Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 125, pp. 1-10.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR
SUBLINEAR ORDINARY DIFFERENTIAL EQUATIONS AT
RESONANCE

CHENGYUE LI, FENFEN CHEN

ABSTRACT. Using a Zs type index theorem, we show the existence and mul-
tiplicity of solutions for the sublinear ordinary differential equation

Lu(t) = pu(t) + Wy (t,u(t)), 0<t<L

with suitable periodic or boundary conditions. Here L is a linear positive
selfadjoint operator, i is a parameter between two egienvalues of this operator,
and Wy, is the gradient of a potential function.

1. INTRODUCTION

In the study of physical, chemical and biological systems, many ordinary differ-
ential equation models can be set in the form

Lu(t) = pu(t) + W (t,u(t)), 0<t<L, (1.1)

(cf. [3,/4L(5L6}7,[8L9L/10}/12,[13|14] and their references) where L is a linear positive
selfadjoint operator on L?([0, L], R™), u is a real parameter, the potential W (¢, u) :
R x R* — R is a C'-function, and W, (t,u) = OW/Ou denotes the gradient of
W (t,u) with respect to the variable u. We say that is sublinear if W satisfies
lim oo W (t, u)/|ul? = 0.

Throughout this article, || - ||z« denotes the norm of the usual space L7 :=
L9([0, L],R™) with 1 < ¢ < oo, and we always assume that, for an appropriate
Hilbert space (X, || -||) € L? with the corresponding inner product (-, ), solutions
of are exactly the critical points of the corresponding functional

O(u)=1I(u)—J(u), uweX (1.2)
where ;
) = g0l =l T = [ W uw) (13)
the problem
Lu(t) = Au(t), (1.4)
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has eigenvalues 0 < A\ < Ay < A3 < -+ — 00, the corresponding eigenspaces
N = {v;} (j > 1) have finite dimensions. For simplicity, we first consider the case
of dim A; = 1 for all j > 1, and more general case shall be discussed later. Further,
we assume that there exists some k& € N such that g € [Ag, Agt1). One says
is at resonance if yu = \g, and is sublinear.

Now we can state our main result as follows.

Theorem 1.1. Suppose that (X, ||-||) C L? is a Hilbert space, continuously embed-
ded into L7 for all g € [1,00], and {v;(t)} is an orthogonal basis in X and L* such
that
loF =1 =Xjllo;()]1Z2, Vi > 1. (1.5)

Furthermore, assume that the functional J(u) € C*(X, R) satisfies J(0) =0, J'(u)
is a compact operator, and

(J1) J(u) = J(—u) for allu € X,

(J2) there exists K > 0 such that |J' (u)w| < K||w| g1 for all u,w € X,

(J3) there existp € N,M > 0,p > 0 such that M > \pyp — A, and

1
J() 2 sMlul3s for ule~ < p,

(J4) J(u) — oo if u € Nj for all j > 1, and |Ju|| — oc.
Then, there exist at least p distinct pairs (u,—u) of critical points of ®(u). If
€ (Mg, Ag+1), then (J4) can be ommitted.

The above theorem will be proved using the following Z5 type index theorem.

Theorem 1.2 ( [1]). . Let Y be a Banach space, and f € C'(Y,R) be even
satisfying the Palais-Smale condition. Suppose that: (i) there exist a subspace V' of
Y with dimV =r and § > 0 such that sup,,cv, =5 f(w) < f(0); (ii) there exists
a closed subspace W of Y with Codim W = s < r such that inf,ew f(w) > —o0.
Then f possesses at least r — s distinct pairs (u, —u) of critical points.

For the convenience of the reader, let us recall that the functional f is said to
satisfy the Palais-Smale condition: if any sequence {u;} in Y be such that f(u;) is
bounded and f’(u;) — 0, possesses a convergent subsequence.

This article is organized as follows. In Section 2, we prove some lemmas for the
functional ®(u) defined by (L.2)). In section 3, the proof of Theorem|L.1]and its some
extensions shall be given. Section 4 is devoted to apply Theorem to sublinear
Hamiltonian systems as well as Extended Fisher-Kolmogorov type equations, and
the existence and multiplicity results of their solutions shall be obtained.

