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NONEXISTENCE RESULTS FOR A PSEUDO-HYPERBOLIC
EQUATION IN THE HEISENBERG GROUP

MOKHTAR KIRANE, LAKHDAR RAGOUB

ABSTRACT. Sufficient conditions are obtained for the nonexistence of solutions
to the nonlinear pseudo-hyperbolic equation

utt — AHUtt - AHU = |u|p7 (nvt) € H x (0700)7 p> 17
where Ay is the Kohn-Laplace operator on the (2N + 1)-dimensional Heisen-
berg group H. Then, this result is extended to the case of a 2 X 2-system of

the same type. Our technique of proof is based on judicious choices of the test
functions in the weak formulation of the sought solutions.

1. INTRODUCTION

In this article, we are concerned with the nonexistence of weak solutions to the
nonlinear pseudo-hyperbolic equation

uge — Aguy — Agu = [ul?,  (n,t) € H x (0,00), p > 1, (1.1)
under the initial conditions

u(n,0) = uo(n), w(n,0)=ui(n), neH, (1.2)

where Ay is the Kohn-Laplace operator on the (2N + 1)-dimensional Heisenberg
group H. In the Euclidean case, pseudo-hyperbolic equations served as models for
the unidirectional propagation of nonlinear dispersive long waves [2|, creep buck-
ling [5] for example. For further applications, one is referred to the valuable book [1]
where a sizeable number of pseudo-hyperbolic equations are studied. Our proofs
rely on the test function method [8/12]. For the reader convenience, some back-
ground facts used in the sequel are recalled.

The (2N +1)-dimensional Heisenberg group H is the space R2N+1 equipped with
the group operation

non' =@+ y+y,7+7 +2x-y —2"-y)),

for all n = (z,y,7),n = (2',y',7") € RN x RN x R, where - denotes the standard
scalar product in R™. This group operation endows H with the structure of a Lie
group.
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On H it is natural to define a distance from n = (z,y,7) =: (2,7) to the origin
by

Inle = (7'2 + (g:(mf + yf)>2)1/4 _ (T + 1z )1/4

i=1
where z = (21,--- ,zny) and y = (y1,- -+ ,YN)-
The Laplacian Ay over H can be defined from the vectors fields
Xi =0, +2y;0, and Y; =0, —21,0;,

fori=1,---, N, as follows
N

A=) (XZ+Y2).
i=1
A simple computation gives the expression
N
Agu = Z (02, u+ 05, u+ 4y 07 u— 4x;0; -+ A(x] + ;)7 02 u).
i=1
The operator Ay satisfies the following properties:

e It is invariant with respect to the left multiplication in the group, i.e., for
all n,n' € H, we have

Ag(u(non’)) = Agu(non');
e [t is homogeneous with respect to a dilatation. More precisely, for A € R
and (z,y,7) € H, we have

An(u(ha, \y, \°7)) = N (Agu)(Az, Ay, A*7);
o If u(n) = v(|n|m), then
v Q-1 dv)

Asvlp) = aln) (5 +

where p = |n|g, a(n) = p~2 Zfil(xf +9y?) and @ = 2N + 2 is the homoge-
neous dimension of H.

For more details on Heisenberg groups, we refer to |4}/7].

In this work, we first provide a sufficient condition for the nonexistence of weak
solutions to the nonlinear problem ([L.1)-(1.2)), then we extend the result to the case
of the 2 x 2 system

U — Agug — Agu = [v]?, (n,t) € H x (0,00),
v — Apvy — Agv = [ul?,  (n,t) € H x (0, 00),
u(n,0) = uo(n), ur(n,0) =w(n), neH
v(n,0) = vo(n), v(n,0) =wvi(n), neH,

where p, g > 1 are real numbers, for which we provide a sufficient condition for the
nonexistence of weak solutions.

