞

sup ‖un‖ ≤
T0

2
, ∀0 < ω < T−3

0 ,
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which implies {un} being a bounded (PS) sequence of Iω in H1
r (R3).

Proof. Motivated by [10], we will argue by contradiction. Assume that, for every
T > 0 there exists 0 < ωT < T−3 such that limn→∞ sup ‖un‖ > T

2 . So, up to a
subsequence, we obtain ‖un‖ ≥ T

2 for all n ∈ N. On the one hand, by (5.4), (5.5)
and Lemma 2.1, we have

(p+ 1)Iω,T (un)− 〈I ′ω,T (un), un〉

=
p− 1

2
‖un‖2 −

ω(p− 3)
2

∫
R3
KT (un)φunu

2
ndx

+
∫

R3
KT (un)φ2

unu
2
ndx+

ω

T 2
η′(
‖un‖2

T 2
)‖un‖2

∫
R3
φunu

2
ndx− p

∫
R3
h(x)undx.

Consequently,

p− 1
2
‖un‖2 − ‖I ′ω,T (un)‖‖un‖

≤ p− 1
2
‖un‖2 + 〈I ′ω,T (un), un〉

≤ (p+ 1)Iω,T (un) +
ω(p− 3)

2

∫
R3
KT (un)φunu

2
ndx

+
∫

R3
KT (un)φ2

unu
2
ndx−

ω

T 2
η′(
‖un‖2

T 2
)‖un‖2

∫
R3
φunu

2
ndx+ p

∫
R3
h(x)u dx

≤ (p+ 1)Iω,T (un) +
ω(p− 3)

2

∫
R3
KT (un)φunu

2
ndx

− ω
∫

R3
KT (un)φunu

2
ndx−

ω

T 2
η′(
‖un‖2

T 2
)‖un‖2

∫
R3
φunu

2
ndx+ p

∫
R3
h(x)u dx

= (p+ 1)Iω,T (un) +
ω(5− p)

2

∫
R3
KT (un)(−φun)u2

ndx

+
ω

T 2
η′(
‖un‖2

T 2
)‖un‖2

∫
R3

(−φun)u2
ndx+ p

∫
R3
h(x)u dx.

(5.8)
On the other hand, we claim that there exist T1, C,M1 > 0 such that

cω,T ≤ CωT 4 +M1, ∀T ≥ T1. (5.9)

Let ϕ be the function taken in the proof of (ii) of Lemma 5.2. By (5.4), we have

Iω,T (2Tϕ) ≤ 2T 2 − 2p+1

p+ 1
T p+1‖ϕ‖p+1

Lp+1 . (5.10)

Then there exists T1 > 0 such that Iω,T (2Tϕ) < 0 for all T > T1. Thus

cω,T ≤ max
t∈[0,1]

Iω,T (2tTϕ), ∀T ≥ T1. (5.11)
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By (5.4) and Remark 2.2, we have

max
t∈[0,1]

Iω,T (2tTϕ)

≤ max
t∈[0,1]

{2(tT )2 − 2p+1

p+ 1
(tT )p+1‖ϕ‖p+1

Lp+1}+ max
t∈[0,1]

{−ω
2

∫
R3
φ2tTϕ(2tTϕ)2dx}

≤ max
m≥0
{2(m)2 − 2p+1

p+ 1
(m)p+1‖ϕ‖p+1

Lp+1}+ CωT 4

= M1 + CωT 4.

(5.12)
It follows from (5.11) and (5.12) that (5.9) holds. By Remark 2.2, and noting that
KT (un) = 0 for ‖un‖2 ≥ 2T 2, we obtain∫

R3
KT (un)(−φun)u2

ndx ≤ CT 4, (5.13)

η′(
‖un‖2

T 2
)
‖un‖2

T 2

∫
R3

(−φun)u2
ndx ≤ CT 4. (5.14)

Combining (5.7), (5.8), (5.9), (5.13) with (5.14), one has, for all T > T1,

p− 1
2
‖un‖2 ≤ C2ωT

4 +M2 + p

∫
R3
h(x)u dx, (5.15)

where C2,M2 > 0 independent of T . Then, for any ε > 0, by the inequality∫
R3 h(x)un ≤ ε‖un‖2 + C(ε, ‖h‖L2) and (5.15), there exist C,M > 0 independent

of T such that, for all T > T1,

‖un‖2 ≤ CωT 4 +M. (5.16)

Since 0 < ω < T−3
0 and ‖un‖ ≥ T

2 , (5.16) is impossible for T > 0 large enough.
Thus we complete the proof. �

Proof of Theorem 1.2. By Lemma 5.3, we obtain that {un} is given by (5.7) is
bounded sequence of Iω in H1

r (R3) for all 0 < ω < T−3
0 . Moreover, by using (5.6)

and (5.7), we see that

Iω(un)→ cω,T0 ≥ α > 0, as n→∞.

Then, by the compactness of the embedding H1
r (R3) ↪→ Ls+1(R3)(1 < s < 5), for

any 0 < ω < T−3
0 , problem (1.1) has a solution ũ1 satisfying Iω(ũ1) > 0. Then, by

Theorem 5.1 and Lemma 3.2, we easily complete the proof. �
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