
Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 124, pp. 1–13.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

MULTIPLE SOLUTIONS TO FOURTH-ORDER ELLIPTIC
PROBLEMS WITH STEEP POTENTIAL WELL

LIU YANG, LIPING LUO, ZHENGUO LUO

Abstract. In this article, we are concerned with a class of fourth-order elliptic
equations with sublinear perturbation and steep potential well. By using vari-

ational methods, we obtain that such equations admit at least two nontrivial

solutions. We also explore the phenomenon of concentration of solutions.

1. Introduction

We consider the fourth-order elliptic problem (Pλ),

∆2u−∆u+ λV (x)u = f(x, u) + α(x)|u|ν−2u, in RN ,

u ∈ H2(RN ),
(1.1)

where N ≥ 5, λ > 0 a parameter, ∆2 = ∆(∆) is the biharmonic operator, f ∈
C(RN × R,R), α(x) is a weight function, 1 < ν < 2, and the potential V satisfies
the following conditions:

(V1) V ∈ C(RN ) and V ≥ 0 on RN ;
(V2) there exists c > 0 such that the set {V < c} = {x ∈ RN |V (x) < c} is

nonempty and has finite measure;
(V3) Ω = intV −1(0) is nonempty and has smooth boundary with Ω̄ = V −1(0).

In view of the concrete applications of fourth-order differential equations in math-
ematical physics, such as nonlinear oscillation in suspension bridge or static deflec-
tion of an elastic plate in a fluid; see [5, 9], in recent years, a lot of attention has
been focused on the study of the existence of nontrivial solutions for fourth-order
equations; see, for example, [1, 3, 4, 7, 10,11,12,13,14,18,17,19].

For the case of problem on the bounded domains, Zhang and Wei [19] stud-
ied the existence of infinitely many solutions for the following problem when the
nonlinearity involves a combination of superlinear and asymptotically linear terms:

∆2u− c∆u = f(x, u), in Σ,
∆u = u = 0, in ∂Σ,

(1.2)
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where Σ is a bounded domain of RN . Hu and Wang [7] studied the existence of
solution for (1.2) under the conditions

lim
t→0

f(x, t)
t

= p(x), lim
t→∞

f(x, t)
t

= l

uniformly a.e. x ∈ Σ, where 0 < l ≤ +∞, 0 ≤ p(x) ∈ L∞(Σ) and |p|∞ < Λ1,Λ1 is
the first eigenvalue of (∆2 − c∆, H2(Σ) ∩H1

0 (Σ)).
The case of problem on the unbounded domain has begun to attract much at-

tention; see, for example, [3, 10, 14, 17, 18]. The main difficulty is the lack of com-
pactness for Sobolev embedding theorem in this case. To overcome this difficulty,
the potential V was generally assumed to satisfy on the following two conditions:

(V0) infx∈RN V (x) ≥ a > 0 and for each M > 0, meas{x ∈ RN : V (x) ≤ M} <
+∞, where a is a constant and meas denote the Lebesgue measure in RN ;

(V0’) infx∈RN V (x) ≥ a > 0 and V (x)→ +∞ as |x| → ∞.

Under condition (V0), Yin and Wu [18] proved that (1.1) with λ = 1 and α = 0
has infinitely many high energy solutions by using the symmetric mountain pass
theorem. When N = 1, under condition (V0’), Sun and Wu [14] studied multiple
homoclinic solutions for a class of fourth-order differential equations with a sub-
linear perturbation. It is worth to emphasize that the hypothesis (V0) or (V0’) is
used to guarantee the compact embedding of Sobolev space. However, if (V0) or
(V0’) is replaced by (V1)-(V2), then the compactness of the embedding fails, which
will become more delicate. More recently, Liu et al. [10] studied this case. Ye and
Tang [17] improved the results of [10] under the conditions that the nonlinearity f
is either superlinear or sublinear at infinity.

On the other hand, conditions (V1)–(V3) imply that λV represents a deep poten-
tial well whose depth is controlled by λ, which are first introduced by Bartsch and
Wang [2] in the study of solutions for Schrödinger equations. From then on, these
conditions have extensively been applied in the study of the existence of solutions
for several types of nonlinear equations; see [8, 15,20].

Motivated by the above facts, in this article we study the multiplicity of nontrivial
solutions for problem (1.1) with steep potential well. We consider the case that the
nonlinearity is a combination of superlinear or asymptotically linear terms and a
sublinear perturbation. As far as we know, this case seems to be rarely concerned
in the literature. Our aim is to generalize the result of [14] to fourth-order elliptic
problem. In addition, the results in [10, 17] is also improved by considering the
different nonlinearity.