(1.3)

2. RESULTS AND PROOFS
Let Hr =H x (0,T), H =H x (0,00). For R > 0, let
Ur = {(z,y,7,t) € H: 0 < t* + |2|* + |y|* + 72 < 2R}
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2.1. Case of a single equation. The definition of solutions we adopt for ([1.1])-

T2 is:
We say that u is a local weak solution to (1.1)-(1.2) on H with initial data
u(0,+) = ug € L (H), if u € LY (H) and satisfies

loc loc

/ |u|”<pdz9dt+/ul(ﬂ)gp(ﬂ,o)dﬂ—l-/ul(ﬂ)AWp(ﬁ,O) v
H H H

:/ ugattdﬂdtJr/ UAg Py dtdﬁ—/ uAgp dt dJ,
H H H

for any test function ¢, ¢(-,t) =0, ¢:(-,t) = 0,t > T. The solution u is said global
if it exists on (0, 00).
Our first main result is given by the following theorem.

Theorem 2.1. Let u; € L*(H). Suppose that

/ u di) > 0. (2.1)
H

If
l<p<1+ 2
Pl o
then any weak solution to (1.1)-(1.2) blows-up in a finite time.

Proof. Suppose that u is a weak solution to (L.1))-(1.2). Then for any regular test
function ¢, we have

/ |u|p<pd19dt+/u1(19)g0(1970)d19

H H

g/ |u||<ptt|d19dt+/ lul | Asud| dt 9 (2.2)
H H

+ [ lullaspldtas + [ ()] ap,0)|do.
H H
Using the e-Young inequality
ab < ea” + C0, a,be,Ce>0, 1<p,p, p+p =pp,

with parameters p and p’ = p/(p — 1), we obtain

/ [ pue| 49 dt = / /P 5 F | i
" " (2.3)

< [ Wpeavdrse. [ ol doa,
H H

for some positive constant c..
Similarly, we have

/\u||AH<ptt\dtd19§5/ |u|p<pd19dt+cs/ T Aoy | P dEdY, (2.4
H H H

/ lul|| Am| dt dY Ss/ \u|pcpdﬂdt+05/ go_plfl|AH<,0|%dtdﬂ. (2.5)
H H H
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Using (2.2)), (2.3), (2.4) and (2.5)), for € > 0 small enough, we obtain
/ |ulPy dd dt +/ u1(9)p(0,0) dv
H H

(2.6)
< C(A(0) + Bylo) + Col) + [ a1 Aup(2,0)] ),
where
A40) = [ & PTIul T do (27)
Bp(cp):/ o™ 7T | A | 7T dV d, (2.8)
H
@w—ﬂfvthﬁwwt (2.9)

Now, let us consider the test function

t4 4 4 2
or(t,V) :¢“( *lal ;4“1/' *r ) R>0, w>1, (2.10)

where ¢ € C§°(RT) is a decreasing function satisfying

1 ifo<r<i,
W)_{o ifr > 2

Observe that supp(¢r) is a subset of Ug, while supp(¢gr,), supp(Appr) and
supp(Apn(¢r)st) are subsets of

Or ={(t,z,y,7) € H: R* <t* + |z|* + Jy|* + 7% < 2R*}.
Let

ot o]ty + 7
p - R4 .
Then we have
AH@R(tvﬁ)

= 2D (2 4 i?) o ()0 (0

16w(w — 1) o
t—Fp ((le6 + 1Y% + 27 (|2 — [yl)z -y + 73 (|j2]* + |y|2))¢’2(0)¢ *(p)
16w w—

+ 2 ((l® [yl + 27 (el = yP)a -y + (el + 1)) ¢ ()6~ (o)
for example.

Observe first that (¢r):(¢,0) = 0 as required in the definition. It follows that
there is a positive constant C' > 0, independent of R, such that for all (¢,9) € xg,
we have

|Ampr(t, 9)] < CR™2¢“2(p)x(p), (211)
where

x(p) = 19" (p)|o(p) + ™ (p) + 8" (p)|6(p),

and
[(Arpr)i(t,9)] < CR™2, (2.12)
(or)e(t, )] < CR™ (2.13)



