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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR
SUBLINEAR ORDINARY DIFFERENTIAL EQUATIONS AT

RESONANCE

CHENGYUE LI, FENFEN CHEN

Abstract. Using a Z2 type index theorem, we show the existence and mul-

tiplicity of solutions for the sublinear ordinary differential equation

Lu(t) = µu(t) +Wu(t, u(t)), 0 ≤ t ≤ L
with suitable periodic or boundary conditions. Here L is a linear positive

selfadjoint operator, µ is a parameter between two egienvalues of this operator,

and Wu is the gradient of a potential function.

1. Introduction

In the study of physical, chemical and biological systems, many ordinary differ-
ential equation models can be set in the form

Lu(t) = µu(t) +Wu(t, u(t)), 0 ≤ t ≤ L, (1.1)

(cf. [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14] and their references) where L is a linear positive
selfadjoint operator on L2([0, L],Rn), µ is a real parameter, the potential W (t, u) :
R × Rn → R is a C1-function, and Wu(t, u) = ∂W/∂u denotes the gradient of
W (t, u) with respect to the variable u. We say that (1.1) is sublinear if W satisfies
lim|u|→∞W (t, u)/|u|2 = 0.

Throughout this article, ‖ · ‖Lq denotes the norm of the usual space Lq :=
Lq([0, L],Rn) with 1 ≤ q ≤ ∞, and we always assume that, for an appropriate
Hilbert space (X, ‖ · ‖) ⊂ L2 with the corresponding inner product 〈·, ·〉, solutions
of (1.1) are exactly the critical points of the corresponding functional

Φ(u) = I(u)− J(u), u ∈ X (1.2)

where

I(u) =
1
2

(‖u‖2 − µ‖u‖2L2), J(u) =
∫ L

0

W (t, u(t))dt, (1.3)

the problem
Lu(t) = λu(t), (1.4)
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has eigenvalues 0 < λ1 < λ2 < λ3 < · · · → ∞, the corresponding eigenspaces
Nj = {vj} (j ≥ 1) have finite dimensions. For simplicity, we first consider the case
of dim Nj = 1 for all j ≥ 1, and more general case shall be discussed later. Further,
we assume that there exists some k ∈ N such that µ ∈ [λk, λk+1). One says (1.1)
is at resonance if µ = λk, and (1.1) is sublinear.

Now we can state our main result as follows.

Theorem 1.1. Suppose that (X, ‖ · ‖) ⊂ L2 is a Hilbert space, continuously embed-
ded into Lq for all q ∈ [1,∞], and {vj(t)} is an orthogonal basis in X and L2 such
that

‖vj(t)‖2 = 1 = λj‖vj(t)‖2L2 , ∀j ≥ 1. (1.5)

Furthermore, assume that the functional J(u) ∈ C1(X,R) satisfies J(0) = 0, J ′(u)
is a compact operator, and

(J1) J(u) = J(−u) for all u ∈ X,
(J2) there exists K > 0 such that |J ′(u)w| ≤ K‖w‖L1 for all u,w ∈ X,
(J3) there exist p ∈ N,M > 0, ρ > 0 such that M > λk+p − λk , and

J(u) ≥ 1
2
M‖u‖2L2 for ‖u‖L∞ ≤ ρ,

(J4) J(u)→ ±∞ if u ∈ Nj for all j ≥ 1, and ‖u‖ → ∞.
Then, there exist at least p distinct pairs (u,−u) of critical points of Φ(u). If
µ ∈ (λk, λk+1), then (J4) can be ommitted.

The above theorem will be proved using the following Z2 type index theorem.

Theorem 1.2 ( [1]). . Let Y be a Banach space, and f ∈ C1(Y,R) be even
satisfying the Palais-Smale condition. Suppose that: (i) there exist a subspace V of
Y with dimV = r and δ > 0 such that supw∈V,‖w‖=δ f(w) < f(0); (ii) there exists
a closed subspace W of Y with CodimW = s < r such that infw∈W f(w) > −∞.
Then f possesses at least r − s distinct pairs (u,−u) of critical points.

For the convenience of the reader, let us recall that the functional f is said to
satisfy the Palais-Smale condition: if any sequence {uj} in Y be such that f(uj) is
bounded and f ′(uj)→ 0, possesses a convergent subsequence.

