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THREE MODELS FOR RECTILINEAR PARTICLE MOTION
WITH THE BASSET HISTORY FORCE

SHUJING XU, ALI NADIM

Abstract. We consider three model problems that describe rectilinear par-
ticle motion in a viscous fluid under the influence of the Basset history force.

These problems consist of sedimentation starting from rest, impulsive motion

in a quiescent fluid, and oscillatory sliding motion. The equations of motion
are integro-differential equations with a weakly singular kernel. We derive

analytical solutions to all three problems using Laplace transforms and dis-

cuss the mathematical relation between the sedimentation and impulsive start
problems. We also compare several numerical schemes for solving the integro-

differential equations and benchmark them against the analytical results.

1. Introduction

The dynamics of a solid particle moving in a flowing liquid or gas is of great
interest in the field of fluid dynamics for it has broad application in physics, biology,
multiphase flow, etc. In the present paper, three fundamental one-dimensional
motions are examined in the presence of the history force: sedimentation of a
particle in a quiescent fluid in which the particle is released from rest, impulsive
motion where the particle is given an initial velocity or impulse and subsequently
relaxes under the influence of viscosity, and an oscillatory sliding motion where a
fluid-filled cartridge containing the particle undergoes a back and forth motion.

For a small, spherical, non-deformable particle moving in an unbounded flow
domain, the equation of motion is given by [18]

mp
dV
dt

= mf
Du
Dt
− 1

2
mf

(dV
dt
− Du
Dt

)
− 6πµa(V − u)

+ (mp −mf )g − 6a2√πµρf
∫ t

−∞

1√
t− τ

(dV
dτ
− Du
Dτ

)
dτ ,

(1.1)

where mp is the particle mass; mf the displaced fluid mass; V(t) the particle
velocity; u(x, t) the fluid velocity field; a the radius of the particle; µ the dynamic
viscosity of the fluid, and ρf its density. Two time derivatives, D/Dt and d/dt,
are used to measure the rate-of-change of fluid velocity seen by an observer moving
along with the fluid and the particle, respectively.
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In addition to the pressure stress, added mass, viscous drag, and gravity as
shown on the right-hand side of (1.1), a history-type force depending on the entire
history of the motion is also known to play a role (the last term in the equation).
This Boussinesq-Basset force accounts for the temporal delay in boundary layer
development with changing relative velocity of bodies moving through a fluid. This
unsteady force acting on a particle submerged in a fluid was first investigated by
Joseph Valentin Boussinesq [5] and Alfred Barnard Basset [2]. It is also known
simply as the history force, a combination of both viscous and inertial contributions
to the force in that it depends on both the viscosity and density of the fluid and
the acceleration of the particle [16]. For the motion of rigid spheres in a viscous
fluid, the regimes where the history force might be negligible or is significant have
been investigated. Parameters that determine the significance of the history term
include velocity fluctuations in time, contrasting fluid-to-particle density ratio, and
the particle Reynolds number [8, 9, 14, 15, 16, 17, 19, 21, 23, 25, 28].

The history term turns the equation of motion into an integro-differential equa-
tion implicit in the dependent variable V(t) for it also appears inside the integrand
and makes it challenging to solve for the motion. As its name suggests, the history
force involves an integral based on the entire history of the motion up to the present
time. For practical reasons, the starting point in time is usually set as 0 instead
of −∞, under the assumption that there is no prehistory before time 0. Even with
such simplification, for each time step, it is still necessary to make use of all former
values, which increases both the computational time and the memory requirements.
Another challenge lies in the fact that the integrand has a singularity near its up-
per limit, which prevents one from using traditional methods for performing the
numerical quadrature. Overcoming these numerical challenges is one aspect of the
present work.

For certain problems involving the history force, exact analytical solutions can
be obtained. For these, Laplace transforms turn out to be the most fruitful ap-
proach for obtaining the solutions in the time domain: e.g., for a sphere undergoing
free fall in a still, viscous fluid [6], a sphere in creeping flow [20], and an isolated
denser particle dropped in the core of a vertical vortex [7]. Lovalenti and Brady
[16] pointed out one of the limitations of using Laplace transforms (in time) when
dealing with time-dependent coefficients. For a particle suspended in homogeneous
turbulence responding to the random velocity field, Mei et al [19] resorted to Fourier
transforms to obtain the analytical solution in the frequency domain. [30] evaluated
the trajectories of an accelerating spherical drop at low Reynolds number by trans-
forming the result from the Fourier-transform domain. Other analytical approaches
include the use of Abel’s theorem to investigate linear models for a sphere falling
through a Newtonian fluid [3]; manipulating the operators, for example, writing
the integral

I(f(t)) =
1√
π

∫ t

0

f(x)√
t− x

dx =
2√
π

∫ √t
0

f(t− x2)dx

when the Cauchy problem is involved [26, 27], and the use of the Γ function similarly
in [31]. Coimbra et al [11] generalized how to obtain the solution of the particle
equation analytically for unsteady Stokes flows. First, they applied a fractional-
differential operator to the first-order integro-differential equation of motion in order
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to transform the original equation into a second-order non-homogeneous equation,
and then they solved this last equation by the method of variation of parameters.