Notation. Throughout this article, we denote by |·|r the Lr-norm, 1 ≤ r ≤ ∞, and
we use the symbols p± = sup{±p, 0} and 2∗∗ = 2N

N−4 . Also if we take a subsequence
{un}, we shall denote it again by {un}. We use o(1) to denote any quantity which
tends to zero when n→∞.

We need the following minimization problem for each positive k ∈ [1, 2∗∗ − 1),

λ
(k)
1 = inf

{(∫
Ω

(|∆u|2 + |∇u|2)dx
) k+1

2
: u ∈ H2(Ω) ∩H1

0 (Ω),
∫

Ω

q|u|k+1dx = 1
}
,

(1.3)
where q is a bounded function on Ω̄ with q+ 6= 0. Then λ(k)

1 > 0, which is achieved
by some φk ∈ H2(Ω) ∩ H1

0 (Ω) with
∫

Ω
q|u|k+1dx = 1 and φk > 0 a.e. in Ω, by
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Fatou’s Lemma and the compactness of Sobolev embedding from H2(Ω) ∩H1
0 (Ω)

into Lk+1(Ω).
Now, we give our main result.

Theorem 1.1. Suppose that (V1)-(V3) hold. In addition, for each k ∈ [1, 2∗∗−1),
we assume that the function f and α satisfy the following conditions:

(A1) α ∈ L
ν

2−ν (RN ) and α > 0 on Ω;
(F1) f ∈ C(RN × R), f(x, s) ≡ 0 for all s < 0 and x ∈ RN . Moreover, there

exists p ∈ L∞(RN ) with

|p+|∞ < Θ :=
(S∗∗)2

|{V < c}| 2
∗∗−2
2∗∗

such that

lim
s→0+

f(x, s)
sk

= p(x)

uniformly in x ∈ RN and f(x,s)
sk
≥ p(x) for all s > 0 and x ∈ Ω̄, where S∗∗

is the best constant for the embedding of D2,2(RN ) in L2∗∗(RN ), D2,2(RN )
will be defined in Section 2, and | · | is the Lebesgue measure;

(F2) there exists q ∈ L∞(RN ) with q+ 6= 0 on Ω̄ such that

lim
s→∞

f(x, s)
sk

= q(x)

uniformly in x ∈ RN ;
(F3) there exist constants θ > 2 and d0 satisfying 0 ≤ d0 <

(θ−2)
2θ Θ such that

F (x, s)− 1
θ
f(x, s)s ≤ d0s

2

for all s > 0 and x ∈ RN .

Then we have the following results:

(i) If k = 1 and λ
(1)
1 < 1, then there exist M > 0 and Λ > 0 such that for

every |α+| 2
2−ν
∈ (0,M), problem (1.1) has at least two nontrivial solutions

for all λ > Λ.
(ii) If k ∈ (1, 2∗∗ − 1), then there exist M > 0 and Λ > 0 such that for every
|α+| 2

2−ν
∈ (0,M), problem (1.1) has at least two nontrivial solutions for all

λ > Λ.

On the concentration of solutions we have the following results.

Theorem 1.2. Let u(1)
λ , u(2)

λ be two solutions obtained by Theorem 1.1. Then for
every r ∈ [2, 2∗∗), u(1)

λ → u1
0 and u

(2)
λ → u2

0 strongly in Lr(RN ) as λ → ∞, where
u1

0, u
2
0 ∈ H2(Ω) ∩H1

0 (Ω) are two nontrivial solutions of the problem

∆2u−∆u = f(x, u) + α(x)|u|ν−2u, in Ω,
u = 0 ∈ ∂Ω.

(1.4)

The article is organized as follows. In Section 2, we present some preliminaries.
In Section 3 and 4, we give the proof of our main results.
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2. Preliminaries

Let D2,2(RN ) be the completion of C∞0 (RN ) with respect to

‖u‖D2,2 =
(∫

RN
|∆u|2dx

)1/2

.

From [3, (1.7)], the embedding D2,2(RN ) ↪→ L2∗∗(RN ) is continuous, one has

‖u‖2∗∗ ≤ (S∗∗)−1
(∫

RN
|∆u|2dx

)1/2

, ∀u ∈ D2,2(RN ). (2.1)

Let

X =
{
u ∈ H2(RN ) :

∫
RN

V (x)u2(x)dx < +∞
}
.