This article is organized as follows. In Section 2, we prove some lemmas for the
functional Φ(u) defined by (1.2). In section 3, the proof of Theorem 1.1 and its some
extensions shall be given. Section 4 is devoted to apply Theorem 1.1 to sublinear
Hamiltonian systems as well as Extended Fisher-Kolmogorov type equations, and
the existence and multiplicity results of their solutions shall be obtained.

2. Preliminaries

In this section, we shall study the properties of the functionals Φ(u), I(u), J(u)
defined in (1.2)-(1.3).

With the hypotheses of Theorem 1.1, for all u ∈ X,we can write u =
∑∞
j=1 αjvj ,

thus ‖u‖2 =
∑∞
j=1 α

2
j , and

I(u) =
1
2

∞∑
j=1

α2
j [1− µ

∫ L

0

|vj |2dt] =
1
2

∞∑
j=1

(1− µ

λj
)α2
j . (2.1)
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Case (i). If µ = λk, then we set

u+ =
∞∑

j=k+1

αjvj , u0 = αkvk, u− =
k−1∑
j=1

αjvj , (2.2)

X+ = span{vj : j ≥ k + 1}, X− = span{vj : 1 ≤ j ≤ k − 1},
X0 = Nk = span{vk}.

(2.3)

Thus, we have u = u+ + u0 + u−, X = X− ⊕X0 ⊕X+.
Case (ii). If λk < µ < λk+1, then we let

u+ =
∞∑

j=k+1

αjvj , u− =
k∑
j=1

αjvj , (2.4)

X+ = span{vj : j ≥ k + 1}, X− = span{vj : 1 ≤ j ≤ k}, (2.5)

so we have u = u+ + u−, X = X+ ⊕X−.

Lemma 2.1. Under the assumptions of Theorem 1.1, there exists a norm ‖ · ‖∗ of
X, equivalent with ‖ · ‖, such that

I(u) =
1
2

(‖u+‖2∗ − ‖u−‖2∗).

Proof. Without loss of generality, we only consider the case µ = λk in the following.
Thus (

1− λk
λk+1

)
‖u+‖2 =

(
1− λk

λk+1

) ∞∑
j=k+1

α2
j

≤
∞∑

j=k+1

(
1− λk

λj

)
α2
j

≤
∞∑

j=k+1

α2
j = ‖u+‖2,

(2.6)

( λk
λk−1

− 1
)
‖u−‖2 =

( λk
λk−1

− 1
) k−1∑
j=1

α2
j

≤
k−1∑
j=1

(λk
λj
− 1
)
α2
j

≤ λk
λ1

k−1∑
j=1

α2
j =

λk
λ1
‖u−‖2.

(2.7)

Let

‖u‖2∗ =
k−1∑
j=1

(λk
λj
− 1
)
α2
j +

∞∑
j=k+1

(
1− λk

λj

)
α2
j + α2

k . (2.8)

Clearly, ‖ · ‖∗ is a norm on X, and is equivalent with the norm ‖ · ‖. The corre-
sponding inner product is

〈u,w〉∗ =
k−1∑
j=1

(λk
λj
− 1
)
αjβj +

∞∑
j=k+1

(
1− λk

λj

)
αjβj + αkβk, (2.9)
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where u =
∑∞
j=1 αjvj , w =

∑∞
j=1 βjvj ∈ X. Consequently, according to (2.1) and

(2.8), one obtains

I(u) =
1
2

(‖u+‖2∗ − ‖u−‖2∗) . (2.10)

Then

Φ′(u)w = 〈u+, w〉∗ − 〈u−, w〉∗ −
∫ L

0

Wu(t, u)w dt, ∀u,w ∈ X. (2.11)

Finally, we point out that, in the nonresonant case of λk < µ < λk+1, (2.8) and
(2.9) should be replaced by

‖u‖2∗ =
k∑
j=1

( µ
λj
− 1
)
α2
j +

∞∑
j=k+1

(
1− µ

λj

)
α2
j , (2.12)

〈u,w〉∗ =
k∑
j=1

( µ
λj
− 1
)
αjβj +

∞∑
j=k+1

(
1− µ

λj

)
αjβj , (2.13)

respectively. The proof is complete. �

Lemma 2.2. Under the assumptions of Theorem 1.1, the functional Φ(u) satisfies
the Palais-Smale condition on X.