On the numerical side, Brush et al [6] proposed a trapezoidal-based method
under the assumption that on a small enough time interval, the derivatives in
the integrand could be roughly regarded as a constant and be brought outside
the integral sign, with the rest of the integrand evaluated analytically. Taylor
expansions were employed in [12, 13] to improve the accuracy; however, this came
at a cost of much longer computational time. Bombardelli et al [4] considered the
integral as a fractional derivative that could be approximated by a summation series
which had a first order temporal accuracy. An approximation based on exponential
functions was described in [24] and shown to have second-order accuracy; however,
the choice of exponential functions varies from one situation to the next.

In this work, we focus on three model problems whose exact solutions can be
obtained analytically. Among these, the exact solution for particle trajectories in
an oscillatory sliding motion is new. We also use these exact solutions to bench-
mark some numerical schemes for solving such problems. The rest of the present
paper is structured as follows. Section 2 introduces two numerical treatments for
the problematic history integral in detail. This is followed in Section 3 with the
three physical problems involving one-dimensional motion: sedimentation, impul-
sive motion, and oscillatory sliding motion. For each problem, the scaled equation
of motion is presented, along with its analytical solution which is used to bench-
mark the corresponding numerical methods. Selected numerical methods from the
existing literature are also applied to the same problems by way of comparison.
Section 4 provides our summary and conclusions.

2. Numerical approximation of the singular integrals

For both methods that will be presented, the uniform time step is denoted by
∆t in the temporal discretization and the initial time t1 is taken to be 0. Thus, any
given time tn is given by tn = (n − 1)∆t, and the discrete analog of any function
f(t) at tn is denoted by f(tn) or simply fn.

2.1. Forward difference hybrid. The first method introduced is a combination
of trapezoidal rule and integration by parts carried out in two stages. It can be
viewed as a refined version of the trapezoidal-based method proposed by Brush
in which it was assumed that the integrand on a small interval is a constant. To
introduce this two-stage scheme, let us start with rewriting the integral history
term in the form

I(t) =
∫ t

0

f(τ)√
t− τ

dτ . (2.1)

In (1.1), f ≡ dV/dτ −Du/Dτ , and is differentiable everywhere. When τ gets close
to the upper limit t, the singularity prevents us from applying the trapezoidal rule
directly. An intuitive idea is to isolate the troublemaker, i.e., break up the integral
into two parts, one containing the singularity on a very small interval (as ∆t→ 0)
and the other being free of singularity. That is, at any given time tn, the integral
can be evaluated by

I(tn) =
∫ tn

0

f(τ)√
tn − τ

dτ =
∫ tn−1

0

f(τ)√
tn − τ

dτ +
∫ tn

tn−1

f(τ)√
tn − τ

dτ .
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Apply the trapezoidal rule to the first term on the right-hand side. Integrate the
second term by parts on the small interval [tn−1, tn], then apply the trapezoidal rule.
The derivative of the function at tn−1 is generated as a result of the process. To
evaluate its value, there are multiple options, for instance, forward, backward and
central differences. We have tested the above-mentioned finite difference methods
on the cases where exact solutions are available; they appear to have the same level
of accuracy and computational speed; however, forward difference is our choice as
it is slightly more accurate. Combining the two parts, we obtain the expression to
approximate the integral

In = ∆t
n−1∑
i=2

fi√
tn − ti

+
∆t
2

( f1√
tn − t1

− fn−1√
tn − tn−1

)
+
√

∆t (fn−1 + fn) . (2.2)

The scheme introduced here is a combination of two techniques, during which for-
ward finite differencing is applied; we will thus refer to it as the FD Hybrid method
in this paper. In Nevskii and Osiptsov’s study of the effects of unsteady and his-
tory forces in the gravity convection of suspensions [22], a similar scheme has been
mentioned.

2.2. Predictor corrector method. Noticing that often the numerator of the
integrand involves time-derivatives of various terms, instead of what has been shown
in (2.1), the integral is rewritten in the following way:

I(t) =
∫ t

0

ḟ(τ)√
t− τ

dτ . (2.3)

On each subinterval [tj−1, tj ], j = 2, . . . , n, approximate ḟ(τ) by forward difference
at tj−1 (which may also be regarded as a central difference approximation at the
midpoint of the interval); then the rest of the integral can be integrated analytically.
When applied to the entire interval, a weighted sum is obtained to approximate the
integral, namely,

In =
2

∆t

n∑
j=2

[√
tn − tj−1 −

√
tn − tj

]
(fj − fj−1). (2.4)

In the process of evaluating the time-dependent function at the next step, a pre-
dictor-corrector scheme based on this formula for evaluating the integral can then
be applied effectively to improve accuracy. In combination with the time-stepping
formula, this scheme will be referred to as the PC Method. This turns out to be
similar to the approach of discretizing the history integral in [23], further developed
by Alexander [1].

