
Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 121, pp. 1–9.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

NONLINEAR DAMPED SCHRÖDINGER EQUATION IN TWO
SPACE DIMENSIONS

TAREK SAANOUNI

Abstract. In this article, we study the initial value problem for a semi-linear

damped Schrödinger equation with exponential growth nonlinearity in two
space dimensions. We show global well-posedness and exponential decay.

1. Introduction

Consider the initial value problem for a damped semilinear Schrödinger equation
iu̇+ ∆u− αu+ ω∆u̇− µu̇ = εf(u),

u|t=0 = u0,

u|∂Ω = 0.
(1.1)

This equation arises for instance in plasma physics [15] or in optical fibers models
[4]. Here and hereafter (α, µ, ω) ∈ R3

+ and ε ∈ {±1}. The set Ω ⊂ R2 is a
bounded smooth domain and u(t, x) : R+ × Ω → C. The nonlinearity f satisfies
the Hamiltonian form f(z) = zF ′(|z|2), where F ∈ C1(R+) and vanishes on zero.
Moreover, we assume that for all α > 0, there exists Cα > 0 such that

|f(z1)− f(z2)|2 ≤ Cα|z1 − z2|2
(
eα|z1|

2
− 1 + eα|z2|

2
− 1
)
, ∀z1, z2 ∈ C. (1.2)

We define the energy of a solution u to (1.1) by

E(t) = Eα(u(t)) :=
∫

Ω

(
|∇u(t)|2 + α|u(t)|2 + εF (|u(t)|2)

)
dx.

The decay of the energy formally satisfies

Ė(t) = −ω‖∇u̇‖2L2 − µ‖u̇‖2L2 .

If ε = −1, the energy is positive and (1.1) is said to be defocusing, otherwise it is
focusing.

In the monomial case f(u) = u|u|p−1, local well-posedness in the energy space
holds for any 1 < p < ∞ [8, 6]. Moreover, the solution is global if 1 < p < 3 or
in the defocusing case [5]. So it is natural to consider problems with exponential
nonlinearities, which have several applications, as for example the self trapped
beams in plasma [10]. Moreover, the Moser-Trudinger estimate [1] provides another
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motivation to consider exponential type nonlinearity in order to study semilinear
Schrödinger equation in two space dimensions.

The two dimensional Schrödinger problem with exponential growth nonlinearity
was studied in [14], where global well-posedness and scattering were proved. Later
on, the critical type nonlinearity was considered in [7]. In fact, global well-posedness
for small data in the subcritical and critical cases holds. Moreover, scattering in
the subcritical case was established. The author [18] obtained a decay result in
the critical case. Recently [17], global well-posedness and scattering in the energy
space without any condition on the data, for some weaker exponential nonlinearity,
were proved (the associated wave problem was treated in [11, 12]).

It is the aim of this article is to extend previous results about global well-
posedness of the classical Schrödinger problem in two space dimensions with expo-
nential type nonlinearity to the damped case.

he rest of the article is organized as follows. The second section states the main
results and gives some tools needed in the sequel. The third section deals with local
well-posedness of (1.1). In the last section we prove global well-posedness of (1.1)
in the focusing case and an exponential decay of the energy.

We mention that C will be used to denote a constant which may vary from
line to line. We use A . B to denote an estimate of the form A ≤ CB for some
absolute constant C. We denote Lebesgue space Lp := Lp(Ω) and Sobolev space
H1

0 := H1
0 (Ω) endowed with the complete norm ‖ · ‖H1

0
:= ‖∇ · ‖L2 . Finally, if

T > 0 and X is an abstract space, we denote CT (X) := C([0, T ], X) and LpT (X) :=
Lp([0, T ], X).

2. Results and background

In this section, we give the main results of this paper and some technical tools
needed in the sequel. For u ∈ H1

0 , we define the quantities

Iα(u) :=
∫

Ω

(
|∇u|2 + α|u|2 − ūf(u)

)
dx;

m := inf
06=u∈H1

0

{E(u), I(u) = 0}, N := {0 6= u ∈ H1
0 : I(u) = 0};

N+ := {u ∈ H1
0 : I(u) > 0} ∪ {0};

(u, v)∗ := ω(∇u,∇v)L2 + µ(u, v)L2 , ‖ · ‖2∗ := (u, u)∗.