Then X is a Hilbert space with the inner product

〈u, v〉 =
∫

RN
(∆u∆v +∇u∇v)dx+

∫
RN

V (x)u(x)v(x)dx

and the corresponding norm ‖u‖2 = 〈u, u〉. Note that X ⊂ H2(RN ) and X ⊂
Lr(RN ) for all r ∈ [2, 2∗∗] with the embedding being continuous. For any p ∈
[2, 2∗∗), the embeddings X ↪→ Lploc(RN ) are compact. For λ > 0, we also need the
inner product

〈u, v〉λ =
∫

RN
(∆u∆v +∇u∇v)dx+

∫
RN

λV (x)u(x)v(x)dx

and the corresponding norm ‖u‖2λ = 〈u, u〉λ. It is clear that ‖u‖ ≤ ‖u‖λ for λ ≥ 1.
Set Xλ = (X, ‖u‖λ). From (V1)–(V2), Hölder and Sobolev inequalities (2.1), we
have ∫

RN
(|∆u|2 + |∇u|2 + u2)dx

=
∫

RN
(|∆u|2 + |∇u|2)dx+

∫
{V <c}

u2(x)dx+
∫
{V≥c}

u2(x)dx

≤
∫

RN
(|∆u|2 + |∇u|2)dx+

(∫
{V <c}

1dx
) 2∗∗−2

2∗∗
(∫
{V <c}

|u|2
∗∗
dx
) 2

2∗∗

+
1
c

∫
{V≥c}

V (x)u2(x)dx

≤
(

1 + |{V < c}|
2∗∗−2
2∗∗ (S∗∗)−2

)∫
RN

(|∆u|2 + |∇u|2)dx

+
1
c

∫
{V≥c}

V (x)u2(x)dx

≤ max
{

1 + |{V < c}|
2∗∗−2
2∗∗ ,

1
c

}∫
RN

(|∆u|2 + |∇u|2 + V (x)u2)dx,

(2.2)

which implies that the imbedding X ↪→ H2(RN ) is continuous. Moreover, using
the same conditions and techniques, for any r ∈ [2, 2∗∗], we also have∫

RN
|u|rdx ≤

(
max

{
|{V < c}|

2∗∗−2
2∗∗ ,

(S∗∗)2

λc

}) 2∗∗−r
2∗∗−2

(S∗∗)−r‖u‖rλ. (2.3)
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This implies that for any λ ≥ (S∗∗)2

c |{V < c}| 2−2∗∗
2∗∗ ,∫

RN
|u|rdx ≤ |{V < c}|

2∗∗−r
2∗∗ (S∗∗)−r‖u‖rλ. (2.4)

In particular, for any λ ≥ (S∗∗)2

c |{V < c}| 2−2∗∗
2∗∗ ,∫

RN
|u|2dx ≤ |{V < c}|

2∗∗−2
2∗∗ (S∗∗)−2‖u‖2λ =

1
Θ
‖u‖2λ, (2.5)

where Θ is defined by condition (F1).
It is well-known that (1.1) is a variational problem and its solutions are the

critical points of the functional defined in X by

Jλ(u) =
1
2

∫
RN

(|∆u|2 + |∇u|2 + λV (x)u2)dx−
∫

RN
F (x, u)dx− 1

ν

∫
RN

α(x)|u|νdx.

(2.6)
Furthermore, the functional Jλ is of class C1 in X, and that

J ′λ(u), v〉 =
∫

RN
(∆u∆v +∇u∇v)dx+

∫
RN

λV (x)uv dx

−
∫

RN
f(x, u)vdx−

∫
RN

α(x)|u|ν−2uv dx.

(2.7)

Hence, if u ∈ X is a critical point of Jλ, then u is a solution of problem (1.1).
Moreover, we have the following results.

Lemma 2.1. Suppose that (V1)–(V3) hold. In addition, for each k ∈ [1, 2∗∗ − 1),
we assume that f satisfies (F3). Then for each nontrivial solution uλ of (1.1), we
have

Jλ(uλ) ≥ K := −
(
1− ν

2
) (θ − ν)|α+| 2

2−ν

νθΘ
ν
2

[ (θ − ν)|α+| 2
2−ν

Θ
ν
2−1(θΘ− 2Θ− 2θd0)

] ν
2−ν

.

Proof. If uλ is a nontrivial solution of (1.1), then∫
RN

(|∆uλ|2 + |∇uλ|2 + λV (x)u2
λ)dx =

∫
RN

f(x, uλ)uλdx+
∫

RN
α(x)|uλ|νdx.

Moreover, by (F3), we have∫
RN

[F (x, uλ)− 1
θ
f(x, uλ)uλ]dx ≤

∫
RN

d0u
2
λdx.