Proof. We shall use the idea given by Rabinowitz [11, Theorem 4.12] and Costa [2,
Proposition 3.2] for a PDE existence problem. Let {uj} ⊂ X be such that Φ(uj) is
bounded, and Φ′(uj)→ 0. We shall prove {uj} has a convergent subsequence.

Setting uj = u+
j + u0

j + u−j with u+
j ∈ X+, u0

j ∈ X0, u−j ∈ X− for all j ≥ 1. For
j sufficiently large, we have

‖u±j ‖∗ ≥ Φ′(uj)u±j = 〈u+
j , u

±
j 〉∗− < u−j , u

±
j 〉∗ − J

′(uj)u±j . (2.14)

From (J2), it follows that

|J ′(uj)u±j | ≤ K‖u
±
j ‖L1 ≤ K1‖u±j ‖∗ (2.15)

with K1 > 0 coming from the continuous embedding L1 → (X, ‖ · ‖)→ (X, ‖ · ‖∗).
Combining (2.14) with + in the exponents, and (2.15) with + in the exponents, we
obtain

‖u+
j ‖∗ ≥ ‖u

+
j ‖

2
∗ −K1‖u+

j ‖∗, (2.16)

thus, {u+
j } is bounded on X. Similarly, we also deduce that {u−j } is bounded.

Therefore, there exists d > 0 such that

‖uj − u0
j‖∗ = ‖u+

j + u−j ‖∗ ≤ d, (2.17)∣∣∣J(uj)− J(u0
j )
∣∣∣ =

∣∣∣ ∫ 1

0

d

dt
J((1− t)u0

j + tuj)dt
∣∣∣

=
∣∣∣ ∫ 1

0

J ′((1− t)u0
j + tuj)(uj − u0

j )dt
∣∣∣

≤ K‖uj − u0
j‖L1 ≤ K1‖uj − u0

j‖∗
≤ K1d,

(2.18)

which together with

J(u0
j ) =

1
2

(‖u+
j ‖

2
∗ − ‖u−j ‖

2
∗)− Φ(uj)− [J(uj)− J(u0)]
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yields J(u0
j ) is bounded. By (J4), we get {u0

j} is bounded. Thus {uj} is bounded
on X.

It should be noted that the gradient of Φ(u), ∇Φ(u) : X → X satisifes

∇Φ(u) = u−G(u) (2.19)

with G(u) : X → X being a compact operator defined by

〈G(u), z〉 = µ

∫ L

0

u(t)z(t)dt+ J ′(u)z, u, z ∈ X.

From the boundedness of {uj} and (2.19), we infer that {uj} has at least one
convergent subsequence on X. So the Palais-Smale condition holds. �

Lemma 2.3. Under the hypotheses of Theorem 1.1, the functional Φ(u) is bounded
from below on X+.

Proof. From (J2), we have the estimate

J(u) =
∫ 1

0

d

dt
J(tu)dt =

∫ 1

0

J ′(tu)u dt ≤ K‖u‖L1 ≤ K1‖u‖∗, ∀u ∈ X. (2.20)

Then for u ∈ X+, we infer that

Φ(u) =
1
2
‖u‖2∗ − J(u) ≥ 1

2
‖u‖2∗ −K1‖u‖∗ →∞ (‖u‖∗ →∞). (2.21)

Namely, Φ(u) is coercive and bounded from below on X+. �

Lemma 2.4. Under the assumptions of Theorem 1.1, there exists a subspace V of
X with dimV = k + p and ρ̃ > 0 such that supu∈V,‖u‖=eρ Φ(u) < 0.

Proof. Put

V =
{
u =

k+p∑
j=1

αjvj : αj ∈ R (1 ≤ j ≤ k + p)
}
, (2.22)

Z =
{
u ∈ V :

k+p∑
j=1

α2
j = ρ̃2

}
, (2.23)

where ρ̃ = ρ/(c∞
√
k + p), c∞ satisfies ‖z‖L∞ ≤ c∞‖z‖ for all z ∈ X.

