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LIMIT CYCLES FOR PIECEWISE SMOOTH PERTURBATIONS
OF A CUBIC POLYNOMIAL DIFFERENTIAL CENTER

SHIMIN LI, TIREN HUANG

Abstract. In this article, we study the planar cubic polynomial differential
system

ẋ = −yR(x, y)

ẏ = xR(x, y)

where R(x, y) = 0 is a conic and R(0, 0) 6= 0. We find a bound for the number

of limit cycles which bifurcate from the period annulus of the center, under
piecewise smooth cubic polynomial perturbations. Our results show that the

piecewise smooth cubic system can have at least 1 more limit cycle than the

smooth one.

1. Introduction and statement of main results

In the qualitative theory of real planar differential system, one of the important
problems is the determination and distribution of limit cycles, such as the famous
Hilbert’s 16th problem and its weak form [14]. Limit cycles can arise by bifurcation
in several different ways. One of the main methods is perturbing a system which
has a center via Poincaré bifurcation, in such a way that limit cycles bifurcate in the
perturbed system from the period annulus of the center for the unperturbed system.
This has been studied intensively perturbing the limit cycles of the center for the
Hamiltonian system (e.g. [8]) and non-Hamiltonian integrable system (e.g. [21]).

In this article, we consider the non-Hamiltonian integrable system

ẋ = −yR(x, y),

ẏ = xR(x, y),
(1.1)

where R(0, 0) 6= 0 and the dot denotes derivatives with respect to the variable t.
Note that system (1.1) has a first integral H(x, y) = x2 + y2, thus the origin is a
center. The problem of studying the number of limit cycles which bifurcate from the
period annulus surrounding the origin of system (1.1) under smooth perturbation
has been considered intensively, see for instance [15] and the references quoted
therein.

Motivated by the non-smooth phenomena in the real world, piecewise smooth
systems were widely investigated in the past few decades [1, 7, 13]. According to
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the extent of discontinuity, piecewise smooth systems can be distinguished by the
following three classes: Piecewise smooth continuous systems, Filippov systems and
Impacting systems, see [1].

There are several papers [5, 9, 17, 18, 24] concerning the number of limit cycles
bifurcate from piecewise smooth continuous systems. In [5, 9], applying Lyapunov
constants, the authors study the center-focus problem as well as the number of limit
cycles which bifurcate from a weak focus for piecewise smooth continuous systems.
Bifurcation of limit cycles by perturbing piecewise smooth Hamiltonian systems
has been studied in [17, 18, 24]. Generally speaking, piecewise smooth differential
system can have more limit cycles than the smooth one.

For piecewise smooth continuous linear systems, the authors in [12] showed that
piecewise linear differential system can have 2 limit cycles surrounding the origin.
Later on, in [10], the authors proved that piecewise smooth linear systems can
have 3 limit cycles surrounding a unique equilibrium. In [3], the authors consider
higher order piecewise smooth perturbation of a linear center. For piecewise smooth
quadratic systems, the authors in [4] showed that there are piecewise quadratic
system with 9 small amplitude limit cycles. In [19], the authors showed that there
are at least 5 limit cycles can bifurcate from quadratic isochronous centers under
piecewise smooth quadratic perturbations. Recently, the author in [23] showed that
the piecewise smooth quadratic isochronous systems can have at least 6 limit cycles.
To the best of our knowledge, there are only a few papers considering the number
of limit cycles for piecewise smooth cubic systems.

The objective of this article is to study the number of limit cycles that bifurcate
from the period annulus surrounding the origin of system (1.1) under piecewise
smooth cubic polynomial perturbations. More precisely, for |ε| > 0 sufficiently
small, we want to a bound for the number of limit cycles for the piecewise smooth
system

(
ẋ
ẏ

)
=



(
−yR(x, y) + εp1(x, y)
xR(x, y) + εq1(x, y)

)
, y > 0,(

−yR(x, y) + εp2(x, y)
xR(x, y) + εq2(x, y)

)
, y < 0,

(1.2)

where

p1(x, y) = a1x+ a2y + a3x
2 + a4xy + a5y

2 + a6x
3 + a7x

2y + a8xy
2 + a9y

3,

q1(x, y) = b1x+ b2y + b3x
2 + b4xy + b5y

2 + b6x
3 + b7x

2y + b8xy
2 + b9y

3,

p2(x, y) = c1x+ c2y + c3x
2 + c4xy + c5y

2 + c6x
3 + c7x

2y + c8xy
2 + c9y

3,

q2(x, y) = d1x+ d2y + d3x
2 + d4xy + d5y

2 + d6x
3 + d7x

2y + d8xy
2 + d9y

3,

(1.3)

and R(x, y) = 0 is one of the following six conics:

(E) Ellipse R(x, y) = x2

a2 + y2

b2 − 1 = 0 with a > 0, b > 0.
(CE) Complex ellipse R(x, y) = x2

a2 + y2

b2 + 1 = 0 with a > 0, b > 0.
(H) Hyperbola R(x, y) = x2

a2 − y2

b2 − 1 = 0 with a > 0,
(CL) Two complex straight lines intersecting in a real point (the origin) R(x, y) =

a2x2 + y2 = 0 with a 6= 0. In this case, we allow that R(0, 0) = 0.
(RPL) Two real parallel straight lines R(x, y) = x2 − a2 = 0 with a > 0.
(CPL) Two complex parallel straight lines R(x, y) = x2 + a2 = 0 with a > 0.
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Let H(3) denote the maximum number of limit cycles bifurcating from the period
annulus surrounding the origin of piecewise smooth system (1.2). From the first
order averaging method, we have the following theorem.