By (2.5), one has

Jλ(uλ) =
1
2

∫
RN

(|∆uλ|2 + |∇uλ|2 + λV u2
λ)dx

−
∫

RN
F (x, uλ)dx− 1

ν

∫
RN

α(x)|uλ|νdx

≥ 1
2
‖uλ‖2λ − d0

∫
RN

u2
λdx−

1
θ

∫
RN

f(x, uλ)uλdx−
1
ν

∫
RN

α(x)|uλ|νdx

≥
(1

2
− 1
θ

)
‖uλ‖2λ − d0

∫
RN

u2
λdx−

(1
ν
− 1
θ

) ∫
RN

α(x)|uλ|νdx

≥
(θ − 2

2θ
− d0

Θ
)
‖uλ‖2λ −

(θ − ν)|α+| 2
2−ν

νθΘ
ν
2

‖uλ‖νλ ≥ K .

(2.8)
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�

Next, we give a useful theorem. It is the variant version of the mountain pass
theorem, which allows us to find a so-called Cerami type (PS) sequence.

Theorem 2.2 ( [6]). Let E be a real Banach space and its dual space E∗. Suppose
that I ∈ C1(E,R) satisfies

max{I(0), I(e)} ≤ µ < η ≤ inf
‖u‖=ρ

I(u)

for some µ < η, ρ > 0 and e ∈ E with ‖e‖ > ρ. Let ĉ ≥ η be characterized by

ĉ = inf
γ∈Γ

max
0≤τ≤1

I(γ(τ)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} is the set of continuous paths
joining 0 and e. Then there exists a sequence {un} ⊂ E such that

I(un)→ ĉ ≥ η and (1 + ‖un‖)‖I ′(un)‖E∗ → 0, as n→∞.

In what follows, we give a lemma which ensures that the functional Jλ has
mountain pass geometry.

Lemma 2.3. Suppose that (V1)–(V2) hold. In addition, for each k ∈ [1, 2∗∗ − 1),
we assume that the function f satisfies (F1)–(F2). Then there exist M > 0, ρ > 0
and η > 0 such that

inf{Jλ(u) : u ∈ Xλ, ‖u‖λ = ρ} > η

for all λ ≥ (S∗∗)2

c |{V < c}| 2−2∗∗
2∗∗ and |α+| 2

2−ν
< M .

Proof. For any ε > 0, from (F1)–(F2) there exists Cε > 0 such that

F (x, s) ≤ |p
+|∞ + ε

2
s2 +

Cε
r
|s|r, ∀s ∈ R, (2.9)

where max{2, k + 1} < r < 2∗∗. Then by (2.5) and Sobolev inequality (2.1), for
every u ∈ Xλ and λ ≥ (S∗∗)2

c |{V < c}| 2−2∗∗
2∗∗ , we have

Jλ(u) =
1
2

∫
RN

(|∆u|2 + |∇u|2 + λV u2)dx

−
∫

RN
F (x, u)dx− 1

ν

∫
RN

α(x)|u|νdx

≥ 1
2
‖u‖2λ −

|p+|∞ + ε

2

∫
RN

u2dx

− Cε
r

∫
RN

urdx− 1
ν

∫
RN

α(x)|u|νdx

≥ 1
2

(
1− (|p+|∞ + ε)|{V < c}| 2

∗∗−2
2∗∗

(S∗∗)2

)
‖u‖2λ

− Cε{V < c}| 2
∗∗−r
2∗∗

r(S∗∗)r
‖u‖rλ −

|α+| 2
2−ν

Θ
ν
2
‖u‖νλ

:=
1
2

(
1− (|p+|∞ + ε)|{V < c}| 2

∗−2
2∗

(S∗∗)2

)
(‖u‖2λ −A‖u‖νλ −B‖u‖rλ).

(2.10)
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Therefore, by (F1) and [16, Lemma 3.1], fixing ε ∈ (0,Θ− |p+|∞), we have that
there exist tB > 0,M > 0 such that, for ‖u‖λ = tB > 0,

Jλ,a(u) ≥ 1
2

(
1− (|p+|∞ + ε)|{V < c}| 2

∗∗−2
2∗∗

(S∗∗)2

)
ΨA,B(tB) > 0

provided that
|α+| 2

2−ν
< M,

where ΨA,B(t) = t2−Atν −Btr, A,B > 0. It is easy to see that there is η > 0 such
that this lemma holds. �

Lemma 2.4. Suppose that (V1)–(V3) hold. In addition, for each k ∈ [1, 2∗∗ − 1),
we assume that the function f satisfies (F1)–(F2). Let ρ > 0 be as in Lemma 2.3,
then we have the following results:

(i) If k = 1 and λ
(1)
1 < 1, then there exists e ∈ X with ‖e‖λ > ρ such that

Jλ,a(e) < 0 for every λ > 0.
(ii) If k ∈ (1, 2∗∗−1), then there exists e ∈ X with ‖e‖λ > ρ such that Jλ,a(e) <

0 for every λ > 0.