ET := CT (H1
0 ) endowed with the norm ‖ · ‖T := ‖ · ‖L∞T (H1

0 ). If u = u(t), we denote
for simplicity I(t) = Iα(u(t)). The first result is about the existence of a unique
local solution to (1.1).

Theorem 2.1. Assume that µ > 0, the nonlinearity satisfies (1.2), and u0 ∈ H1
0 .

Then there exists T > 0 and a unique local solution to the Cauchy problem (1.1),
in the energy space

C([0, T ], H1
0 ).

Moreover,

(1) the solution satisfies decay of the energy;
(2) the solution is global in the defocusing case.
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In the next result, we assume that the nonlinearity satisfies the supplementary
condition: There exist r0, a > 0 such that

F (r0) > 0 and rf(r) ≥ (1 + a)F (r) for all r ∈ R+. (2.1)

In the focusing case, we give a result of global existence and exponential decay.

Theorem 2.2. Assume that ε = −1, ω > 0 and the nonlinearity satisfies (1.2)
with (2.1). Let u0 ∈ N+ such that E(0) < m. Then the solution u given by the
previous result is global and satisfies

(1) u(t) ∈ N+ for any time;
(2) for 0 < α large enough, there exists γ > 0 such that

0 < ‖u(t)‖H1
0
. e−γt, ∀t ∈ R+.

Remark 2.3. The following function satisfies conditions of Theorem 2.2,

f(u) :=
1
2
u(1 + |u|2)

−1
2

(
e(1+|u|2)

1
2 − e(1 + |u|2)

1
2

)
.

Proof. We have F (r) = e(1+r)
1
2 − e

2 (r + 2) = et − e
2 (t2 + 1), where t :=

√
1 + r.

From direct computations, we have

rF ′(r) =
1
2

(−1 + t2)(
et

t
− e);

φa(t) := 2(rF ′(r)− (1 + a)F (r)) = (t− 1
t
− 2(1 + a))et + ea(1 + t2) + 2e;

φ′a(t) = (t− 1
t
− 1− 2a+

1
t2

)et + 2eat, φa(1) = 0 = φ′a(1);

φ′′a(t) = (t− 1
t

+
2
t2
− 2
t3
− 2a)et + 2ea, φ′′a(1) = 0;

φ′′′a (t) = (t− 1
t

+
3
t2
− 6
t3

+
6
t4

+ 1− 2a)et, φ′′′a (1) = 2(2− a)e.

Now, taking φ′′′a (t) = (ψ(t) + 1 − 2a)et, where t4ψ(t) = t5 − t3 + 3t2 − 6t + 6 ≥ 0
for t ≥ 1. Which implies that (2.1) is satisfied for any a ∈ (0, 1/2). �

In the two-dimensional space, we have the Sobolev injections [2],

H1
0 ↪→ Lp, for any 2 ≤ p <∞,

and it is false for p =∞. The critical Sobolev embedding is described with the so
called Orlicz space [3], which is given by the following Moser-Trudinger inequality
[1, 13, 19].

Proposition 2.4. Let α ∈ (0, 4π). Then there exists a constant Cα such that for
all u ∈ H1

0 satisfying ‖∇u‖L2 ≤ 1, one has∫
Ω

(
eα|u(x)|2 − 1

)
dx ≤ Cα‖u‖2L2 .

Moreover,
(1) the above inequality is false when α ≥ 4π;
(2) α = 4π becomes admissible if we consider ‖u‖H1

0
≤ 1 rather than ‖∇u‖L2 ≤

1. In this case, one has

sup
‖u‖

H1
0
≤1

∫
Ω

e4π|u(x)|2 dx <∞
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and this is false for α > 4π [1].

3. Proof of Theorem 2.1

We prove well-posedness of the Cauchy problem (1.1) in the energy space. We
take in this section ε = 1, in fact the sign of the nonlinearity has no local effect.

3.1. Local well-posedness.

Lemma 3.1. Let T > 0, u0 ∈ H1
0 and u ∈ CT (H1

0 ). Then there exists a unique
v ∈ ET such that

iv̇ + ∆v − αv + ω∆v̇ − µv̇ = f(u) on [0, T ]× Ω,

v|t=0 = u0,

v|∂Ω = 0.
(3.1)

Proof. Let Wh := 〈w1, . . . , wh〉, where {wj} is a complete system of eigenvectors of
−∆ in H1

0 such that ‖wj‖L2 = 1. Then, {wj} is orthogonal and complete on L2

and H1
0 . Denote the associated eigenvalues {λj}. Let

uh0 :=
h∑
1

<
(∫

Ω

∇u0∇wj
)
wj .