3. Physical problems in one dimension

To test the above schemes, we apply both to various physical problems for which
exact analytical solutions are attainable so that we can compare the numerical
results against the exact solutions thereby validating the methods. By way of
comparison, selected numerical methods from the existing literature are also applied
to the same problems.
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3.1. Sedimentation. The first problem we consider is sedimentation under grav-
ity. For a sphere initially released from rest in an infinite stagnant fluid, upon
nondimensionalizing the particle’s velocity with the steady Stokes settling velocity:
(2a2g∆ρ)/(9µ), and scaling time with the viscous diffusion time: a2/ν (most physi-
cal parameters were introduced in Section 1; additionally ν = µ/ρf is the kinematic
viscosity and ∆ρ is the difference between the densities of the particle and fluid),
the dimensionless equation of motion is given by [10]

1
B

dW

dt
= 1−W − 1√

π

∫ t

0

Ẇ (τ)√
t− τ

dτ,

W (0) = 0,
dW

dt
(0) = B ,

(3.1)

where W (t) is the ratio of the instantaneous velocity to the steady settling velocity
in Stokes flow, and B is the dimensionless acceleration, dW/dt, at t = 0, which
depends solely on the density ratio γ = ρp/ρf , specifically, B = 9/(2γ + 1). Note
that the second initial condition on dW/dt can be inferred from the differential
equation itself by evaluating both sides at t = 0 and using the first initial condition
on W . Thus, strictly speaking, it is not needed. Depending on whether the density
ratio γ is less than, equal to, or greater than the critical value γc = 5

8 (corresponding
to Bc = 4), (3.1) has the analytical solution

W (t) =


1− a

a− b
exp(b2t) Erfc(b

√
t)− b

b− a
exp(a2t) Erfc(a

√
t) B > 4,

1 + (8t− 1) exp(4t)Erfc(2
√
t)− 4

√
t/π B = 4,

1−<{W [(Y + iX)
√
t]} − X

Y
={W [(Y + iX)

√
t]} B < 4,

where a = B
2 (1 +

√
1− 4/B), b = B

2 (1 −
√

1− 4/B), X = B
2 , Y = B

2

√
4/B − 1

and W (Z) is the complex error function W (Z) = exp(−Z2)
(
1+ 2i√

π

∫ Z
0

exp(ξ2) dξ
)
,

with < and = referring to the real and imaginary parts. Erfc is the complementary
error function defined by Erfc(z) ≡ 1−Erf(z) = 2√

π

∫∞
z

exp(−t2)dt. The expression
for B < 4 is also equivalent to the real part of the expression given for B > 4. Both
reduce to the middle expression when B approaches 4.

3.1.1. Numerical solution. To approximate W (t) at the (n+1)-st time step, forward
differencing is applied to the derivative in (3.1) resulting in the update equation

wn+1 = B∆t+ (1−B∆t)wn −
B∆t√
π
In , (3.2)

where wn is the numerical solution at tn and In is the numerical approximation of
the integral

∫ t
0
Ẇ (τ)√
t−τ dτ at the n-th time step. We then apply (2.2) and (2.4) to the

integral and obtain trajectories accordingly.

3.1.2. Implementation of FD Hybrid and PC methods. We now demonstrate how
to implement the two methods in full detail for the 1-D sedimentation problem.
Detailed descriptions for the other problems will not be given, since they are quite
similar to this one.
FD Hybrid: Apply (2.2) to In in (3.2). Notice that (2.2) requires n ≥ 3, that is, if
we denote the discretized velocity as the sequence wi (i = 1, 2, . . . ), we need to know
w1, w2, w3 before we can apply the update equation. From the initial conditions, it
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is natural to let w1 = 0, w2 = B∆t + w1 by first-order forward finite differencing,
and w3 = −2

(
B∆t + 3

2w1 − 2w2

)
by the second-order forward finite differencing

for the first derivative. Effectively, this ends up approximating the solution as a
straight line along the first three time nodes. Then I3 is given by

I3 = ∆t
ẇ2√
t3 − t2

+
∆t
2

( ẇ1√
t3 − t1

− ẇ2√
t3 − t2

)
+
√

∆t (ẇ2 + ẇ3)

=
w3 − w2√

∆t
+

1
2

(
B

√
∆t
2
− w3 − w2√

∆t

)
+ 2

w3 − w2√
∆t

=
B
√

∆t
2
√

2
+

3(w3 − w2)
2
√

∆t
.

Here the derivatives are approximated by forward difference, except that we use
backward on the term ẇ3. In general, for n ≥ 3, the updating expression for the
memory integral is

In = ∆t
n−1∑
i=2

ẇi√
tn − ti

+
∆t
2

( ẇ1√
tn − t1

− ẇn−1√
tn − tn−1

)
+
√

∆t (ẇn−1 + ẇn)

=
n−1∑
i=2

wi+1 − wi
tn − ti

+
1
2

( B∆t√
tn − t1

− wn − wn−1√
∆t

)
+

2(wn − wn−1)√
∆t

,

which can be substituted into (3.2) to complete the implementation.
PC method: Apply (2.4) to In in (3.2). The PC Method requires only two initial
points to get started as suggested in (2.4), that is, w1 = 0 and w2 = B∆t + w1.
Thus after substitution and simplification,

I2 =
2√
∆t

(w2 − w1).

In general for n ≥ 2, the update expression to estimate the memory integral in 1-D
sedimentation is given by

In =
2

∆t

n∑
j=2

[√
tn − tj−1 −

√
tn − tj

]
(wj − wj−1). (3.3)

However, in the PC Method, two evaluations of the integral are required for each
time step. Suppose we have obtained the sequence w1, w2, . . . , wn. To approximate
wn+1, the first step is to obtain the approximation for the history integral In using
(3.3). In the “predictor” step, we continue by obtaining an approximation to wn+1

by (3.2); let us call this w∗n+1. We then use the resulting length (n + 1) sequence
of wi to evaluate the integral again, denoted as I∗n+1. The “predictor” step then
produces the final desired wn+1 using

wn+1 = B∆t+ (1−B∆t)
wn + w∗n+1

2
− B∆t√

π

In + I∗n+1

2
.