2. PRELIMINARIES

In this section, we shall study the properties of the functionals ®(u), I(u), J(u)

defined in (|1.2))-(1.3)).
With the hypotheses of Theorem for all u € X ,we can write u = Z]Oil o5,

thus [[ul|* = 3772, aF, and

1 & L 1 &
Iw) = 5> a2l - ”/o o] = 5 300 — a2 (2.1)
Jj=1 j=1 J
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Case (i). If 4 = Mg, then we set

o) k—1
ajv;, u’=ag T = iV (2.2)
7V5, — QgUk, u = Q;vj, .
i=1

j=k+1
Xt =span{v;: j > k+1}, X =span{v;:1<j<k—1},
XY = N}, = span{v }.
Thus, we have u =ut + 0 +u~, X =X"@® X' X+.
Case (ii). If A\ < g < Agy1, then we let

[eS) k
Z v, U = Zajvj, (2.4)
j=1

j=k+1
Xt =span{v;:j > k+1}, X =span{v;:1<j <k}, (2.5)
sowe haveu =ut +u=, X =Xt X~.
Lemma 2.1. Under the assumptions of Theorem[1.d] there exists a norm || - ||, of
X, equivalent with || - ||, such that
1 _
I(u) = S (Il = 1)

Proof. Without loss of generality, we only consider the case y = Ag in the following.
Thus

oo

(1 - /\:il)”qu”? - (1 - Ai\:) j:Z,ma?
< j;l (1- i\\j)a? (2.6)
<3 = ut P,
j=k+1
k—1
(- (2 ) 5
<3 S (Tk - 1)045 (2.7)

1

<.
Il

SR
Ak k _
< N Z | [
Let
k—1 )\k oo /\k
[ :Z (T—I)Q?—&— Z (1—7)05—&—@%. (2.8)
j=1 Y j=k+1 J
Clearly, || - ||+ is a norm on X, and is equivalent with the norm || - ||. The corre-
sponding inner product is

(u, wy, = (;\j - 1)ajﬁj + Z (1 - i\\];)aj/gj + ag B, (2.9)
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where u = 322, a;jv;, w= Y77, fu; € X. Consequently, according to (2.1) and
(2.8), one obtains
1 _
I(u) = §(|\U+HE — lu[I2). (2.10)
Then

L
O (u)w = (uh,w), — (U™, w), — / Wy (t,w)wdt, Yu,we X. (2.11)
0

Finally, we point out that, in the nonresonant case of A\, < p < Ag41, (2.8) and
(2.9) should be replaced by

k [e'S)

2 0
ll2 =3 (5 = 1)a2+ 3 (1-£)a2, (2.12)
j=1 7 j=k+1 J
k " [} [
(u, w), :Z(Y—Qa]ﬂﬁ 3 (1—Y)ajﬂj, (2.13)
j=1 "7 j=k+1 J
respectively. The proof is complete. O

Lemma 2.2. Under the assumptions of Theorem the functional ®(u) satisfies
the Palais-Smale condition on X.

Proof. We shall use the idea given by Rabinowitz [11, Theorem 4.12] and Costa [2,
Proposition 3.2] for a PDE existence problem. Let {u;} C X be such that ®(u,) is
bounded, and ®’(u;) — 0. We shall prove {u;} has a convergent subsequence.

Setting u; = u;r +u2 +u; with uj' eXT, u? € X0, u; € X~ forall j > 1. For
7 sufficiently large, we have

JElle > B )i = F uE)em <y udh — Sk, (214)
From (J2), it follows that
' (uj)ui| < Kllui o < Kifluf |l (2.15)

with K7 > 0 coming from the continuous embedding L' — (X, |- ||) — (X, - ||+)-
Combining (2.14) with + in the exponents, and (2.15)) with + in the exponents, we
obtain

i [ = [l 117 = K fluf (2.16)

thus, {u;r} is bounded on X. Similarly, we also deduce that {u; } is bounded.
Therefore, there exists d > 0 such that

g =l = lluf + Il < d, (2.17)

) =] [ = o+ ]

= ‘/ Jus O+ tu;)(u; ug)dt’ (2.18)
< Klluj —ufflor < Kifluy — ]l
< Klda

which together with

J(ug) = (||u+||2 luj 1) = @(uz) = [J(uj) = J (uo)]
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yields J(u}) is bounded. By (J4), we get {u} is bounded. Thus {u;} is bounded
on X.
It should be noted that the gradient of ®(u), V®(u) : X — X satisifes

Vo(u) =u—G(u) (2.19)
with G(u) : X — X being a compact operator defined by
L
(G(u),z) = u/ u(t)z(t)dt + J' (u)z, wu,z€ X.
0

From the boundedness of {u;} and (2.19), we infer that {u;} has at least one
convergent subsequence on X. So the Palais-Smale condition holds. O

Lemma 2.3. Under the hypotheses of Theorem the functional ®(u) is bounded
from below on X .