Theorem 1.1. Consider system (1.2) with |ε| > 0 sufficiently small.
(I) If R(x, y) = a2x2 + y2, then H(3) = 2.

(II) In the other cases above, 5 6 H(3) 6 15.

Note that if ai = ci, bi = di, i = 1, 2, . . . , 9, then p1(x, y) ≡ p2(x, y), q1(x, y) ≡
q2(x, y), and system (1.2) is a smooth system. Let H̄(3) denote the maximum
number of limit cycles bifurcating from the period annulus surrounding the origin
of smooth system (1.2). From the first order averaging method, then we have the
following theorem.

Theorem 1.2. Consider (1.2) with |ε| > 0 sufficiently small, suppose that ai = ci,
bi = di, i = 1, 2, . . . , 9.

(i) If R(x, y) = a2x2 + y2, then H̄(3) = 1.
(ii) In the other cases above, H̄(3) = 3.

Remark 1.3. From the above two theorems, we know that the piecewise smooth
system (1.2) have at least 1 (resp. 2) more limit cycles than the smooth one for the
case R(x, y) = a2x2 + y2 (resp. other cases above).

In [21], the authors considered the case for ai = ci, bi = di, i = 1, 2, 6, 7, 8, 9 and
ai = bi = ci = di = 0, i = 3, 4, 5.

The organizing of this paper is as follows. In section 2, we introduce the first
order averaging method for discontinuous system derived from [20]. In section 3,
we compute the averaged function according the different kind of conics. In section
4, we prove Theorems 1.1 and 1.2. In section 5, we give a conclusion.

2. Averaging method for discontinuous system

In this section we summarize the theorems of first order averaging method for
discontinuous differential system as obtained in [20]. The original theorem is given
for a system of differential equations, but since we will use it only for one differential
equation, we state them in this case. For a general introduction to averaging
method, see the book [22].

We consider the discontinuous differential equation

dr
dθ

= εF (θ, r) + ε2R(θ, r, ε), (2.1)

with
F (θ, r) = F1(θ, r) + sign(h(θ, r))F2(θ, r),

R(θ, r, ε) = R1(θ, r, ε) + sign(h(θ, r))R2(θ, r, ε),
(2.2)

where F1, F2 : R ×D → R, R1, R2 : R ×D × (−ε0,+ε0) → R and h : R ×D → R
are continuous functions, T-periodic in the variable in θ and D is an open subset
of R. The sign function is defined as

sign(u) =


1 if u > 0,
0 if u = 0,
−1 if u < 0.
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We also assume that h is a C1 function having 0 as a regular value. Denote by
M = h−1(0), by Σ = {0} × D " M, by Σ0 = Σ \ M 6= ∅, and its elements by
z ≡ (0, z) /∈M. Define the averaged function f : D → R as

f(r) =
∫ T

0

F (θ, r)dθ. (2.3)

Theorem 2.1 ( [20]). Assume the following three conditions ate satisfied.
(i) F1, F2, R1, R2 and h are locally L-Lipschitz with respect to r.
(ii) For a ∈ Σ0 with f(a) = 0, there exist a neighborhood V of a such that

f(z) 6= 0 for all z ∈ V̄ \{a} and the Brouwer degree function dB(f, V, 0) 6= 0,
see [2, Appendix A] for the definition of the Brouwer degree.

(iii) If ∂h/∂θ 6= 0, then for all (θ, r) ∈ M we have that (∂h/∂θ)(θ, r) 6= 0; and
if ∂h/∂θ ≡ 0, then 〈∇rh, F1〉2 − 〈∇rh, F2〉2 > 0 for all (θ, z) ∈ [0, T ]×M,
where ∇rh denotes the gradient of the function h restricted to variable r.

Then for |ε| > 0 sufficiently small, there exists a T -periodic solution r(θ, ε) of
system (2.1) such that r(0, ε)→ a (in the sense of Hausdorff distance) as ε→ 0.

To verify the hypothesis (ii) of Theorem 2.1, we have the following remark, see
for instance [2].

Remark 2.2. Let f : D → R be a C1 function with f(a) = 0, where D is an open
subset of R and a ∈ D. Whenever the Jacobian matrix of Jf (a) 6= 0 , there exists a
neighborhood V of a such that f(r) 6= 0 for all r ∈ V̄ \ {a}. Then dB(f, V, 0) 6= 0.

By Theorem 2.1 and Remark 2.2, if system (2.1) satisfies the hypothesis (i) and
(iii), then every simple zero of the averaged function f(r) defined by (2.3) provides
a limit cycle of system (2.1). In the next section, we will compute the averaged
function case by case.

3. Averaged function

Taking polar coordinates x = r cos θ, y = r sin θ, θ ∈ (0, 2π) and viewing θ as
the new independent variable. For |ε| > 0 sufficiently small, we can transform the
differential system (1.2) into the equivalent differential equation

dr
dθ

=

{
εX+(θ, r) + ε2Y +(θ, r, ε), sin θ > 0,
εX−(θ, r) + ε2Y −(θ, r, ε), sin θ < 0,

(3.1)

where

X+(θ, r) =
cos θp1(θ, r) + sin θq1(θ, r)

R(θ, r)
,

Y +(θ, r, ε) =
sin θp1(θ, r)− cos θq1(θ, r)

rR(θ, r)− ε (sin θp1(θ, r)− cos θq1(θ, r))
,

X−(θ, r) =
cos θp2(θ, r) + sin θq2(θ, r)

R(θ, r)
,

Y −(θ, r, ε) =
sin θp2(θ, r)− cos θq2(θ, r)

rR(θ, r)− ε (sin θp2(θ, r)− cos θq2(θ, r))
,

(3.2)

with

R(θ, r) = R(r cos θ, r sin θ),

pi(θ, r) = pi(r cos θ, r sin θ), i = 1, 2,
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qi(θ, r) = qi(r cos θ, r sin θ), i = 1, 2.