EJDE-2015/110 NONEXISTENCE OF SOLUTIONS IN THE HEISENBERG GROUP 5

Using ([2.11)) and (2.12)), we obtain

Ap(pr) < CROTI731, (2.14)
B,(pr) < CROT17351, (2.15)
Cplor) < CRAFI7, (2.16)
Let us consider now the change of variables
(t,2,y,7) = (t,9) = (1,0) = (£,7,5,7), (2.17)
where
t=R %, 7T=R?2r,Z=R 'z, y=Rly.
Let

p=t"+ 2"+ 9"+ 7
Crn={(t%,5,7) e H:1<p <2},
Cr={(z,y,7) €H: R* < |z[* + |y|* + 7> < 2R"}.
Using (12.6), (2.15) and ([2.16)), we obtain
/ IUIpsoRdﬁdtJr/ul(ﬁ)wR(ﬁ,o)dﬁ
H H

(2.18)
< C(Rﬂl + RY +/ luy (90)|| Ampr (9, 0)] dﬁ),

Cr

where 5 A
h=0Q+1— L and 9 =Q+1- 2
p—1 p—1
On the other hand, we have

liminf/ |u|pchd19dt+/u1(19)g0R(19,O) dd
R=oo Jn H

> lim inf/ |u|Ppr dI dt + lim inf/ u1(9)pr(¥,0) dv.
R—oo  Joy R—oo g

Using the monotone convergence theorem, we obtain

liminf/ \u|pade19dt:/ |u|? dv dt.
H H

R—o

Since u; € L*(H), by the dominated convergence theorem, we have

liminf/Hul(ﬂ)wR(&O) dz?z/ul(ﬂ) dd.

R—o H

Now, we have
liminf(/ |u|p<de19dt+/u1(19)apR(q9,0) ) 2/ (ulP di dt + ¢,
R—oo \ Jy H H

where from ,
Ez/ul(ﬁ)d19> 0.
H

By the definition of the limit inferior, for every € > 0, there exists Ry > 0 such that

/ ‘ulp@Rdﬁdt"‘/Ul(ﬁ)‘PR(ﬁ70)d19
H H
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> lim inf (/ lulPor do dt + / ur(9)r(d,0) d) — =
R—o0 H H
> / |u|P d9dt 4+ £ — ¢,
H
for every R > Ry. Taking € = ¢/2, we obtain

/|u|p<de19dt+/ul(ﬁ)gaR(ﬁ,O)dﬁZ/ |ulP dv dt +
H H H

for every R > Ry. Then from (2.18)), we have

¢
2 Y

14
/ ul dide + 5 < (R 4 R +/ [uo(9) | Asgr(6.0) dd),  (219)
H Cr
for R large enough.
Now, we require that ©; = max{¥1,92} < 0, which is equivalent to 1 < p <
14 Q2—1' We distinguish two cases.

Case 1: 1 <p< 1+ % In this case, letting R — oo in (2.19)) and using the
dominated convergence theorem, we obtain

/ P dvdt+ £ <o,
H 2

which is a contradiction as ¢ > 0.
Case 2: p=1+ % From (2.19)), we obtain

/|u\”d19dt§0<oo = Gim [ JuPerdddt=o. (2.20)
H

— 00 CR

Using the Holder inequality with parameters p and p/(p— 1), from (2.2)), we obtain

{ 1/p
/ |ulPordddt+ = < C(/ lulPor dﬁdt)
H 2 o
Letting R — oo in the above inequality and using (2.20)), we obtain
14
/ ul? dodi + £ = 0.

H 2

A contradiction; the proof of the theorem is complete. ([

2.1.1. The case of system . The definition of solutions we adopt for is:

We say that the pair (u,v) is a local weak solution to on H with initial
data (U(O,),U(O,)) = (UO,”U()) € Llloc(H) x Llloc(H)7 if (u,v) € Lfoc(H) X L?OC(H)
and satisfies

/ |v|q<pd19dt+/u1(19)ap(19,0)d19
H H

:/ uapttd#}dt—i—/ u(AHap)ttdtdﬁ—/ uAmpdtdﬂ—l—/ul(ﬁ)AHLp(ﬁ,O) dy
H H H H
and

/ \U|p90d19dt+/v1(19)<p(19,0) dd
H H

:/ o dﬂdtJr/ v(Age)u dtdﬂf/ vAﬂ.H(pdtdﬂJr/vl(ﬁ)AH(p(ﬂ,O) dd,
H H H H
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for any test function ¢, ¢(-,t) = 0, @:(-,t) = 0, t > T. The solution is said global
if it exists for T' = +o0.
Our second main result is given by the following theorem.