Then, uh0 ∈ Wh and uh0 → u0 in H1
0 . For h ≥ 1, we seek for h functions γh1 , . . . , γ

h
h

in C2[0, T ] such that vh(t) :=
∑h
j=1 γ

h
j (t)wj solves, for any η ∈Wh, the problem∫

Ω

[
iv̇h(t) + ∆vh(t)− αvh + ω∆v̇h(t)− µv̇h(t)− f(u)

]
η = 0,

vh(0) = uh0 .

(3.2)

Taking η = w̄j in (3.2), we obtain

(−i+ ωλj + µ)γ̇hj (t) + (α+ λj)γhj (t) = −
∫

Ω

f(u(t))w̄j dx,

γhj (0) = λj<
(∫

Ω

ū0wj dx
)
.

Since
∫

Ω
f(u(t))wj dx ∈ C[0, T ], we have a unique solution γhj to the previous

problem. This yields to a solution vh defined as above and satisfying (3.2). In
particular, vh ∈ C2([0, T ], H1

0 ). Taking η = v̇h in (3.2), yields

‖∇vh(t)‖2L2 + α‖vh(t)‖2L2 + 2
∫ t

0

‖v̇h(s)‖2∗ ds

= ‖∇uh0‖2L2 + α‖uh0‖2L2 − 2
∫ t

0

<(
∫

Ω

f(u(s))v̇h(s) dx) ds.

Now, by Moser-Trudinger inequality, via the identity 2|ab| ≤ δ|a|2 + 1
δ |b|

2, for δ > 0
near to zero, we have

2
∫ t

0

<
(∫

Ω

f(u(s))v̇h(s) dx
)
ds ≤ 1

δ

∫ t

0

∫
Ω

|f(u(s))|2 dx ds+ δ

∫ t

0

∫
Ω

|v̇h(s)|2 dx ds

≤ 1
δ
CT + δ

∫ t

0

∫
Ω

|v̇h(s)|2 dx ds
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≤ CT +
∫ t

0

‖v̇h(s)‖2∗ ds.

In fact, with Moser-Trudinger inequality, for any 0 < α < 4π
‖u‖2T

,∫
Ω

|f(u(s))|2 dx ≤ Cα
∫

Ω

(
e
α‖u‖2T (

|u(s)|
‖u‖T

)2 − 1
)
dx

≤ Cα
∫

Ω

|u(s)|2 dx ≤ Cα‖u‖2T = CT .

Thus, ‖vh‖2T +
∫ T

0
‖v̇h(t)‖2∗ ≤ CT . So, {vh} is bounded in H1

0 ((0, T ) × Ω). Then,
taking the weak limit vh ⇀ v in (3.2), we obtain a weak solution v to (3.1). Since
v ∈ H1

0 ((0, T ) × Ω), we obtain v ∈ C([0, T ], H1
0 (Ω)). The existence part of the

Lemma is proved.
Now, for two solutions v1, v2 of (3.1) and w := v1−v2, subtracting the equations

and testing with ẇ, we obtain

‖∇w(t)‖2L2 + α‖w(t)‖2L2 + 2
∫ t

0

‖w(s)‖2∗ ds = 0.

The proof of Lemma 3.1 is complete. �

We are ready to prove local well-posedness of (1.1). We denote R0 := ‖∇u0‖L2 ,
and for R > 0 define the closed subset of the complete metric space ET ,

XT := {u ∈ ET : ‖u‖T ≤ R, u(0) = u0}.
Take the function φ(u) := v, the solution to (3.1). We shall prove that, for some
T,R > 0, φ is a contraction on XT . Recall the identity

‖∇v(t)‖2L2 + α‖v(t)‖2L2 + 2
∫ t

0

‖v̇(s)‖2∗ ds

= ‖∇u0‖2L2 + α‖u0‖2L2 − 2
∫ t

0

<
(∫

Ω

f(u(s))v̇(s) dx
)
ds.