For each u(t) =
∑k+p
j=1 αjvj(t) ∈ Z, we have by Cauchy-Schwarz inequality

|u(t)|2 ≤
( k+p∑
j=1

|vj(t)|2
)( k+p∑

j=1

α2
j

)
≤ (k + p)c2∞ρ̃

2 = ρ2, (2.24)

using ‖vj‖L∞ ≤ c∞‖vj‖ = c∞ for all j ≥ 1. Hence

Φ(u) =
1
2
‖u‖2 − µ

2
‖u‖2L2 − J(u)

≤ 1
2
‖u‖2 − µ+M

2
‖u‖2L2

=
1
2

k+p∑
j=1

α2
j −

µ+M

2

k+p∑
j=1

1
λj
α2
j
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=
1
2

k+p∑
j=1

λj − µ−M
λj

α2
j

≤ 1
2

(λk+p − λk −M)
k+p∑
j=1

α2
j

λj
< 0,

which implies sup{Φ(u) : u ∈ Z} < 0. �

3. Proof and extension of Theorem 1.1

Proof of Theorem 1.1. With the aid of Lemmas 2.2-2.4 , by Theorem 1.2, we
conclude that Φ(u) (1.2) possesses at least p distinct pairs (ui,−ui) of critical
points.

Corollary 3.1. Under the assumptions of Theorem 1.1, if condition (J3) is replaced
by

(J3’) lim|u|→0
W (t,u)
|u|2 =∞ uniformly in t ∈ [0, L],

then the functional Φ(u) defined in (1.2) has infinitely many distinct pairs (u,−u)
of critical points.

Proof. For any fixed p ∈ N , we may take M large enough such that M > λk+p−λk.
By (J3’), there exists ρ sufficiently small satisfying

W (t, w) ≥ 1
2
M |w|2, ∀w ∈ Rn, |w| ≤ ρ (3.1)

uniformly in t ∈ [0, L]. Thus, if u = u(t) ∈ X with ‖u‖L∞ ≤ ρ, then

W (t, u(t)) ≥ 1
2
M |u(t)|2 (3.2)

uniformly in t ∈ [0, L], and one obtains

J(u) ≥ 1
2
M‖u‖2L2 . (3.3)

Therefore, in view of Theorem 1.1, the functional Φ(u) has at least p distinct pairs
(ui,−ui) of critical points (1 ≤ i ≤ p). Since p is arbitrary, there exist infinitely
many distinct pairs (ui,−ui) of critical points of Φ(u) (i = 1, 2, 3, . . . ). �

Remark 3.2. For all β ∈ (0, 1/2), γ ∈ (0, 1), we can take a function H(s) ∈
C1([0,∞), R) such that

s1+2β ≤ H(s) ≤ s1+β , ∀s ∈ [0, 1], (3.4)

−1
8
sγ−1 ≤ H ′(s) ≤ 1

8
sγ−1 quad∀s ∈ [2,∞), (3.5)

H(s)→ ±∞ as s→∞. (3.6)

Define W (t, u) = H(|u|)((sin t)2m + 2),m ≥ 1. A straightforward computation
shows that (3.4) and (3.5) imply (J1)–(J3). In addition, (J4) can be easily deduced
by (3.6), see [11, Lemma 4.21].

From a carefully analyzing the constructions of V and Z in (2.22)-(2.23), we
have the following result which is more general than Theorem 1.1.
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Theorem 3.3. Suppose that (X, ‖ · ‖) ⊂ L2 is a Hilbert space, continuously embed-
ded in Lq,∀q ∈ [1,∞]. Let nj = dim Nj and {vj1, vj2, . . . , vjnj} be an orthogonal
basis of Nj(∀j ≥ 1) such that {vji(t) : j ≥ 1, 1 ≤ i ≤ nj} is an orthogonal basis in
X and L2 with

‖vji(x)‖2 = 1 = λj‖vji(x)‖2L2 , ∀j ≥ 1, 1 ≤ i ≤ nj .

Furthermore, assume that the functional J(u) ∈ C1(X,R) satisfies J(0) = 0, J ′(u)
is a compact operator, and (J1)-(J4) hold. Then, there exist at least

∑k+p
j=k+1 nj

distinct pairs (u,−u) of critical points of Φ(u) (If µ ∈ (λk, λk+1), then (J4) can be
omitted).