Theorem 2.2. Let (uj,v1) € L'(H) x L'(H). Suppose that

/uldﬁ>0 and /v1d19>0.
H H

If 1 < pq < (pq)*, where
2
(pq)" =1+ 01 max{p +1,¢ + 1},
then there exists no nontrivial weak solution to (|1.3)).

Proof. Suppose that (u,v) is a nontrivial weak solution to (1.3). Then for any
regular test function ¢, we have

/ |v|qgod19dt+/u1(19)ap(19,0) a9

H H

< J lecldodss | pllusy has
H H

+ [ lullaspldtds + [ fu )] dup(.0)|do
H H
and

/ |u|pg0d19dt+/vl(19)<p(19,0) dv
H H
H H

+ [ tolidueldear+ [ jo@)|due.0] o,
H H

Taking ¢ = g, the test function given by (2.10)), and using the Holder inequality
with parameters p and p/(p — 1), we obtain

/ \v|qgoRd19dt+/u1(19)<pR(19,0)d19—/ lur (9) ]| Ao (9, 0)] 9
H H H

p—1 —1

< (Ap(QOR)T + By(¢r)7 +Cp(<PR)p771) (/H \u|pchd19dt>l/p,

where A,(p), By(p) and Cp(p) are given respectively by (2.7), (2.8) and (2.9).
Similarly, by the Holder inequality with parameters ¢ and ¢/(q — 1), we get

/ |u|pgaRd19dt+/vl(ﬁ)@R(ﬁ,O)dﬂf/ |v1 (9)||Arer (Y, 0)] dd
H H H

-1 —1

< (A(er) T + Bylon) +Cq(L,DR)qq)(/H|U|qchd19dt)l/q.

Without restriction of the generality, we may assume that for R large enough, we
have

/ ur (9) (9, 0) d9 — / iy (0) | Assipre (6, 0) d9 > 0,
H H

/01(19)803(?970) dﬁ—/ [v1 ()| Amer(d,0)|dd > 0.
H H
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Slight modifications yield the proof in the general case (see the proof of Theorem
. Then for R large enough, we have

/ [v|%pR d9 dt
H

s b . 1/p (2.21)
< (Aulon)T + Bylow) T +Colon)T ) ([ uondvar)
H
and
/ |ulPor di dt
7t ) (2.22)
a=1 a=1 a1 /a
< (Aen)'T + BT + Colon)™) ( [ lolonavar) .
H
Using the change of variables (2.17)), from ([2.21)) and (2.22]), we obtain
1 1/
/ 0]9grdodt < CR™5 (/ |u|p<de19dt) g (2.23)
H H
g—1)—2 1/
/|u|p<de19dt§CRQ( 7 (/ |v|q<de19dt) ! (2.24)
H H
Combining (2.23) with (2.24)), we obtain
1—L
(/ |u|p<de19dt> " < ORY, (2.25)
H
1—L
(/ |v\q<de19dt) " < OR™, (2.26)
H
where

Qlpg—1) —2(p+1)
pg—1 pg—1
We require that v; < 0 or v < 0 which is equivalent to 1 < pg < 1+ % max{p+
1,q+ 1}. We distinguish two cases.

v =

Case 1: 1 <pg <1+ % max{p+1,q+ 1}. Without loss of the generality, we may
suppose that 0 < ¢ < p. In this case, letting R — oo in (2.25)), we obtain

/ |u|? dd dt =0,

H

which is a contradiction.

Case 2: pg=1+ % max{p + 1,q + 1}. This case can be treated in the same way
as in the proof of Theorem [2.1 O

Remark 2.3. If p = ¢ and u = v in Theorem we obtain the result for a single
equation given by Theorem [2.1
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