Moreover, for any 0 < δ < min{µ, 4π/R2}, by Moser-Trudinger inequality

2
∫ t

0

∫
Ω

|f(u(s))||v̇(s)| ds

≤ 1
δ

∫ t

0

∫
Ω

|f(u(s))|2 ds+ δ

∫ t

0

∫
Ω

|̇v(s)|2 ds

≤ Cδ
δ

∫ t

0

∫
Ω

(
eδ|u|

2
− 1
)
ds+ δ

∫ t

0

∫
Ω

|v̇(s)|2 ds

≤ Cδ
δ

∫ t

0

∫
Ω

|u(s)|2 ds+ δ

∫ t

0

∫
Ω

|v̇(s)|2 ds

≤ Cδ
δ
TR2 +

δ

µ

∫ t

0

‖v̇(s)‖2∗ ds ≤
Cδ
δ
TR2 +

∫ t

0

‖v̇h(s)‖2∗ ds.

This implies

‖∇v(t)‖2L2 + α‖v(t)‖2L2 ≤ CαR2
0 +

Cδ
δ
TR2.

Taking R2 > 2CαR2
0, yields

‖v‖2T ≤
(1

2
+
Cδ
δ
T
)
R2.
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So φ(XT ) ⊂ XT for small T > 0. Let prove that φ is contractive. Take u1, u2 ∈ XT ,
vi := φ(ui), v = v1 − v2 and u = u1 − u2. Then, for any η ∈ H1

0 and almost every
t ∈ [0, T ],∫

Ω

(
iv̇η − αvη −∇v∇η − ω∇v̇∇η − µv̇η

)
dx =

∫
Ω

(
f(u1)− f(u2)

)
η dx.

Taking the real part in the previous identity for η = v̇, via (1.2) yields, for any
ε > 0,

‖∇v(t)‖2L2 ≤ ‖∇v(t)‖2L2 + α‖v(t)‖2L2 + 2
∫ t

0

‖v̇(s)‖2∗ ds

= −2
∫ t

0

<
(∫

Ω

(f(u1)− f(u2))v̇ dx
)
ds

≤
∫ t

0

∫
Ω

[1
ε

∣∣∣f(u1)− f(u2)
∣∣∣2 + ε|v̇|2

]
dx ds

≤ ε
∫ t

0

‖v̇‖2L2 ds+
1
ε

∫ t

0

∫
Ω

∣∣∣f(u1)− f(u2)
∣∣∣2 dx ds

≤ ε
∫ t

0

‖v̇‖2L2 ds+
1
ε

∫ t

0

[ ∫
Ω

|u|2
(
eε|u1|2 − 1 + eε|u2|2 − 1

)
dx
]
ds.

Now, for 0 < δ < π
R2 , with Moser-Trudinger inequality via Sobolev embedding, we

have∫
Ω

|u|2
(
eδ|u1|2 − 1 + eδ|u2|2 − 1

)
dx ≤ ‖u‖2L4

(
‖eδ|u1|2 − 1‖L2 + ‖eδ|u2|2 − 1‖L2

)
≤ ‖u‖2T

(
‖e2δ|u1|2 − 1‖

1
2
L1 + ‖e2δ|u2|2 − 1‖

1
2
L1

)
≤ Cδ‖u‖2T

(
‖u1‖L2 + ‖u2‖L2

)
. R‖u‖2T .

Finally, taking 0 < ε < min{2, πR2 }, yields

‖φ(u1)− φ(u2)‖T .
√
RT‖u1 − u2‖T .

Thus φ is a contraction of XT for T > 0 small enough. With Picard Theorem, there
exists a unique fixed point u which is a solution to (1.1). Uniqueness follows arguing
as previously and applying the precedent inequality for two solutions to (1.1), which
belong to XT with a continuity argument for some T > 0 small enough.