In addition to the above two methods, Brush’s method and Daitche’s first-order
scheme are also implemented for comparison. Figure 1 shows the sedimentation
velocity of a particle traveling until a dimensionless time of 50 when γ = 1/2 <
5/8 with a uniform time step of 0.01. The analytic solution is calculated and
shown by the thick purple line. The numerical results from different methods are
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differentiated by colors: FD Hybrid (red), PC method (green), Brush’s method
(blue) and Daitche’s first-order scheme (yellow).
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Figure 1: 1-D Sedimentation at γ = 0.5 via FD Hybrid, PC, Brush and Daitche’s
first-order methods.

As seen in Figure 1a, the numerical results all agree with the exact solution.
The particle is released from rest, then accelerates until it reaches at a terminal
velocity. The curves overlap with one another, making it difficult to differentiate
among them. The error plot in Figure 1b helps highlight their differences. Here,
the error is defined as the difference between the exact and numerical solutions.
Among the four methods, PC is distinguished by having errors that are smaller
from the beginning and later become closest to zero, while Brush’s method strays
farthest away from the exact solution at the very beginning. Both FD Hybrid and
Daitche’s first-order start off with smaller errors than Brush’s; however, for long
enough times, all three seem to agree with each other, which suggests that the FD
Hybrid method is of first-order accuracy. We also observe that the FD Hybrid,
Brush and Daitche’s methods always underestimate the solution, for their errors
stay negative for all time.

In addition, we show the “integrated error”, i.e., the integral of the magnitude
of the instantaneous error over the entire time interval in Table 1.

Table 1: Integrated Errors (Sedimentation)

Integrated Error FD Hybrid PC Brush Daitche

∆t = 0.01 0.15713 0.00336 0.19070 0.16053

∆t = 0.001 0.01555 0.00039 0.02453 0.01620

We calculate these for all four numerical methods when ∆t = 0.01 and 0.001. It
is not surprising that the integrated errors decrease as the time step gets finer for
all cases. The PC method outperforms the other schemes.
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Figure 2: Log-Log plot of the integrated error versus ∆t.

The Log-Log plot of the errors versus ∆t shown in Figure 2 displays the order
of accuracy clearly. The PC method is second-order accurate, while FD Hybrid,
Daitche, and Brush are first order.

3.2. Impulsive motion. The second test problem models the case where the fluid
is assumed to be at rest and the particle is given an initial velocity and allowed
to relax freely in the viscous fluid, in the absence of gravity. The motion of the
spherical particle is in one direction (e.g., parallel to unit vector i in Cartesian coor-
dinates) and buoyancy effects are neglected. As we shall see below, the initial naive
formulation of this problem leads to unphysical results, although it is mathemat-
ically well-posed and can still be used for benchmarking of the numerical results.
This unphysical result turns out to be due to the infinite acceleration that would
be implied by the mismatch between the fluid and particle velocities at the initial
instant. The resolution of this paradox, shown in the second formulation, involves
replacing the initial velocity of the particle with an impulsive force that acts on it,
causing it to attain the desired velocity over a very short (nearly zero) time span.

3.2.1. Formulation I. Substitute u = 0 (for a quiescent fluid) into (1.1); the equa-
tion of motion then reads

mpV̇ = −mf

2
V̇ − 6πµaV − 6a2√πµρf

∫ t

0

V̇ (τ)√
t− τ

dτ

V(0) = vo i,
(3.4)

where V is the velocity of the particle, and vo is its initial velocity. Let V(t) = i y(t),
choose the velocity scale v0 and the time scale (mp + mf/2)/(6πµa) to render y
and t dimensionless, substitute into (3.4) and rename the dimensionless variables y
and t again for simplicity, to get

ẏ = −y − β
∫ t

0

ẏ(τ)√
t− τ

dτ

y(0) = 1.
(3.5)
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The dynamics are determined by a single dimensionless parameter

β =

√
9ρf

π(2ρp + ρf )

that solely depends on the particle and fluid densities and whose value ranges from
0 to 3/

√
π, as the ratio ρf/ρp goes from zero to infinity.

Analytic solution: Laplace transforms lead to the analytic solution (see Section
5.1 for details)

y(t) =
2∑
i=1

AiXi exp(X2
i t)Erfc

(
−Xi

√
t
)
. (3.6)

Erfc is the complementary error function defined earlier. Coefficients Ai and argu-
ments Xi are given by (5.1) and (5.2) in the appendix. They are defined in terms
of the parameter b = β

√
π/2. To better understand this solution, let us examine

its asymptotic behavior for both short and long times.
Short-time behavior (near 0+): For each term in (3.6), the series expansion for
small t looks like

exp
(
X2 t

)
Erfc

(
−X
√
t
)

= 1 +
2X
√
t√

π
+X2t+

4X3t3/2

3
√
π

+O
(
t2
)
. (3.7)

Thus,

y(t) = (A1X1 +A2X2) +
√
t

2√
π

(
A1X

2
1 +A2X

2
2

)
+ t
(
A1X

3
1 +A2X

3
2

)
+ t3/2

4
3
√
π

(
A1X

4
1 +A2X

4
2

)
+O

(
t2
)

= 1− t+O
(
t3/2

)
.