Recall that pi(x, y), qi(x, y), i = 1, 2 are given by (1.3).
Denote

F1(θ, r) =
1
2
(
X+(θ, r) +X−(θ, r)

)
,

F2(θ, r) =
1
2
(
X+(θ, r)−X−(θ, r)

)
,

R1(θ, r, ε) =
1
2
(
Y +(θ, r, ε) + Y −(θ, r, ε)

)
,

R2(θ, r, ε) =
1
2
(
Y +(θ, r, ε)− Y −(θ, r, ε)

)
,

then differential equation (3.1) becomes

dr
dθ

= εF (θ, r) + ε2R(θ, r, ε), (3.3)

where
F (θ, r) = F1(θ, r) + sign(sin θ)F2(θ, r),

R(θ, r, ε) = R1(θ, r, ε) + sign(sin θ)R2(θ, r, ε).
(3.4)

It is obvious that F (θ, r), R(θ, r, ε), h(θ, r) = sin θ are locally L-Lipschitz with
respect r. Since M = {(r, θ)|θ = 0, π}, the function ∂h(θ, r)/∂θ = cos θ 6= 0 when
(r, θ) ∈ M. By Theorem 2.1, we need to estimate the number of simple zeros for
the averaged function

f(r) =
∫ 2π

0

F (θ, r)dθ

=
∫ π

0

X+(θ, r)dθ +
∫ 2π

π

X−(θ, r)dθ.
(3.5)

Note that for r > 0, the zeros of the averaged function f(r) coincide with the
zeros of the function F (r) = rf(r). Hence, in order to simplify further computation,
we will compute F (r) as follows:

F (r) =
∫ π

0

r cos θp1(θ, r) + r sin θq1(θ, r)
R(θ, r)

dθ

+
∫ 2π

π

r cos θp2(θ, r) + r sin θq2(θ, r)
R(θ, r)

dθ

=
∫ π

0

r cos θp1(r cos θ, r sin θ) + r sin θq1(r cos θ, r sin θ)
R(r cos θ, r sin θ)

dθ

−
∫ π

0

r cos θp2(−r cos θ,−r sin θ) + r sin θq2(−r cos θ,−r sin θ)
R(−r cos θ,−r sin θ)

dθ.

(3.6)

In the following subsections, we will deduce the averaged function (3.6) case by
case.

3.1. Ellipse-case (E). In this subsection, we study system (1.2) with R(x, y) =
x2

a2 + y2

b2 − 1. Without loss of generality, we can assume that 0 < a < b, otherwise
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we can change the variables x1 = y, y1 = x, t1 = −t. Substituting

R(θ, r) =
(r cos θ)2

a2
+

(r sin θ)2

b2
− 1

= −a
2(b2 − r2)− (b2 − a2)r2 cos2 θ

a2b2

(3.7)

in (3.6), we have

F (r) =
∫ π

0

g1(θ, r)dθ + g2(r)
∫ π

0

1
a2(b2 − r2)− (b2 − a2)r2 cos2 θ

dθ

+ g3(r)
∫ π

0

cos θ
a2(b2 − r2)− (b2 − a2)r2 cos2 θ

dθ

+ g4(r)
∫ π

0

sin θ
a2(b2 − r2)− (b2 − a2)r2 cos2 θ

dθ

+ g5(r)
∫ π

0

cos θ sin θ
a2(b2 − r2)− (b2 − a2)r2 cos2 θ

dθ,

(3.8)

where

g1(θ, r) =
a2b2

(a2 − b2)2

(
b2(a1 − b2 + c1 − d2)

+ a2(−a1 + b2 − c1 + d2 + a2b2(a6 − a8 − b7 + b9 + c6 − c8 − d7 + d9)

(b2(a8 + b7 − 2b9 + c8 + d7 − 2d9) + a2(−a6 + b9 − c6 + d9))r2

− (a2 − b2)(a3 − a5 − b4 − c3 + c5 + d4)r cos θ

− (a2 − b2)(a6 − a8 − b7 + b9 + c6 − c8 − d7 + d9)r2 cos2 θ

− (a2 − b2)(a4 + b3 − b5 − c4 − d3 + d5)r sin θ

− (a2 − b2)(a7 − a9 + b6 − b8 + c7 − c9 + d6 − d8)r2 cos θ sin θ)
)
,

g2(r) =
−a2b2

(a2 − b2)2

(
a2b4(a1 − b2 + c1 − d2) + a4b2(−a1 + b2 − c1 + d2)

+ a4b4(a6 − a8 − b7 + b9 + c6 − c8 − d7 + d9)

+
(
a4(a1 + c1) + b4(b2 + d2)− a2b2(a1 + b2 + c1 + d2)

− a4b2(2a6 − a8 − b7 + 2c6 − c8 − d7)

+ a2b4(a8 + b7 − 2b9 + c8 + d7 − 2d9)r2

+ (a4(a6 + c6)− a2b2(a8 + b7 + c8 + d7) + b4(b9 + d9))r4
))
,

g3(r) =
a2b2r

a2 − b2
(
a2b2(a3 − a5 − b4 + c3 − c5 − d4)

− (a2(a3 + c3) + b2(a5 + b4 + c5 + d4))r2
)
,

g4(r) =
a2b2r

a2 − b2
(
a2b2(a4 + b3 − b5 − c4 − d3 + d5)

− (a2(a4 + b3 − c4 − d3)− b2(b5 − d5))r2
)
,
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g5(r) =
a2b2r2

a2 − b2
(
b2(a2 + b1 + c2 + d1) + a2(−a2 − b1 − c2 − d1)

+ a2b2(a7 − a9 + b6 − b8 + c7 − c9 + d6 − d8)

+ (−a2a7 + a9b
2 − a2b6 + b2b8 − a2c7 + b2c9 − a2d6 + b2d8)r2

)
.