Proof. (i) Since λ(1)
1 < 1 and ν < 2, from (V3), (F1)–(F2) and Fatou’s Lemma it

follows that

lim
t→+∞

Jλ(tφ1)
t2

=
1
2

∫
RN

(|∆φ1|2 + |∇φ1|2 + λV φ2
1)dx− lim

t→+∞

∫
RN

F (x, tφ1)
t2φ1

φ1dx

≤ 1
2

∫
Ω

(|∆φ1|2 + |∇φ1|2)dx− 1
2

∫
Ω

q|φ1|2dx

≤ 1
2

(
1− 1

λ
(1)
1

)∫
Ω

(|∆φ1|2 + |∇φ1|2)dx < 0,

where φ1 is defined in the minimum problem (1.3). Thus, Jλ(tφ1) → −∞ as
t→ +∞. Hence, there exists e ∈ X with ‖e‖λ > ρ such that Jλ(e) < 0.

(ii) By (F2), k > 1, ν < 2 and Fatou’s Lemma, we have

lim
t→+∞

Jλ(tφk)
tk+1

= − lim
t→+∞

∫
RN

F (x, tφk)
tk+1φk

φkdx

≤ − 1
k + 1

∫
Ω

q|φk|k+1dx

= − 1
k + 1

< 0,

where φk is defined in minimizing problem (1.3). Thus, Jλ(tφk)→ −∞ as t→ +∞.
Hence, there exists e ∈ X with ‖e‖λ > ρ such that Jλ(e) < 0. �

3. Proof of Theorem 1.1

First we define

αλ = inf
γ∈Γλ

max
0≤t≤1

Jλ(γ(t)),

α0(Ω) = inf
γ∈Γ̄λ(Ω)

max
0≤t≤1

Jλ|H2(Ω)∩H1
0 (Ω)(γ(t)),

where Jλ|H2(Ω)∩H1
0 (Ω) is a restriction of Jλ on H2(Ω) ∩H1

0 (Ω),

Γλ = {γ ∈ C([0, 1], Xλ) : γ(0) = 0, γ(1) = e},
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Γ̄λ(Ω) = {γ ∈ C([0, 1], H2(Ω) ∩H1
0 (Ω)) : γ(0) = 0, γ(1) = e}.

Note that

Jλ|H2(Ω)∩H1
0 (Ω)(u) =

1
2

∫
Ω

(|∆u|2 + |∇u|2)dx−
∫

Ω

F (x, u)dx− 1
ν

∫
Ω

α(x)|u|νdx,

and α0(Ω) is independent of λ. Moreover, if (F1)–(F3) hold, similar to the proofs
of Lemmas 2.3 and 2.4, we can conclude that Jλ|H2(Ω)∩H1

0 (Ω) also satisfies the
mountain pass hypothesis in Theorem 2.2. Note that H2(Ω) ∩H1

0 (Ω) ⊂ Xλ for all
λ > 0, then 0 < η ≤ αλ ≤ α0 for all λ ≥ (S∗∗)2

c |{V < c}| 2−2∗∗
2∗∗ . Then for each

k ∈ [1, 2∗∗ − 1), we can take a positive number D such that 0 < η ≤ αλ ≤ α0 < D

for all λ ≥ (S∗∗)2

c |{V < c}| 2−2∗∗
2∗∗ . Thus, by Lemmas 2.3 and 2.4 and Theorem 2.2,

we obtain that for each λ ≥ (S∗∗)2

c |{V < c}| 2−2∗∗
2∗∗ , there exists {un} ⊂ Xλ such

that

Jλ(un)→ αλ > 0 and (1 + ‖un‖)‖J ′λ(un)‖X−1
λ
→ 0, as n→∞, (3.1)

where 0 < η ≤ αλ ≤ α0 < D.

Lemma 3.1. Suppose that (V1)–(V3) hold. In addition, for each k ∈ [1, 2∗∗ − 1),
we assume that f satisfies (F1)-(F3). Then for each λ ≥ (S∗∗)2

c |{V < c}| 2−2∗∗
2∗∗ and

{un} defined by (3.1), we have that {un} is bounded in Xλ.