Here, we have used the results
∑2
i=1AiXi = 1,

∑2
i=1AiX

2
i = 0,

∑2
i=1AiX

3
i = −1,∑2

i=1AiX
4
i = 2b.

Long-time behavior (near ∞): The large-t series expansion of each term has
the form

exp
(
X2t

)
Erfc

(
−X
√
t
)

=
1
X

(
−
√

1
tπ

+
1

2
√
πX2

t−3/2 +O
(
t−5/2

))
. (3.8)

As such,

y(t) = −t−1/2

√
1
π

(A1 +A2) + t−3/2 1
2
√
π

(A1

X2
1

+
A2

X2
2

)
+O

(
t−5/2

)
= 2b

√
1
π
t−1/2 +O

(
t−3/2

)
=

β√
t

+O
(
t−3/2

)
since A1 +A2 = −2b.

The fact that the longtime asymptotic form of the particle velocity decays rel-
atively slowly as t−1/2 leads to an unphysical result. Namely, if we consider the
particle displacement, which is the integral of velocity with respect to time, the
resulting integral diverges, which suggests that the particle will travel an infinite
distance! Therefore, while the above impulsive motion problem is mathematically
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acceptable and useful for benchmarking the numerical methods, it does not cor-
rectly model the physics of particle motion. To resolve this paradoxical issue, we
re-examine this problem below using a formulation that takes into account the force
of the impulse delivered to the particle.
Relationship to the 1-D sedimentation: Before we introduce the second for-
mulation of the impulsive motion example, let us point out the strong similarity
between this problem and the previous 1-D sedimentation. Consider (3.1) and (3.5)
and notice their resemblance. The two dimensionless groups are themselves related
by: β =

√
B/π. If we rescale time by B in the sedimentation problem, i.e., T = Bt,

let τ ′ denote the scaled dummy variable of time-integration, and further introduce
a variable w(t) = 1−W (t), (3.1) becomes

dw

dT
= −w −

√
B

π

∫ T

0

ẇ(τ ′)√
T − τ ′

dτ ′. (3.9)

Equation (3.9) appears to be equivalent to (3.5). To confirm that they are math-
ematically the same, we also need to examine the initial conditions. Since w(0) =
1 − w(0) = 1, the initial condition on w turns out to be the same as y(0) = 1. As
for the initial acceleration,

dw

dT

∣∣
t=0

=
d(1−W (t))

d(Bt)

∣∣
t=0

= − 1
B

dW

dt

∣∣
t=0

= −1 .

The initial accelerations are thus also consistent because

ẏ(0) = −y(0)− β
∫ 0

0

ẏ(τ)√
t− τ

dτ = −1 .

We see that the two problems are actually equivalent to each other mathematically,
which raises an interesting question. Given the unphysical result from the first im-
pulsive motion formulation, does a similar issue affect the sedimentation problem?
The above equivalency seems to lead to the conclusion that while in the sedimenta-
tion problem, the particle eventually does relax to its final constant Stokes settling
velocity, if the distance that it would lag behind another particle that always settled
at that terminal velocity were measured, that distance would diverge in time. In
other words, in an infinite container, if one particle is settling at the Stokes settling
velocity, and another one is released from rest as the first particle passes by, the
second particle will lag behind and the distance between them would diverge as
t → ∞. Therefore, there is a somewhat unphysical aspect to the sedimentation
problem with the history force as well. This subtle issue appears not to have been
noticed previously.
Numerical results: In the exact solution for y(t), it appears that β has a critical
value at 2/

√
π (where the quantities under the square roots undergo changes of

sign). However, Coimbra and Rangel [11] pointed out that the critical value is only
of mathematical relevance and does not imply a change of physical character of the
problem. For the numerical experiments, we set β = 1/

√
π which means that the

particle is four times as dense as the fluid. Once again, four numerical methods
are implemented: FD Hybrid, PC, Brush and Daitche’s first-order methods. The
scaled velocities computed by each method are plotted in Figure 3.

The particle slows down substantially right after the impulsive start, then ap-
proaches the expected time dependence of its velocity, β/

√
t, asymptotically as time

increases.
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Figure 3: Impulsive Motion (Formulation I): FD vs. PC vs. Brush vs. Daitche’s
first-order method.

The PC method appears to yield the best result, as seen in Figure 3b which tracks
the errors versus time. The other three methods differ at the beginning; however,
given long enough time, their errors tend to approximately the same level. The
integrated errors are displayed in Table 2 for two choices of time step.

Table 2: Integrated Errors (Impulsive Motion: Formulation I)

Integrated Error FD Hybrid PC Brush Daitche

∆t = 0.01 0.03685 0.00418 0.06459 0.03863

∆t = 0.001 0.00330 0.00042 0.01207 0.00389

Besides accuracy, the execution time of a numerical method is another important
metric to evaluate its performance. For this purpose, we record the total compu-
tational time for each method and use the lowest one (FD Hybrid) as the unit of
measurement. We find that the FD Hybrid and Brush’s method both take approxi-
mately one time unit to run, while it takes the PC method about 1.5 times as long,
and Daitche’s method requires almost 6 time units.