Since the calculation of (3.8) is tedious, the whole calculations can be done by using
some algebraic manipulator such as Mathematica or Maple.

To compute the average function (3.8), we list some useful results on integrals
in the following lemma.

Lemma 3.1. The following equalities hold:

∫ π

0

1
a2(b2 − r2)− (b2 − a2)r2 cos2 θ

dθ =
π

ab
√
a2 − r2

√
b2 − r2

; (3.9)∫ π

0

cos θ
a2(b2 − r2)− (b2 − a2)r2 cos2 θ

dθ = 0; (3.10)

∫ π

0

sin θ
a2(b2 − r2)− (b2 − a2)r2 cos2 θ

dθ =
ln
(
a
√
b2−r2+

√
b2−a2r

a
√
b2−r2−

√
b2−a2r

)
ar
√
b2 − a2

√
b2 − r2

; (3.11)∫ π

0

cos θ sin θ
a2(b2 − r2)− (b2 − a2)r2 cos2 θ

dθ = 0. (3.12)

Note that for 0 < r < a < b, the proof of above lemma is straightforward, we
omit it here. Applying Lemma 3.1 to (3.8), we obtain the averaged function

F (r) = k1f1(r) + k2f2(r) + k3f3(r) + k4f4(r) + k5f5(r) + k6f6(r), (3.13)

where r ∈ (0, a),

f1(r) =
ab√

a2 − r2
√
b2 − r2

− 1, f2(r) =
r2

√
a2 − r2

√
b2 − r2

,

f3(r) =
r4

√
a2 − r2

√
b2 − r2

, f4(r) = r2,

f5(r) =
ab2√
b2 − r2

ln
(a√b2 − r2 +

√
b2 − a2r

a
√
b2 − r2 −

√
b2 − a2r

)
− 2
√
b2 − a2r,

f6(r) =
r2

√
b2 − r2

ln
(a√b2 − r2 +

√
b2 − a2r

a
√
b2 − r2 −

√
b2 − a2r

)
,

(3.14)
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and

k1 =
−a2b2π

(b2 − a2)2

(
b2 − a2)(a1 + c1 − b2 − d2)

+ a2b2(a6 + c6 + b9 − d9 − a8 − c8 − b7 − d7)
)
,

k2 =
−abπ

(b2 − a2)2

(
a2b2(a2 + b2)(a8 + b7 + c8 + d7)− a2(b2 − a2)(a1 + c1)

+ b2(b2 − a2)(b2 + d2)− 2a4b2(a6 + c6)− 2a2b4(b9 + d9)
)
,

k3 =
−abπ

(b2 − a2)2

(
a4(a6 + c6) + b4(b9 + d9)− a2b2(a8 + b7 + c8 + d7)

)
,

k4 =
a2b2π

2(b2 − a2)2

(
(a2 + b2)(a8 + c8 + b7 + d7)

− (3a2 − b2)(a6 + c6)− (3b2 − a2)(b9 + d9)
)
,

k5 =
a2b2(a4 + b3 − b5 − c4 − d3 + d5)

(b2 − a2)3/2
,

k6 =
ab2

(b2 − a2)3/2

(
a2(a4 + b3 − c4 − d3)− b2(b5 − d5)

)
.

(3.15)

From above analysis, we have the following proposition.

Proposition 3.2. Suppose that R(x, y) = x2

a2 + y2

b2 − 1, then the averaged func-
tion (3.13) are linear combination of 6 linearly independent functions fi(r), i =
1, 2, 3, 4, 5, 6 defined by (3.14), and the coefficients ki, i = 1, 2, 3, 4, 5, 6 given by
(3.15) can be chosen arbitrarily.

Moreover, if ai = ci, bi = di, i = 1, 2, . . . , 9, then averaged function (3.13) are
linear combination of 4 linearly independent functions fi(r), i = 1, 2, 3, 4 defined by
(3.14), and the coefficients ki, i = 1, 2, 3, 4 given by (3.15) can be chosen arbitrarily.

Proof. It is obvious that the averaged functions F (r) of (3.13) is a linear combi-
nation of the 6 functions defined by (3.14). In the following we will prove these
functions are linearly independent. Suppose that

F (r) = k̄1f1(r) + k̄2f2(r) + k̄3f3(r) + k̄4f4(r) + k̄5f5(r) + k̄6f6(r) = 0. (3.16)

To prove that fi(r), i = 1, 2, 3, 4, 5, 6 defined by (3.14) are linearly independent, we
need to prove that the coefficients k̄i = 0 for i = 1, 2, 3, 4, 5, 6.

Derivative (3.16) with respect to r at r = 0, we have

F (2)(0) =
(a2 + b2)k̄1 + 2abk̄2 + 2a2b2k̄4

a2b2
= 0,

F (3)(0) =
4
√
b2 − a2

(
(2a2 + b2)k̄5 + 3ak̄6

)
a2b2

= 0,

F (4)(0) =
3
(
(3a4 + 2a2b2 + 3b4)k̄1 + 4(a3b+ ab3)k̄2 + 8a3b3k̄3

)
a4b4

= 0,

F (5)(0) =
16
√
b2 − a2

a4b4
(
(8a4 + 4a2b2 + 3b4)k̄5 + (10a3 + 5ab2)k̄6

)
= 0,

F (6)(0) =
45(5a6 + 3a4b2 + 3a2b4 + 5b6)

a6b6
k̄1
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+
45
(
(6a5b+ 4a3b3 + 6ab5)k̄2 + (8a5b3 + a3b5)k̄3

)
a6b6

= 0,

F (8)(0) =
315

(
35a8 + 20a6b2 + 18a4b4 + 20a2b6 + 35b8

)
a8b8

k̄1

+
315(40a7b+ 24a5b3 + 24a3b5 + 40ab7)

a8b8
k̄2

+
315(48a7b3 + 32a5b5 + 48a3b7)

a8b8
k̄3 = 0.