Proof. For n large enough, by (F3) and (2.2), we have

αλ + 1 ≥ Jλ(un)− 1
θ
〈J ′λ(un), un〉

= (
1
2
− 1
θ

)‖un‖2λ +
∫

RN
[
1
θ
f(x, un)un − F (x, un)]dx

+ (
1
θ
− 1
ν

)
∫

RN
α(x)|un|νdx

≥ (
1
2
− 1
θ

)‖un‖2λ − d0

∫
RN

u2
ndx+ (

1
θ
− 1
ν

)
∫

RN
α(x)|un|νdx

≥ (
1
2
− 1
θ
− d0

Θ
)‖un‖2λ − (

1
ν
− 1
θ

)
|α+| 2

2−ν

Θ
ν
2
‖un‖νλ,

which implies that {un} is bounded in Xλ. �

Next, we shall investigate the compactness conditions for the functional Jλ.
Recall that a C1 functional I satisfies Cerami condition at level c ((C)c-condition
for short) if any sequence {un} ∈ E and I(un) → c and (1 + un)‖I ′(un)‖E∗ → 0
has a convergent subsequence, and such sequence is called a (C)c-sequence.

Proposition 3.2. Suppose that (V1)–(V3) hold. In addition, for each k ∈ [1, 2∗∗−
1), we assume that the function f satisfies (F1)-(F3). Then for each D ≥ 0, there
exists Λ̄0 = Λ(D) ≥ 2θd0

c(θ−2) > 0 such that Jλ satisfies the (C)α−condition in Xλ for
all α < D and λ > Λ̄0.

Proof. Let {un} be a sequence with α < D. Then, by Lemma 3.1, {un} is bounded
in Xλ. Therefore, there exist a subsequence {un} and u0 in Xλ such that

un ⇀ u0 weakly in Xλ;

un → u0 strongly in Lrloc(RN ), for 2 ≤ r < 2∗∗.
(3.2)
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Moreover, J ′λ(u0) = 0. Now we show that un → u0 strongly inXλ. Let vn = un−u0.
By α ∈ L

2
2−ν (RN ) and (3.2), we have∫

RN
α(x)|u|νdx→ 0. (3.3)

From (V2) it follows that∫
RN

v2
ndx =

∫
{V≥c}

v2
ndx+

∫
{V <c}

v2
ndx

≤ 1
λc

∫
{V≥c}

λV v2
ndx+

∫
{V <c}

v2
ndx

≤ 1
λc

∫
RN

λV v2
ndx+ o(1)

=
1
λc
‖vn‖2λ + o(1)

(3.4)

Then, by Hölder and Sobolev inequalities, we have∫
RN
|vn|rdx ≤

(∫
RN

v2
ndx

) 2∗∗−r
2∗∗−2

(∫
RN
|vn|2

∗∗
dx
) r−2

2∗∗−2

≤
(∫

RN
v2
ndx

) 2∗∗−r
2∗∗−2

[
(S∗∗)−2∗∗

(∫
RN
|∆vn|2dx

)2∗∗/2] r−2
2∗∗−2

≤
( 1
λc

) 2∗∗−r
2∗∗−2 (S∗∗)−

2∗∗(r−2)
2∗∗−2 ‖vn‖rλ + o(1).

(3.5)

Moreover, by (F1)-(F2) and Brezis-Lieb Lemma, we have

Jλ(vn) = Jλ(un)− Jλ(u0) + o(1) and J ′λ(vn) = o(1).

Consequently, from this with (F3), (3.2) and Lemma 2.1, we obtain

D −K ≥ α− Jλ(u0)

≥ Jλ(vn)− 1
θ
〈J ′λ(vn), vn〉+ o(1)

=
(θ − 2)

2θ

∫
RN

(|∆vn|2 + |∇vn|2 + λV v2
n)dx

+
∫

RN

(1
θ
f(x, vn)vn − F (x, vn)

)
dx+ o(1)

≥ (θ − 2)
2θ

‖vn‖2λ − d0

∫
RN

v2
ndx+ o(1)

≥
(θ − 2

2θ
− d0

λc

)
‖vn‖2λ + o(1),

which implies that for every λ > 2θd0
c(θ−2) , one has

‖vn‖2λ ≤
2θλc(D −K)

(θ − 2)cλ− 2θd0
+ o(1). (3.6)
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By (2.4), we obtain

∫
RN
|vn|rdx ≤

|{V < c}| 2
∗∗−r
2∗∗

(S∗∗)r
‖u‖rλ

≤ |{V < c}| 2
∗∗−r
2∗∗

(S∗∗)r
( 2θλc(D −K)

(θ − 2)cλ− 2θd0

)r/2
+ o(1).