Both of the proposed methods appear to work as they produce results that agree
with the analytic solutions. On the merits of accuracy alone, the PC Method has
an obvious edge. As for computational cost, FD Hybrid seems to be a little better.
However, if the overall execution time is not prohibitively long, one can sacrifice
the computation cost to achieve the better accuracy.

3.2.2. Formulation II. In [18], it is assumed that the initial velocities of the particle
and the fluid are the same. But in the impulsive motion problem, while the fluid
is at rest, the particle is given an initial velocity v0 6= 0, which suggests that a
direct application of Maxey & Riley’s equation might not be appropriate. As an
alternative formulation, we can imagine that the particle and fluid both start from
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rest, but that in addition to the Stokes drag and the history force, an impulsive force
of the form S δ(t − 0+) should be included in the right-hand side of the equation
of motion. The value 0+ in the argument of the delta function suggests that the
instantaneous impulse is applied ever so slightly after t = 0. This avoids potential
confusion in applying the initial condition. In this form, the initial velocity of the
particle coincides with that of the fluid, so that we will be able to apply Maxey &
Riley’s equation to get

(mp +
mf

2
) ẏ = −6πµa y − 6a2√πµρf

∫ t

0

ẏ(τ)√
t− τ

dτ + S δ(t− 0+),

y(0) = 0.
(3.10)

Using the same time scale as before, (mp +mf/2)/6πµa, and the new velocity scale
S/(mp +mf/2), we obtain the dimensionless equation of motion

ẏ = −y − β
∫ t

0

ẏ(τ)√
t− τ

dτ + δ(t− 0+),

y(0) = 0.
(3.11)

It should be noted that a delta function δ(t) has dimensions of the reciprocal of its
argument, in this case time. If time is scaled like t = T t̂, we have that δ(T t̂) =
(1/|T |)δ(t̂).
Analytic solution: Using the Laplace transform, we can solve (3.11) analytically:

y(t) =
∑
i=±

BiXi exp(X2
i t)Erfc(−Xi

√
t) (3.12)

with the coefficients Bi and factors Xi given in (5.4) in Section 5.2. A similar
asymptotic analysis can be performed to find the form of y(t) when t is close to
zero and when it approaches infinity, respectively.
Short-time behavior (near 0+): Using (3.7), when t→ 0+

y(t) =
∑
i=±

BiXi + t1/2
2√
π

∑
i=±

BiX
2
i + t

∑
i=±

BiX
3
i + t3/2

4
3
√
π

∑
i=±

BiX
4
i +O(t2)

= 1− 2β
√
t+O(t).

Here we have used
∑
i=±BiXi = 1,

∑
i=±BiX

2
i = −2b,

∑
i=±BiX

3
i = −1 + 4b2.

Long-time behavior (near ∞): By (3.8), when t→∞

y(t) = −(B+ +B−)

√
1
tπ

+
(B+

X2
+

+
B−
X2
−

)
· 1

2
√
π
· t−3/2 +O

(
t−5/2

)
=
β

2
t−3/2 +O

(
t−5/2

)
.

Note that B+ +B− = 0, B+/X
2
+ +B−/X

2
− = β

√
π.

Displacement: With the long-time form of the velocity now decaying in time like
t−3/2, its integral with respect to time as the upper limit tends to infinity yields a
finite value. Thus the unphysical result associated with the previous formulation
does not plague this formulation of the impulsive start problem. For the purpose of
numerical validation, both formulations can be used since they are mathematically
well-posed problems. But the latter formulation is the correct physical one for the
impulsive start example.
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Numerical results: Because of the presence of the Dirac delta function δ(t−0+),
the above-mentioned numerical methods cannot be applied directly until a scheme
for dealing with the delta function numerically has been devised. In order to make
the system more amenable to a numerical approach, first express the solution in the
form y(t) = αH(t−0+)+w(t) where H(t) is the Heaviside step function, defined by
H(t) =

∫ t
−∞ δ(s) ds. The derivative of the solution is thus ẏ(t) = αδ(t−0+) + ẇ(t).

Substitute this into (3.11) and balance the Delta functions on both sides of the
equation by setting α = 1 to get, for t > 0+,

ẇ(t) = −1− w(t)− β√
t
− β

∫ t

0

ẇ(τ)√
t− τ

dτ . (3.13)

The initial condition y(0) = 0 (applied at t = 0 < 0+) implies that w(0) = 0. This
provides an explanation for the appearance of the terms (vi − ui)/

√
t as part of

the history force in [20] and wi(0+)/
√
t in [28]. However, there is a new term in

the equation with singularity at t = 0. We choose the predictor-corrector (PC)
method to treat this problem because we can modify it to evaluate the function
at the midpoint of a time step so that it avoids the initial singularity. Specifically,
when the scheme is applied to ẏ = f(y, t) + r(t) where r(t) has an explicit form in
t (in our case, r(t) = −β/

√
t ), we modify the PC method to

y∗ = yn + ∆t
[
fn + rn+ 1

2
]

yn+1 = yn + ∆t
[fn + f∗

2
+ rn+ 1

2
]

where fn = f(yn, tn), f∗ = f(y∗, tn).
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Figure 4: Exact and numerical solutions y(t) and the corresponding error.