Since 0 < a < b, the determinant of coefficient matrix,

det ∂(F (2)(0),F (3)(0),F (4)(0),F (5)(0),F (6)(0),F (8)(0))

∂(k̄1,k̄2,k̄3,k̄4,k̄5,k̄6)
= 348364800(b2−a2)9

a20b20 6= 0,

so that the only solution is the trivial one. From the above analysis we can ob-
tain k̄i = 0, i = 1, 2, 3, 4, 5, 6, thus we have proved that these functions fi(r), i =
1, 2, 3, 4, 5, 6 defined by (3.14) are linearly independent.

In the following we will show that the coefficients ki, i = 1, 2, 3, 4, 5, 6 given by
(3.15) can be chosen arbitrarily.

From (3.15), the determinant of Jacobian matrix

det
∂(k1, k2, k3, k4, k5, k6)
∂(a1, b2, b7, b9, b3, b5)

=
a9b12π4

2(b2 − a2)5
6= 0.

The coefficients a1, b2, b3, b5, b7, b9 can be chosen so that the ki, i = 1, 2, 3, 4, 5, 6
can take any specified values.

Note that if ai = ci, bi = di, i = 1, 2, . . . , 9, then k5 = k6 = 0. The averaged
function (3.13) are linear combination of fi(r), i = 1, 2, 3, 4 defined by (3.15). �

3.2. Complex-Ellipse case (CE). In this subsection, we study system (1.2) with
R(x, y) = x2

a2 + y2

b2 + 1. Substituting

R(θ, r) =
(r cos θ)2

a2
+

(r sin θ)2

b2
+ 1

in (3.6), similar to the case (E), we have

F (r) = k1f1(r) + k2f2(r) + k3f3(r) + k4f4(r) + k5f5(r) + k6f6(r), (3.17)

where r ∈ (0,+∞),

f1(r) =
ab√

a2 + r2
√
b2 + r2

− 1, f2(r) = r2,

f3(r) =
r2

√
a2 + r2

√
b2 + r2

, f4(r) =
r4

√
a2 + r2

√
b2 + r2

,

f5(r) =
ab2√
b2 + r2

arctan
(√b2 − a2r

a
√
b2 + r2

)
−
√
b2 − a2r,

f6(r) =
r2

√
b2 + r2

arctan
(

arctan
√
b2 − a2r

a
√
b2 + r2

)
,

(3.18)
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and

k1 =
a2b2π

(b2 − a2)2

(
(b2 − a2)(a1 + c1 − b2 − d2)

+ a2b2(a6 + c6 + b9 − d9 − a8 − c8 − b7 − d7)
)
,

k2 =
a2b2π

2(b2 − a2)2

(
(a2 + b2)(a8 + c8 + b7 + d7)

− (3a2 − b2)(a6 + c6)− (3b2 − a2)(b9 + d9)
)
,

k3 =
−abπ

(b2 − a2)2

(
a2b2(a2 + b2)(a8 + b7 + c8 + d7)− a2(b2 − a2)(a1 + c1)

+ b2(b2 − a2)(b2 + d2)− 2a4b2(a6 + c6)− 2a2b4(b9 + d9)
)
,

k4 =
−abπ

(b2 − a2)2

(
a4(a6 + c6) + b4(b9 + d9)− a2b2(a8 + b7 + c8 + d7)

)
,

k5 =
−a2b2(a4 + b3 − b5 − c4 − d3 + d5)

(b2 − a2)3/2
,

k6 =
−ab2

(b2 − a2)3/2

(
a2(a4 + b3 − c4 − d3)− b2(b5 − d5)

)
.

(3.19)

From above analysis, we have the following proposition.

Proposition 3.3. Suppose that R(x, y) = x2

a2 + y2

b2 + 1, then the averaged function
(3.17) are linear combination of the 6 linearly independent functions fi(r), i =
1, 2, 3, 4, 5, 6 defined by (3.18), and the coefficients ki, i = 1, 2, 3, 4, 5, 6 given by
(3.19) can be chosen arbitrarily.

Moreover, if ai = ci, bi = di, i = 1, 2, . . . , 9, then the averaged function (3.17)
are linear combination of the 4 linearly independent functions fi(r), i = 1, 2, 3, 4
defined by (3.18), and the coefficients ki, i = 1, 2, 3, 4 given by (3.19) can be chosen
arbitrarily.

The proof of the above proposition is similar to the proof of Proposition 3.2, we
omit it here.