Proof. From (J2), we have the estimate
1 d 1
() = / & T(ruydt = / J(twudt < Klulp < Killul., Yue X, (2.20)
0 0
Then for u € X, we infer that
1 1
®(u) = gllullz = J(w) = Sllullz = Kallull. = o0 (Jull. — o0). (2.21)
Namely, ®(u) is coercive and bounded from below on X*. O

Lemma 2.4. Under the assumptions of Theorem[I.1}, there exists a subspace V of
X with dimV =k +p and p > 0 such that sup,cv, =5 P(u) <0.

Proof. Put
k+p
V:{u:Zajvj:ajGR(1§j§k+p)}, (2.22)
j=1
k+p
Z:{uEV:Za?:ﬁQ}, (2.23)
j=1

where p = p/(coovVk + D), Coo satisfies ||z||pe < cooflz|| for all z € X.
For each u(t) = Zf:f a,;v;(t) € Z, we have by Cauchy-Schwarz inequality

k+p k+p
) < (S 105 0)F) (3 a2) < (k+p)e? = o, (2.24)
j=1 j=1
using [|[v;]|re < cool|vj]] = ¢oo for all j > 1. Hence

1 P
P(u) = §IIUII2 - 5||UH%2 — J(u)

4 M

=

1
< Sl -

k+p k+p
1 s pt+M 1 4
=520
j=1 j=1
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1 Ig Aj—p—M ,
2 4 Aj J
j=1
1 k+p af-
<§()\]€+p—)\k—M) — <0,
j=1 "
which implies sup{®(u) : u € Z} < 0. O

3. PROOF AND EXTENSION OF THEOREM [l

Proof of Theorem [I.1} With the aid of Lemmas 2:2/2:4] , by Theorem [I.2] we
conclude that ®(u) (L.2) possesses at least p distinct pairs (u;, —u;) of critical
points.

Corollary 3.1. Under the assumptions of Theorem if condition (J3) is replaced
by
(J37) limyy -0 % = oo uniformly in t € [0, L],

then the functional ®(u) defined in (1.2) has infinitely many distinct pairs (u, —u)
of critical points.

Proof. For any fixed p € N, we may take M large enough such that M > Mg, — A
By (J3), there exists p sufficiently small satisfying

1
W(t,w) > §M|w|2, Yw e R", Jw| < p (3.1)
uniformly in ¢ € [0, L]. Thus, if u = u(t) € X with ||u| L~ < p, then
1
W (t,u(t)) > §M|u(t)|2 (3.2)
uniformly in ¢ € [0, L], and one obtains
1
J(u) > 5MHuH%Q. (3.3)
Therefore, in view of Theorem the functional ®(u) has at least p distinct pairs
(u;, —u;) of critical points (1 < i < p). Since p is arbitrary, there exist infinitely
many distinct pairs (u;, —u;) of critical points of ®(u) (i =1,2,3,...). O

Remark 3.2. For all 8 € (0,1/2), v € (0,1), we can take a function H(s) €
C1([0,00), R) such that

s < H(s) < '8 Vs e0,1], (3.4)

1 1
—gs"’_l < H'(s) < gs"’_l quadVs € [2,00), (3.5)
H(s) = £o0 as s — oo. (3.6)

Define W (t,u) = H(|u|)((sint)®™ + 2),m > 1. A straightforward computation
shows that (3.4) and (3.5)) imply (J1)-(J3). In addition, (J4) can be easily deduced

by (3.6)), see [11, Lemma 4.21].

From a carefully analyzing the constructions of V and Z in (2.22)-(2.23), we
have the following result which is more general than Theorem
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Theorem 3.3. Suppose that (X, ||-||) C L? is a Hilbert space, continuously embed-
ded in L9,Vq € [1,00]. Let nj = dim Nj and {vj1,vj2,...,vjn,} be an orthogonal
basis of N;(Vj > 1) such that {v;;(t) : j > 1,1 <i <n;} is an orthogonal basis in
X and L? with
lvi(@)I? = 1= Njllvsi(@)llz2, Vi>1,1<i<n;.