The numerical results obtained with a time step of 0.01 are shown in Figure 4.
The plot is obtained by solving (3.13) numerically to obtain w(t) and calculating
the resulting y(t) from the relation y(t) = 1 +w(t) for t > 0. The error is largest at
the very beginning as illustrated in Figure 4b, which makes sense since the abrupt
change (due to the impulsive force) occurs when t = 0. The integrated error in
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this case is 0.0273, and as the time step is reduced to 0.001, the integrated error
decreases to 0.0097, roughly decreasing by a factor of

√
10.

3.3. Oscillatory Sliding Motion. Here we introduce another physical problem
for which a more interesting analytical solution can be obtained. Imagine that
a spherical particle of mass mp is placed in a cartridge filled with fluid which
moves in a horizontal sliding oscillation, in the absence of gravity (i.e., without any
sedimentation). The cartridge displacement is described by ∆ sin(ωt)i, where ω is
the temporal frequency of the linear oscillations and ∆ denotes the amplitude. We
expect that the particle will eventually also undergo a back and forth motion like
its container, though not necessarily of the same amplitude or in phase with the
cartridge. We take the particle to have the same initial velocity and acceleration
as the fluid. Applying these to (1.1) and nondimensionalizing the system using
time scale 1/ω and length scale ∆ result in the following dimensionless equation of
motion:

Ẍ(t) = −βẊ(t) + (1− α) sin t− γ
∫ t

0

Ẍ(τ)√
t− τ

dτ,

X(0) = 0, Ẋ(0) = 0.
(3.14)

X(t) is the particle’s displacement relative to the fluid (i.e., in a frame of reference
moving with the cartridge) and the three dimensionless groups appearing in this
equation are are defined as follows:

α =
3mf

2mp +mf
, β =

6πµa
ω(mp +mf/2)

, γ =
6a2
√
πµρf/ω

mp +mf/2
.

Parameter α depends solely on the two densities, that is, α = 3ρf/(2ρp + ρf ), and
its value ranges from 0 to 3, from extremely dense particles relative to the fluid
to particles (or bubbles) with very small densities; α = 1 corresponds to neutrally
buoyant particles. The second dimensionless group is the reciprocal of the Stokes
number, i.e., β = St−1, which is a common parameter to characterize the behavior
of particles suspended in a fluid flow. It represents the ratio of the relaxation time
of the particle to the characteristic time of the flow: the bigger the Stokes number,
the longer it takes a particle to relax to the same velocity as the fluid. The third
parameter γ quantifies the importance of the history force. (Note that β in this
section is different from the one defined earlier.)
Analytic solution: Once again Laplace transforms give the analytical solution
(details are given in Section 5.3); namely,

X(t) = (1− α)
( 6∑
i=1

AiRi exp(R2
i t)Erfc(−Ri

√
t) +A7

)
, (3.15)

where

R1 = exp
(π

4
i
)
, R2 = exp

(3π
4
i
)
, R3 = exp

(5π
4
i
)
,

R4 = exp
(7π

4
i
)
, R5,6 =

−γ
√
π ±

√
γ2π − 4β

2
, R7,8 = 0.

along with the coefficients

Ai =
1

R2
i

∏j=6
j=1,j 6=i(Ri −Rj)

(i = 1, 2, . . . , 6), A7 =
1
β
, A8 =

6∑
i=1

1
Ri

/ 6∏
i=1

Ri.
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Numerical results: FD Hybrid, PC, Brush’s and Daitche’s first-order methods
are tested and compared with the analytic solution. The parameters are set to
α = 0.3571, β = 0.31 and γ = 0.3252. The trajectories of the particle are traced
until a time of 50, or roughly 8 periods of oscillation of the container.
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Figure 5: Oscillatory Sliding Motion: FD vs. PC vs. Brush vs. Daitche’s first-order

As shown in Figure 5, all results agree and suggest that the particle is initially
“thrown” forward from its original position by the starting motion of the container,
but that after a while it stabilizes and oscillates about a new equilibrium position.
It is not surprising that the errors oscillate as well as shown in Figure 5b. From
the error plot, Brush’s method presents the largest errors, while FD Hybrid and
Daitche’s method are of comparable magnitudes. The PC method produces the
smallest errors. This can be seen more clearly in Table 3 which records the inte-
grated errors when the time step is 0.01 and 0.001 respectively.

Table 3: Integrated Errors (Oscillatory Sliding Motion)

Integrated Error FD Hybrid PC Brush Daitche

∆t = 0.01 0.01740 0.00076 0.16238 0.01132

∆t = 0.001 0.00375 2.33314e-05 0.05156 0.00015

4. Conclusions

Two methods were introduced to approximate history integrals of the form∫ t
0
f(τ)/

√
t− τ dτ and

∫ t
0
ḟ(τ)/

√
t− τ dτ numerically. For the former integral,

trapezoidal rule together with a forward difference approximation of the deriva-
tive of f (after integration-by-parts) led to the FD Hybrid method; for the latter,
the derivative ḟ was treated by central differences at the mid-points of the time
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intervals, leading to an approximation that could be used effectively in conjunction
with the Predictor-Corrector (PC) method to integrate the equations of motion for
particles affected by the history force. Both were applied to three one-dimensional
test problems that describe the physical problems of sedimentation, impulsive mo-
tion and oscillatory sliding motion of a particle in a fluid. The numerical results
were compared with analytic solutions obtained by Laplace transforms and both
methods were shown to work well in all cases. We quantified their performance
in terms of accuracy and computation time, while comparing them to Brush’s and
Daitche’s first-order methods from the existing literature.