3.3. Hyperbolic case (H). In this subsection, we study system (1.2) withR(x, y) =
x2

a2 − y2

b2 − 1. Substituting

R(θ, r) =
(r cos θ)2

a2
− (r sin θ)2

b2
− 1

in (3.6), we have

F (r) = k1f1(r) + k2f2(r) + k3f3(r) + k4f4(r) + k5f5(r) + k6f6(r), (3.20)
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where r ∈ (0, a),

f1(r) =
ab√

a2 − r2
√
b2 + r2

− 1, f2(r) = r2,

f3(r) =
r2

√
a2 − r2

√
b2 + r2

, f4(r) =
r4

√
a2 − r2

√
b2 + r2

,

f5(r) =
ab2√
b2 + r2

ln
(a√b2 + r2 −

√
a2 + b2r

a
√
b2 + r2 +

√
a2 + b2r

)
+ 2
√
b2 + a2r,

f6(r) =
r2

√
b2 + r2

ln
(a√b2 + r2 −

√
a2 + b2r

a
√
b2 + r2 +

√
a2 + b2r

)
,

(3.21)

and

k1 =
−a2b2π

(b2 + a2)2

(
(b2 − a2)(a1 + c1 − b2 − d2)

+ a2b2(a6 + c6 + b9 − d9 − a8 − c8 − b7 − d7)
)
,

k2 =
a2b2π

2(b2 + a2)2

(
(a2 + b2)(a8 + c8 + b7 + d7)

− (3a2 − b2)(a6 + c6)− (3b2 − a2)(b9 + d9)
)
,

k3 =
−abπ

(b2 + a2)2

(
a2b2(a2 + b2)(a8 + b7 + c8 + d7)− a2(b2 − a2)(a1 + c1)

+ b2(b2 − a2)(b2 + d2)− 2a4b2(a6 + c6)− 2a2b4(b9 + d9)
)
,

k4 =
−abπ

(b2 + a2)2

(
a4(a6 + c6) + b4(b9 + d9)− a2b2(a8 + b7 + c8 + d7)

)
,

k5 =
a2b2(a4 + b3 − b5 − c4 − d3 + d5)

(b2 + a2)3/2
,

k6 =
ab2

(b2 + a2)3/2

(
a2(a4 + b3 − c4 − d3)− b2(b5 − d5)

)
.

(3.22)

From above analysis, we have the following proposition.

Proposition 3.4. Suppose that R(x, y) = x2

a2 − y2

b2 − 1, then the averaged function
(3.20) are linear combination of the 6 linearly independent functions fi(r), i =
1, 2, 3, 4, 5, 6 defined by (3.21), and the coefficients ki, i = 1, 2, 3, 4, 5, 6 given by
(3.22) can be chosen arbitrarily.

Moreover, if ai = ci, bi = di, i = 1, 2, . . . , 9, then the averaged function (3.20)
are linear combination of the 4 linearly independent functions fi(r), i = 1, 2, 3, 4
defined by (3.21), and the coefficients ki, i = 1, 2, 3, 4 given by (3.22) can be chosen
arbitrarily.

The proof of the above proposition is similar to the proof of Proposition 3.2, we
omit it here.

3.4. Two complex straight lines intersecting in a real point case (CL).
In this subsection, we study system (1.2) with R(x, y) = a2x2 + y2. Without
loss of generality, we can assume that a > 1, Otherwise, we change the variables
x = y1, y = x1, t1 = −a2t.
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Substituting R(θ, r) = r2(a2 cos2 θ + sin2 θ) in (3.6), we have

F (r) = k1 + k2r + k3r
2, (3.23)

where r ∈ (0,+∞) and

k1 =
(a1 + c1 + ab2 + ad2)π

a(a+ 1)
,

k2 =
−2(a4 + b3 − b5 − c4 − d3 + d5)

a2 − 1

+
2(a4 + b3 − a2b5 − c4 − d3 + a2d5)

a2 − 1
arctan(

√
a2 − 1t),

k3 =
π((2 + a)(a6 + c6) + a(a8 + b7 + c8 + d7) + 2a2(b9 + d9))

2a(a+ 1)2
.

(3.24)

From above analysis, we have the following proposition.

Proposition 3.5. Suppose that R(x, y) = a2x2 + y2, then the averaged function
(3.23) are linear combination of the 3 linearly independent functions 1, r, r2, and
the coefficients ki, i = 1, 2, 3 given by (3.24) can be chosen arbitrarily.

Moreover, if ai = ci, bi = di, i = 1, 2, . . . , 9, then the averaged function (3.23) are
linear combination of the 2 linearly independent functions 1, r2, and the coefficients
ki, i = 1, 3 given by (3.24) can be chosen arbitrarily.

Proof. It is obvious that functions 1, r, r2 are linearly independent. The determi-
nant of Jacobian matrix

det ∂(k1,k2,k3)
∂(a1,a4,a6) = (a+2)π2(1−arctan

√
a2−1)

a2(a−1)(a+1)4 6= 0.

It is obvious that the coefficients ki, i = 1, 2, 3 given by (3.24) can be chosen
arbitrarily since a1, a4, a6 are arbitrary. �

3.5. Two real parallel straight lines case (RPL). In this subsection, we study
system (1.2) with R(x, y) = x2 − a2. Substituting R(θ, r) = r2 cos2 θ − a2 in (3.6),
we have

F (r) = k1f1(r) + k2f2(r) + k3f3(r) + k4f4(r) + k5f5(r) + k6f6(r), (3.25)

where r ∈ (0, a),

f1(r) =
a√

a2 − r2
− 1, f2(r) = a−

√
a2 − r2,

f3(r) = r2, f4(r) = r2
√
a2 − r2,

f5(r) = 2r − a ln
(a+ r

a− r

)
, f6(r) = r2 ln

(a+ r

a− r

)
,

(3.26)
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and
k1 = −(a1 + c1 + a2a6 + a2c6)π,

k2 =
−π
a

(b2 + d2 + a2(a8 + b7 − b9 + c8 + d7 − d9)),

k3 =
a6 + a8 + b7 − 3b9 + c6 + c8 + d7 − 3d9

2
,

k4 =
b9 + d9

a
,

k5 = a4 + b3 − b5 − c4 − d3 + d5,

k6 =
−b5 + d5

a
.