3.2. Global existence in the defocusing case. We recall two important facts.
First, the time of local existence depends only on the quantity ‖∇u0‖L2 . Second
the energy dominates the H1

0 norm. Let u be the maximal solution of (1.1) in
the space ET for any 0 < T < T ∗ with initial data u0, where 0 < T ∗ ≤ +∞ is
the lifespan of u. We shall prove that u is global. By contradiction, suppose that
T ∗ < +∞, we consider for 0 < s < T ∗, the following problem

iv̇ + ∆v − αv + ω∆v̇ − µv̇ = f(v),

v(s, .) = u(s, .),

v|∂Ω = 0.
(3.3)

By the same arguments used in the local existence and taking

0 < δ ≤ min
{
µ,

π

E(0)
}
,
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we can find a real τ > 0 and a solution v to (3.3) on [s, s + τ ]. According to the
section of local existence and using decay of the energy, τ does not depend on s.
Thus, if we let s be close to T ∗ such that s + τ > T ∗, we can extend v for times
higher than T ∗. This fact contradicts the maximality of T ∗. We obtain the result
claimed in Theorem 2.1.

4. Proof of Theorem 2.2

We are interested on the focusing case associated to the problem (1.1), so here
and hereafter, we fix ε = −1. By (2.1) we have [9], m = J(ϕ) > 0 where ϕ is the
ground state solution of

−∆ϕ+ αϕ = f(ϕ).

If there exists t0 > 0 such that u(t0) /∈ N+, then I(t0) ≤ 0. With a continuity
argument, there exists a time t1 ∈ (0, t0) such that I(t1) = 0 and E(t1) < m which
contradicts the definition of m. Let us prove that u is global. For any real number
0 < ε < 1,

E(t) = α‖u‖2L2 + ‖∇u‖2L2 −
∫

Ω

F (|u|2) dx

= α‖u‖2L2 + ε‖∇u‖2L2 + (1− ε)
(
I(t)− α‖u‖2L2 +

∫
Ω

ūf(u) dx
)

−
∫

Ω

F (|u|2) dx

≥ αε‖u‖2L2 + ε‖∇u‖2L2 + (1− ε)I(t) + ((1− ε)(1 + a)− 1)
∫

Ω

F (|u|2) dx.

Thus, using the fact that f satisfies (2.1), we have for any 0 < ε < a
2+a ,

E(0) ≥ E(t) ≥ αε‖u‖2L2 + ε‖∇u‖2L2 + ε

∫
Ω

F (|u|2) dx. (4.1)

Thus ‖∇u(t)‖L2 is bounded and u is global.
Now, we prove an exponential decay of the solution to (1.1). Note that since

u(t) ∈ N+ and f satisfies (2.1), we have E ≥ I > 0. We denote, for some 0 < ε <
min{α, a

2+a} (so satisfying (4.1)), the real function

L(t) := E(t) +
εω

2

∫
Ω

|∇u(t)|2 dx.

By (4.1), we have E . L . E. Taking account of (1.1), we compute, for 0 < ε <
µ

1+µ ,

L̇ = Ė − ε
(
α‖u‖2L2 + ‖∇u‖2L2 −

∫
Ω

ūf(u) dx+
∫

Ω

[µ<(ūu̇)−=(ūu̇)] dx
)

≤ −µ‖u̇‖2L2 − ε
(
E +

∫
Ω

F (|u|2) dx−
∫

Ω

ūf(u) dx+
∫

Ω

[µ<(ūu̇)−=(ūu̇)] dx
)

≤ −µ‖u̇‖2L2 − εE + ε

∫
Ω

|uf(u)| dx+
ε

2
(1 + µ)(‖u̇‖2L2 + ‖u‖2L2)

≤ −εE + ε

∫
Ω

|uf(u)| dx+
ε

2
(1 + µ)‖u‖2L2 .
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With (4.1), we have E ≥ ε‖u‖2
H1

0
, thus, using Moser-Trudinger inequality, for any

0 < δ < 4πε
E(0) , ∫

Ω

|uf(u)| dx ≤ Cε
∫

Ω

(
eδ|u|

2
− 1
)
dx

≤ Cε
∫

Ω

(
e
δ‖u‖2

H1
0

(
|u|
‖u‖

H1
0

)2

− 1
)
dx

≤ Cε‖u‖2L2 .

So,

L̇(t) ≤ −ε
(
E − (Cε +

1 + µ

2
)‖u‖2L2

)
.

Now, also with (4.1), for α > 2
ε [ 1+µ

2 + Cε], we have

E −
(1 + µ

2
+ Cε

)
‖u‖2L2 ≥

ε

2
E.

Finally, we conclude with a Gronwall argument via the inequalities

L̇(t) . −E(t) . −L(t).
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