To prove this theorem, we need only changes in Lemmas 2.1 and 2.4. Especially,
V,Z in (2.22)-(2.23) shall be replaced by

Ṽ =
{
u =

k+p∑
j=1

nj∑
i=1

αjivji : αji ∈ R (1 ≤ j ≤ k + p, 1 ≤ i ≤ nj)
}
, (3.7)

Z̃ =
{
u ∈ Ṽ :

k+p∑
j=1

nj∑
i=1

α2
ji = ρ̃2

}
, (3.8)

respectively.

4. Applications

Application i. Given T > 0, we discuss the existence of T -periodic solutions to
the second-order Hamiltonian system

ü(t) + µu(t) +Wu(t, u(t)) = 0, t ∈ R, (4.1)

where W (t, u) ∈ C1(R × Rn, R) is a T -periodic function in the variable t and
W (t, 0) ≡ 0.

Since 1973, many authors studied periodic solutions for Hamiltonian systems via
critical point theory. Clarke and Ekeland [3] studied a family of convex sublinear
Hamiltonian systems where W (t, u) = W (u) satisfies lim|u|→0

W (t,u)
|u|2 = ∞, and

they used the dual variational method to obtain the first variational result on
periodic solutions having a prescribed minimal period. Later, Mawhin and Willem
[8] made a good improvement. Rabinowitz [9,10], Tang [13] and others proved the
existence under the sublinear condition uWu(t, u) ≤ αW (t, u)(0 < α < 2), which
plays an important role. Schechter [12] assumed that W (t, u) is sublinear, and
2W (t, u) − uWu(t, u) → −∞(|u| → ∞) or 2W (t, u) − uWu(t, u) ≤ W0(t), then he
proved that (4.1) has one non-constant periodic solution. Long [7] also studied this
problem for bi-even sublinear potentials, and got the existence of one odd periodic
solution. Li-Wang-Xiao [6] considered the existence and multiplicity of odd periodic
solution for bi-even sublinear (4.1) in the case of µ < λ1.

Motivated by the above papers, using Theorem 3.3, we shall give a multiplicity
result for (4.1) with sublinear potentials in the case of λk ≤ µ < λk+1.

Theorem 4.1. Assume that L = T/2, and there exists some k ∈ N such that
(kπL )2 ≤ µ < ( (k+1)π

L )2. Let W (t, u) ∈ C1(R × Rn, R) be T -periodic in t, and
bi-even, namely

Wu(t, u) = −Wu(−t,−u), ∀t ∈ R, u ∈ Rn.
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Suppose that
(W11) W (t, u) = W (t,−u) for all t ∈ R, u ∈ Rn;
(W12) there exists K > 0 such that |Wu(t, u)| ≤ K for all t ∈ R, u ∈ Rn;
(W13) there exist p ∈ N , M > 0, ρ > 0 such that if M > p(p+2k)

L2 π2 then

W (t, u) ≥ 1
2
M |u|2 ∀t ∈ R, |u| ≤ ρ;

(W14) for u = c sin jπt
L θi with θi = (0, 0, . . . , 0, 1, 0, . . . , 0) ∈ Rn (the i−th element

is 1, 1 ≤ i ≤ n), for all j ≥ 1,
∫ L
0
W (t, u(t))dt→ ±∞ as |c| → ∞.

Then, (4.1) has np− distinct pairs (u(t),−u(t)) of odd T -periodic solutions. If
(kπL )2 < µ < ( (k+1)π

L )2, then (W14) can be omitted.

Remark 4.2. If W (t, u) satisfies

W (t, u) = W (t,−u) = W (−t,−u),

then W (t, u) is bi-even, and (W11) holds. For this, a typical example is, W (t, u) =
b(t)W̃ (u), where b(t) and W̃ (u) are even in the variable t, u, respectively.

Proof of Theorem 4.1. Firstly, consider the boundary value problem
−ü(t) = µu(t) +Wu(t, u(t)), 0 < t < L,

u(0) = u(L) = 0.
(4.2)

If u = u(t) is a solution of (4.2), then we define

u = u(t) =

{
u(t), 0 ≤ t ≤ L,
−u(−t), −L ≤ t ≤ 0.

(4.3)

By the bi-even condition, u = u(t) is a solution of (4.1) restricted on [−L,L], so its
odd extension in (−∞,∞) is an odd T -periodic solution of (4.1).