(3.27)

From above analysis, we have the following proposition.

Proposition 3.6. Suppose that R(x, y) = x2−a2, then the averaged function (3.25)
are linear combination of the 6 linearly independent functions fi(r), i = 1, 2, 3, 4, 5, 6
defined by (3.26), and the coefficients ki, i = 1, 2, 3, 4, 5, 6 given by (3.27) can be
chosen arbitrarily.

Moreover, if ai = ci, bi = di, i = 1, 2, . . . , 9, then the averaged function (3.25)
are linear combination of the 4 linearly independent functions fi(r), i = 1, 2, 3, 4
defined by (3.26), and the coefficients ki, i = 1, 2, 3, 4 given by (3.27) can be chosen
arbitrarily.

The proof of the above proposition is similar to that of Proposition 3.2, we omit
it here.

3.6. Two complex parallel straight lines case (CPL). In this subsection, we
study system (1.2) with R(x, y) = x2 + a2. Substituting R(θ, r) = r2 cos2 θ + a2 in
(3.6), we have

F (r) = k1f1(r) + k2f2(r) + k3f3(r) + k4f4(r) + k5f5(r) + k6f6(r), (3.28)

where r ∈ (0,+∞),

f1(r) =
a√

a2 + r2
− 1, f2(r) =

r2

√
a2 + r2

,

f3(r) = r2, f4(r) =
r4

√
a2 + r2

,

f5(r) = r − a arctan
( r
a

)
, f6(r) = r2 arctan

( r
a

)
,

(3.29)

and
k1 = −(a1 − b2 + c1 − d2 − a2(a6 − a8 − b7 + b9 + c6 − c8 − d7 + d9))π,

k2 =
π

a
(b2 + d2 − a2(a8 + b7 − 2b9 + c8 + d7 − 2d9)),

k3 =
a6 + a8 + b7 − 3b9 + c6 + c8 + d7 − 3d9

2
,

k4 =
b9 + d9

a
,

k5 = 2(a4 + b3 − b5 − c4 − d3 + d5),

k6 =
2(b5 − d5)

a
.

(3.30)
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From above analysis, we have the following proposition.

Proposition 3.7. Suppose that R(x, y) = x2+a2, then the averaged function (3.28)
are linear combination of the 6 linearly independent functions fi(r), i = 1, 2, 3, 4, 5, 6
defined by (3.29), and the coefficients ki, i = 1, 2, 3, 4, 5, 6 given by (3.30) can be
chosen arbitrarily.

Moreover, if ai = ci, bi = di, i = 1, 2, . . . , 9, then the averaged function (3.28)
are linear combination of the 4 linearly independent functions fi(r), i = 1, 2, 3, 4
defined by (3.29), and the coefficients ki, i = 1, 2, 3, 4 given by (3.30) can be chosen
arbitrarily.

The proof of the above proposition is to the proof of Proposition 3.2, we omit it
here.

4. Proof of the main results

The tools for estimating the number of zeros for the averaged function F (r) are
the following two lemmas.

Lemma 4.1 ( [6]). Consider p + 1 linearly independent analytical functions fi :
U → R, i = 0, 1, . . . , p, where U ∈ R is an interval. Suppose that there exists
j ∈ {0, 1, . . . , p} such that fj has constant sign. then there exists p + 1 constants
Ci, i = 0, 1, . . . , p such that f(x) =

∑p
i=0 Cifi(x) has at least p simple zeros in U .

Lemma 4.2 ( [16]). Suppose that the real function F (h) ∈ C1(U) satisfies

α(h)F ′(h)− β(h)F (h) = γ(h), (4.1)

where α(h), β(h), γ(h) ∈ C0(U) and U ∈ R is an interval, then

#{F (h)} 6 1 + #{α(h)}+ #{γ(h)}. (4.2)

Here #{F (h)} is the number of zeros of F (h) in U .

Although the proof of Lemma 4.2 can be found in [16], we include it here for the
sake of convenience.

Proof. Let h1 and h2 are two consecutive zeros of F (h). From (4.1), we have

α(h1)F ′(h1) = γ(h1), α(h2)F ′(h2) = γ(h2),

which shows γ(h1)γ(h2) 6 0 if α(h) 6= 0 in (h1 − ε, h2 + ε), 0 < ε << 1. Therefore,
between any two consecutive zeros of F (h), there must exist at least one zero of
α(h) or γ(h). The result of this lemma follows. �

Proof of Theorem 1.1. (I). From (3.23), F (r) is a polynomial in variable r with the
degree of 2, since the coefficients are arbitrary, then we can conclude that F (r) has
at most 2 zeros in the interval (0,+∞) and this bound is sharp. From the first
order averaging method of Theorem 2.1, system (1.2) has at most 2 limit cycles
bifurcating from the period annulus surrounding the origin. Moreover, there are
system (1.2) has 2 limit cycles bifurcating from the period annulus surrounding the
origin. Thus we have H(3) = 2, this complete the proof of statement (I).

(II). For the case R(x, y) = x2

a2 + y2

b2 − 1. First we consider the lower bound of
zeros for F (r), r ∈ (0, r0), in this case r0 = a. By the Proposition 3.2, F (r) is an
linear combination of the 6 independent generating functions fi(r), i = 1, 2, 3, 4, 5, 6
defined by (3.14) with arbitrary coefficients. All these functions are analytic in
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(0, r0), and some of them are strictly positive in this interval, hence F (r) can have
at least 5 simple zeros in (0, r0) by Lemma 4.1.