(3.7)

Since 〈J ′λ,a(vn), vn〉 = o(1) and∫
RN

f(x, vn)vndx ≤ (|p+|∞ + ε)
∫

RN
v2
ndx+ Cε

∫
RN

vrndx. (3.8)

It follows from (3.3)-(3.7) that

o(1) =
(∫

RN
|∆vn|2 + |∇vn|2dx+

∫
RN

λV v2
ndx

)
− (|p+|∞ + ε)

∫
RN

v2
ndx− Cε

∫
RN

vrndx

≥ ‖vn‖2λ −
|p+|∞ + ε

λc
‖vn‖2λ − Cε

(∫
RN

vrndx
)(r−2)/r(∫

RN
vrndx

)2/r

≥
(

1− |p
+|∞ + ε

λc

)
‖vn‖2λ − Cε

[ |{V < c}| 2
∗∗−r
2∗∗

(S∗∗)r
( 2θλc(D −K)

(θ − 2)cλ− 2θd0

)r/2](r−2)/r

×
[( 1
λc

) 2∗∗−r
2∗∗−2 (S∗∗)−

2∗∗(r−2)
2∗∗−2

]2/r
‖vn‖2λ

≥ (1− |p
+|∞ + ε

λc
− Cε

[ |{V < c}| 2
∗∗−r
2∗∗

(S∗∗)r
( 2θλc(D −K)

(θ − 2)cλ− 2θd0

)r/2](r−2)/r

×
[( 1
λc

) 2∗∗−r
2∗∗−2 (S∗∗)−

2∗∗(r−2)
2∗∗−2

]2/r
)‖vn‖2λ,

Therefore, there exists Λ̄0 = Λ(D) ≥ 2θd0
c(θ−2) > 0 such that un → u0 strongly in Xλ

for λ > Λ̄0. �

Proof of Theorem 1.1. By Lemmas 2.3 and 2.4 and Theorem 2.2, we obtain that
for each

λ > Λ := max
{ (S∗∗)2

c
|{V < c}|

2−2∗∗
2∗∗ ,

2θd0

c(θ − 2)
}
,

there exists Cαλ -sequence {un} for Jλ on Xλ. Then, by Proposition 3.2 and 0 <
αλ ≤ α0(Ω) < D, we can obtain that there exist a subsequence {un} and u(1)

λ ∈ Xλ

such that un → u
(1)
λ strongly in Xλ as n → ∞ and for λ large enough. Moreover,

Jλ(u(1)
λ ) = αλ ≥ η > 0 and u

(1)
λ is a nontrivial solution for (1.1).

The second solution for (1.1) will be constructed by the local minimization. We
will first show that there exists ϕ ∈ Xλ such that Jλ(lϕ) < 0 for all l > 0 small
enough. Indeed, we can take ϕ ∈ H2(Ω) ∩ H1

0 (Ω) with
∫

Ω
α(x)|u|νdx > 0. Using
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(F1), we have, for all l > 0 small enough,

Jλ(lϕ) =
l2

2

∫
Ω

|∆ϕ|2 + |∇ϕ|2dx−
∫

Ω

F (x, lϕ)dx− 1
ν

∫
Ω

α(x)|lϕ|νdx

≤ l2

2

∫
Ω

|∆ϕ|2 + |∇ϕ|2dx− lk
∫

Ω

p(x)|ϕ(x)|kdx− lν

ν

∫
Ω

α(x)|ϕ|νdx

< 0.

(3.9)

It follows from that the minimum of the functional Jλ on any closed ball in Xλ

with center 0 and radius R < ρ satisfying Jλ(u) ≥ 0 for all u ∈ Xλ with ‖u‖λ = R

is achieved in the corresponding open ball and thus yields a nontrivial solution u(2)
λ

of problem (1.1) satisfying Jλ(u(2)
λ ) < 0 and ‖u(2)

λ ‖ < R. Moreover, (3.9) implies
that there exist l0 > 0 and κ < 0 being independent of λ such that Jλ(l0ϕ) = κ
and ‖l0ϕ‖ < R. Therefore, we can conclude that

Jλn(u(2)
n ) ≤ κ < 0 ≤ η ≤ αλn = Jλn(u(1)

n )

for all λ ≥ Λ. This completes the proof. �

4. Proof of Theorem 1.2

In this section, we investigate the concentration of solutions and give a proof.