Secondly, let X = H1
0 ([0, L],Rn) be the usual Hilbert space with the inner prod-

uct (x, y) =
∫ L
0
ẋ(t) · ẏ(t)dt and the norm ‖x‖ = (

∫ L
0
|ẋ(t)|2dt)1/2. Set

Φ(u) =
1
2

∫ L

0

[|u̇(t)|2 − µ|u(t)|2] dt−
∫ L

0

W (t, u(t)) dt, (4.4)

then Φ(u) ∈ C1(X,R), and its critical points are the classical solutions of (4.2).
By direct computations, we know that the problem

−ü(t) = λu(t), u(0) = u(L) = 0

possesses eigenvalues λj = ( jπL )2, j ≥ 1, and the corresponding eigenfunctions are
uji = cθi sin jπt

L , 1 ≤ i ≤ n, c ∈ R. Furthermore,{
θi sin

πt

L
, θi sin

2πt
L
, θi sin

3πt
L
, . . . , 1 ≤ i ≤ n

}
(4.5)

is an orthogonal basis on both X and L2 . Since∫ L

0

|u̇ji(t)|2 dt = λj
L

2
= λj

∫ L

0

|uji(t)|2 dt, (4.6)

writing vji =
√

2
Lλj

uji, we have ‖vji‖2 =
∫ L
0
|v̇ji|2 dt = 1 = λj

∫ L
0
|vji|2 dt.

Noticing that
p(p+ 2k)

L2
π2 = λk+p − λk,
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the functional (4.4) satisfies all hypotheses of Theorem 3.3, hence it has at least np
distinct pairs (ui,−ui) of critical points (1 ≤ i ≤ np) . Consequently, in the way of
(4.3), the extensions of ±ui(t)(1 ≤ i ≤ np) are np distinct pairs of odd T -periodic
solutions of (4.1). �

Application ii. We are concerned with a class of Extended Fisher-Kolmogorov
type equations (see [4, 5, 14] and their references)

u(4)(t) = µu(t) +Wu(t, u(t)) 0 ≤ t ≤ L (4.7)

with the boundary condition

u(0) = u(L) = u′′(0) = u′′(L) = 0,

which appears in the formation of spatial patterns in bistable systems.

Theorem 4.3. Assume that there exists some k ∈ N such that (kπL )4 ≤ µ <

( (k+1)π
L )4. Let W (t, u) ∈ C1([0, L]×R,R) satisfy the following conditions:

(W21) W (t, u) = W (t,−u) for all t ∈ [0, L], u ∈ R;
(W22) there exists K > 0 such that |Wu(t, u)| ≤ K for all t ∈ [0, L], u ∈ R;
(W23) there exist p ∈ N,M > 0, ρ > 0 such that if M > (p+k)4−k4

L4 π4 then

W (t, u) ≥ 1
2
M |u|2 ∀t ∈ [0, L], |u| ≤ ρ;

(W24) for u = c sin jπt
L , for all j ≥ 1, c ∈ R,

∫ L
0
W (t, u(t))dt→ ±∞ as |c| → ∞.

Then, (4.7) has p distinct pairs (u(t),−u(t)) of classical solutions. If (kπL )4 < µ <

( (k+1)π
L )4, then (W24) can be omitted.

Proof. Similarly to the proof of Theorem 4.1, we sketch it. Set

X = H2(0, L) ∩H1
0 (0, L), (4.8)

by [5, Lemma 2.1], ‖u‖ = (
∫ T
0
|ü(t)|2dt)1/2 is a norm of X, and

vj(t) = sin
jπt

L

(√L

2
(
jπ

L
)2
)−1

(4.9)

is an orthogonal basis on X and L2 such that

‖vj(t)‖2 = 1 = (
jπ

L
)4‖vj(t)‖2L2 , j ≥ 1. (4.10)

In addition, the problem
u(4)(t) = λu(t)

has eigenvalues λj = ( jπL )4, j ≥ 1, and the corresponding eigenfunctions are exactly
vj(t) in (4.9). Define the functional

Φ(u) =
1
2

∫ L

0

|ü(t)|2dt− 1
2
µ

∫ L

0

|u(t)|2 dt−
∫ L

0

W (t, u(t)) dt, u ∈ X, (4.11)

then the critical points of Φ(u) in (4.11) are the classical solutions of the problem
(4.7). Therefore, by Theorem 1.1, we have the statement in Theorem 4.3. �
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