Now we find an upper bound for the zeros for F (r) in (0, r0). From (3.13), we
have

F (r) = k1f1(r) + k2f2(r) + k3f3(r) + k4f4(r) + k5f5(r) + k6f6(r)

=
1√

a2 − r2
√
b2 − r2

G(r),

where
G(r) = abk1 + k2r

2 + k3r
4

+
√
a2 − r2

√
b2 − r2

(
−k1 − 2

√
b2 − a2k5r + k4r

2
)

+
√
a2 − r2 ln

(a√b2 − r2 +
√
b2 − a2r

a
√
b2 − r2 −

√
b2 − a2r

) (
ab2k5 + k6r

2
)
,

(4.3)

Recall that r ∈ (0, a) and a < b, then (a2− r2)(b2− r2) 6= 0. The zeros of F (r) = 0
is coincide with G(r) = 0 in the interval (0, a). In the following we will discuss the
upper bound of zeros for G(r) = 0, r ∈ (0, a).

Computing the derivative on both sides of (4.3) with respect to r, we obtain

G′(r) =
r√

a2 − r2
√
b2 − r2

P4(r) + 2k2 + 4k3r
2

− r√
b2 − r2

ln
(a√b2 − r2 +

√
b2 − a2r

a
√
b2 − r2 −

√
b2 − a2r

)
(ab2k5 − 2a2k6 + 3k6r

2),
(4.4)

where

P4(r) = a2k1 + b2k1 + 2a2b2k4 +
√
b2 − a2(4a2k5 + 4b2k5 + 2ak6)r

− (2k1 + 3a2k4 + 3b2k4)r2 − 6
√
b2 − a2k5r

3 + 4k4r
4

(4.5)

is a polynomial in the variable r, of degree 4.
Applying (4.3), we can eliminate ln

(
a
√
b2−r2+

√
b2−a2r

a
√
b2−r2−

√
b2−a2r

)
in (4.4), then we have

α(r)G′(r) = β(r)G(r) + γ(r), (4.6)

where

α(r) =
√
a2 − r2

√
b2 − r2(ab2k5 + k6r

2),

β(r) = −r(ab2k5 − 2a2k6 + 3k6r
2),

γ(r) = P7(r) +
√
a2 − r2

√
b2 − r2P5(r)

with

P7(r) = r(ab2k5 + k6r
2)P4(r) + r(ab2k5 − 2a2k6 + 3k6r

2)(abk1 − k2r
2 − k3r

4),

P5(r) = (2k2 + 4k3r
2)(ab2k5 + k6r

2)

− r(ab2k5 − 2a2k6 + 3k6r
2)(k1 + 2

√
b2 − a2k5r − k4r

2).

From Lemma 4.2, we obtain an upper bound for the zeros of F (r) in (0, r0):

#{F (r)} 6 1 + #{α(r)}+ #{γ(r)} 6 1 + 1 + 14 = 16. (4.7)

Note that F (0) = 0, then the number of zeros in (0, r0) is at most 15.
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From the first order averaging method of Theorem 2.1, system (1.2) withR(x, y) =
x2

a2 + y2

b2 −1 can bifurcate at most 15 limit cycles from the period annulus surrounding
the origin, and there are system (1.2) with at least 5 limit cycles bifurcating from
such annulus. Thus we have 5 6 H(3) 6 15. The proof of the other statements are
similar. �

Proof of Theorem 1.2. (I) From (3.24), we know that k2 = 0 since ai = ci, bi =
di, i = 1, 2, . . . , 9, then F (r) = k1 + k3r

2. It is obvious that F (r) has at most 1
zero in the interval (0,+∞) and this bound is sharp. From the first order averaging
method of Theorem 2.1, system (1.2) has at most 1 limit cycles bifurcating from
the period annulus surrounding the origin. Moreover, there are system (1.2) has 1
limit cycles bifurcating from the period annulus surrounding the origin.

(II) For the case R(x, y) = x2

a2 + y2

b2 − 1. From (3.15), we know that k5 = k6 = 0
since ai = ci, bi = di, i = 1, 2, . . . , 9. By the Proposition 3.2, F (r) is an linear
combination of the 4 independent generating functions fi(r), i = 1, 2, 3, 4 given by
(3.14) with arbitrary coefficients. All these functions are analytic in (0, r0), and
some of them are strictly positive in this interval, hence F (r) has at least 3 simple
zeros in (0, r0) by Lemma 4.1.

Replacing k5 = k6 = 0 in (3.13), we have

F (r) =
1√

a2 − r2
√
b2 − r2

(abk1 + k2r
2 + k3r

3)− (k1 − k4r
2), (4.8)

where ki, i = 1, 2, 3, 4 are given by (3.8). From (4.8), it is obvious that F (r) has at
most 4 zeros in [0,+∞. Note that F (0) = 0, then F (r) has at 3 zeros in (0,+∞).

From the first order averaging method of Theorem 2.1, systems (1.2) with
R(x, y) = x2

a2 + y2

b2 − 1 can bifurcate at most 3 limit cycles from the period an-
nulus surrounding the origin, Moreover, there are system (1.2) have 3 limit cycles
bifurcating from such annulus. The proof of the other case is similar. �

5. Conclusion

Our work described bounds for the number of limit cycles for piecewise smooth
perturbation of cubic polynomial differential center. Our results confirm that piece-
wise smooth system can have more limit cycles than the smooth one. One of the
major difficulties encountered in our study is how to estimate the number of zeros
for the averaged function. Some of the basic tools we have used are the methods
of Lemmas 4.1 and 4.2. We can obtain a upper bound of the number of zeros for
averaged function by Lemma 4.2, but this bound is not sharp. More advanced
methods, such as Argument principle, are required to attack this kind of problems.
We leave this as the future research problems.
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