Proof of Theorem 1.2. For any sequence λn → ∞, let u(i)
n := u

(i)
λn
, i = 1, 2 be the

critical points of Jλn obtained in Theorem 1.1. Since

Jλn(u(2)
n ) ≤ κ < 0 ≤ η ≤ αλn = Jλn(u(1)

n ) < D, (4.1)

D ≥ αλn(u(i)
n ) ≥

(θ − 2
2θ
− d0

Θ
)
‖u(i)

n ‖2λn −
(θ − ν)|α+| 2

2−ν

νθΘ
ν
2

‖u(i)
n ‖νλn , (4.2)

one has
‖u(i)

n ‖λn ≤ C, (4.3)

where C is a constant independent of λn. Therefore, we may assume that u(i)
n ⇀ u

(i)
0

weakly in X and u
(i)
n → u

(i)
0 strongly in Lrloc(RN ) for 2 ≤ r < 2∗∗. By Fatou’s

Lemma, we have∫
RN

V (x)(u(i)
0 )2dx ≤ lim inf

n→∞

∫
RN

V (x)(u(i)
n )2dx ≤ lim inf

n→∞

‖u(i)
n ‖2λn
λn

= 0,

this implies that u(i)
0 = 0 a.e. in RN \V −1(0), and u(i)

0 ∈ H2(Ω)∩H1
0 (Ω). Now, for

any ϕ ∈ C∞0 , since 〈J ′λn(u(i)
n ), ϕ〉 = 0, it is easy to check that∫

Ω

(∆u(i)
0 ∆ϕ+∇u(i)

0 ∇ϕ) =
∫

RN
[f(x, u(i)

0 ) + α(x)|u(i)
0 |ν−2u

(i)
0 ]ϕdx.

That is, u(i)
0 is a weak solution in H2(Ω) ∩H1

0 (Ω).
Now we show that u(i)

n → u
(i)
0 strongly in Lr(RN ) for 2 ≤ r < 2∗∗. Otherwise,

there exist δ > 0, R0 > 0 and xn ∈ RN such that∫
BN (xn,R0)

(u(i)
n − u

(i)
0 )2dx ≥ δ.
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Since |BN (xn, R0)| ∩ {V < c} → 0 as xn →∞, by Hölder inequality, we have∫
BN (xn,R0)∩{V <c}

(u(i)
n − u

(i)
0 )2dx→ 0.

Consequently,

0 = ‖u(i)
n ‖2λn

≥ λnc
∫
B(xn,R0)∩{V≥c}

(u(i)
n )2dx

= λnc

∫
B(xn,R0)∩{V≥c}

(u(i)
n − u

(i)
0 )2dx

= λnc
[ ∫

B(xn,R0)

(u(i)
n − u

(i)
0 )2dx−

∫
B(xn,R0)∩{V <c}

(u(i)
n − u

(i)
0 )2dx

]
→∞,

(4.4)

which contradicts (4.3). Therefore, u(i)
n → u

(i)
0 in Lr(RN ) for 2 ≤ r < 2∗∗. More-

over, using (A1), Hölder inequality and u
(i)
n → u

(i)
0 in L2(RN ), we have∫

RN
α(x)|u(i)

n |νdx→
∫

RN
α(x)|u(i)

n |ν−2u(i)
n u

(i)
0 dx.

By (F1)–(F2), we have∫
RN

f(x, u(i)
n )u(i)

n dx→
∫

RN
f(x, u(i)

n )u(i)
0 dx.

Since 〈J ′λn(u(i)
n ), u(i)

n 〉 = 〈J ′λn(u(i)
n ), u(i)

0 〉 = 0, we have

‖u(i)
n ‖2λn =

∫
RN

f(x, u(i)
n )u(i)

n dx+
∫

RN
α(x)|u(i)

n |νdx,

〈u(i)
n , u

(i)
0 〉 =

∫
RN

f(x, u(i)
n )u(i)

0 dx+
∫

RN
α(x)|u(i)

n |ν−2u(i)
n u

(i)
0 dx.

Then by (V3) and u
(i)
0 ∈ H2(Ω) ∩H1

0 (Ω), we have

lim
n→∞

‖u(i)
n ‖2λn = lim

n→∞
〈u(i)
n , u

(i)
0 〉λn = ‖u(i)

0 ‖2.

On the other hand, by the weakly lower semi-continuity of norm, one has

‖u(i)
0 ‖2 ≤ lim inf

n→∞
‖u(i)

n ‖2 ≤ lim inf
n→∞

‖u(i)
n ‖2λn .

Hence, u(i)
n → u

(i)
0 in X. Using (4.1) and the constants κ, η are independent of λ,

we have
1
2

∫
Ω

|∆u(1)
0 |2 + |∇u(1)

0 |2 −
∫

Ω

F (x, u(1)
0 )dx−

∫
Ω

α(x)|u(1)
0 |νdx ≥ η > 0,

1
2

∫
Ω

|∆u(2)
0 |2 + |∇u(2)

0 |2 −
∫

Ω

F (x, u(2)
0 )dx−

∫
Ω

α(x)|u(2)
0 |νdx ≤ κ < 0,

which imply that u(i)
0 6= 0, i = 1, 2 and u

(1)
0 6= u

(2)
0 . This completes the proof. �
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