In all three cases, the PC method performed best, showing advantages in the
following respects: (i) the update expression is straightforward, making it easy
to implement; (ii) on the three one-dimensional problems tested, PC is the most
accurate; (iii) although it is not the fastest method, compared to the faster FD
Hybrid and Brush’s methods, its computational time is within an acceptable range;
(iv) in the second formulation of the impulsive motion problem, it has the advantage
that it avoids having to evaluate the forcing function at its point of singularity.
Having validated these numerical schemes, they can be applied with some confidence
to more complex problems for which analytic solutions are not available [29].

The test problems that we considered are useful for benchmarking the numerical
methods in that their exact solutions could be obtained by Laplace transforms.
Our solution for the oscillatory sliding motion is new. For the impulsive start
problem, we provided two formulations, pointing out that the solution that results
by assuming that the particle has a different initial velocity than the fluid, while
mathematically acceptable, is not physically correct. This pointed out a subtle issue
with the interpretation of the existing solution to the sedimentation problem as well,
since it maps directly onto the first formulation of the impulsive start example. The
resolution of the unphysical behavior involved introducing an impulsive force as a
forcing in the equation, while allowing the initial velocities of the particle and the
fluid to be the same.

5. Appendix: Analytical solutions

We now provide the details for obtaining the exact solution for both formula-
tions of the impulsive motion example and the oscillating sliding motion problem
analytically by use of Laplace transform.

5.1. Impulsive motion: formulation I. Apply Laplace transform to (3.5) and
let s denote the Laplace transform variable. The Laplace transform of y(t) is
denoted by Y (s) and is found to be

Y (s) =
√
s+ β

√
π

s
√
s+ β

√
πs+

√
s
.

The denominator is a cubic polynomial in
√
s with the three roots:

X0 = 0, X1 = −b+
√
b2 − 1, X2 = −b−

√
b2 − 1 , (5.1)

where b = β
√
π/2. Y (s) can then be written as a partial fraction expansion of the

form

Y (s) =
2∑
i=0

Ai√
s−Xi
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in which the coefficients are given by

A0 = 2b, A1 =
1− 2b2 − 2b

√
b2 − 1

2
√
b2 − 1

, A2 =
2b2 − 1− 2b

√
b2 − 1

2
√
b2 − 1

. (5.2)

The inverse Laplace transform of 1/(
√
s−Xi) is 1/

√
πt+Xi exp(X2

i t)Erfc
(
−Xi

√
t
)
.

Noting that A0 + A1 + A2 = 0, the analytical solution for the impulsive motion
problem simplifies to

y(t) =
2∑
i=1

AiXi exp(X2
i t)Erfc

(
−Xi

√
t
)
. (5.3)

5.2. Impulsive motion: formulation II. Upon taking the Laplace transform of
(3.11), we obtain

sY = −Y − βsY
√
π

s
+ 1 ⇒ Y =

1
s+ β

√
π
√
s+ 1

.

There are two roots (in
√
s) for the denominator, and to differentiate them from

the previous formulation, we denote them by X+ & X− with coefficients B+ & B−
even though X+(−) ≡ X1(2):

X+,− = −b±
√
b2 − 1, B+,− = ± 1

2
√
b2 − 1

. (5.4)

The partial fraction expansion of Y (s) then reads

Y (s) =
B+√
s−X+

+
B−√
s−X−

,

whose inverse Laplace transform provides the exact solution given in (3.11).

5.3. Oscillatory sliding motion. Applying Laplace transform to (3.14),

s2X(s) = −βsX +
1− α
s2 + 1

− γs2X
√
π

s
,

where X(s) = L{X(t)}. Solving for X(s) we get

X(s) =
1− α

(s2 + 1)(s2 + γ
√
πs
√
s+ βs)

.

Let R =
√
s and find the roots of (R4 + 1)(R2 + γ

√
πR+ β)R2. Denote these by

Ri and the corresponding coefficients in the partial fraction expansion of X(s) by
Ai (i = 1, . . . , 8). They are given explicitly following (3.15). In terms of these,
X(s) can be written as

X(s) = (1− α)
( 6∑
i=1

Ai√
s−Ri

+A7
1
s

+A8
1√
s

)
.

Noting that the inverse Laplace transform of 1/(
√
s−Ri) is

(1/
√
πt+Ri exp(R2

i t)Erfc(−Ri
√
t)),

that of 1/
√
s is 1/

√
πt, and that of 1/s is the Heaviside step function, the solution

for X(t) is given by

X(t) = (1− α)
( 6∑
i=1

Ai

( 1√
πt

+Ri exp(R2
i t)Erfc(−Ri

√
t)
)

+A7H(t) +A8
1√
πt

)
.
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Using the fact that A8 +
∑6
i=1Ai = 0, this simplifies for positive time to the result

given in (3.15).
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