Furthermore, assume that the functional J(u) € C*(X, R) satisfies J(0) =0, J'(u)
is a compact operator, and (J1)-(J4) hold. Then, there exist at least Z?Zngl n;
distinct pairs (u, —u) of critical points of ®(u) (If u € (Mg, Ak+1), then (J4) can be
omitted).

To prove this theorem, we need only changes in Lemmas [2.1] and Especially,
V., Z in (2.22)-(2.23)) shall be replaced by

k+p nj
‘7:{u:ZZaﬁvﬁ:ajiER(lngk—i-p,lgiSnj)}, (37)
j=11i=1
B B k+p nj
Z={ueV:> Y a%=p"} (3.8)
j=11i=1

respectively.

4. APPLICATIONS

Application i. Given T > 0, we discuss the existence of T-periodic solutions to
the second-order Hamiltonian system

(t) + pu(t) + Wt u(t) =0, teR, (4.1)

where W (t,u) € C'(R x R", R) is a T-periodic function in the variable ¢ and
W (t,0) = 0.

Since 1973, many authors studied periodic solutions for Hamiltonian systems via
critical point theory. Clarke and Ekeland (3| studied a family of convex sublinear
Hamiltonian systems where W (t,u) = W(u) satisfies lim, g qu(f";‘) = 00, and
they used the dual variational method to obtain the first variational result on
periodic solutions having a prescribed minimal period. Later, Mawhin and Willem
[8] made a good improvement. Rabinowitz [9/10], Tang [13] and others proved the
existence under the sublinear condition uW, (¢t,u) < aW(t,u)(0 < « < 2), which
plays an important role. Schechter [12] assumed that W (t,u) is sublinear, and
2W (t, u) — uWy(t,u) — —oo(Ju| — oo) or 2W (¢, u) — uW,(t,u) < Wy(t), then he
proved that has one non-constant periodic solution. Long |7] also studied this
problem for bi-even sublinear potentials, and got the existence of one odd periodic
solution. Li-Wang-Xiao |6] considered the existence and multiplicity of odd periodic
solution for bi-even sublinear in the case of p < A;.

Motivated by the above papers, using Theorem we shall give a multiplicity
result for with sublinear potentials in the case of A\ < p < Ag41.

Theorem 4.1. Assume that L = T/2, and there exists some k € N such that
(B)2 < p < (@)2 Let W(t,u) € C*(R x R™,R) be T-periodic in t, and
bi-even, namely

Wyu(t,u) = =Wy (—t,—u), VteR, ueR"
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Suppose that

(W11) W(t,u) =W(t,—u) for allt e R, u € R™;

(W12) there exists K > 0 such that |W,(t,u)] < K for allt € R, u € R";
(W13) there exist p € N, M >0, p > 0 such that if M > %wz then

1
W(t,u) > §M|u|2 vVt e R, |ul < p;

(W14) for u = csin f%tei with 6; = (0,0,...,0,1,0,...,0) € R™ (the i—th element

is 1,1 <i<m), forallj >1, fOL W (t,u(t))dt — oo as |c| — oo.
Then, has np— distinct pairs (u(t),—u(t)) of odd T-periodic solutions. If
(B2 <p< ((kH )2, then (W14) can be omitted.
Remark 4.2. If W(t,u) satisfies

W(t,u) = W(t, —u) = W(—t, —u),
then W (t,u) is bi-even, and (W71) holds. For this, a typical example is, W (¢, u) =
b(t)W (u), where b(t) and W (u) are even in the variable ¢, u, respectively.
Proof of Theorem[/-1]. Firstly, consider the boundary value problem
—i(t) = pu(t) + Wy(t, u(t)), 0<t<L,

4.2
u(0) = u(L) = 0. (42)
If u = wu(t) is a solution of (4.2), then we define
t <t<L
D (4.3)
—u(—t), —L<t<0.
By the bi-even condition, u = u(t) is a solution of (4.1)) restricted on [—L, L], so its
odd extension in (—oo, c0) is an odd T-periodic solution of (4.1)).
Secondly7 let X HO ([0, L], R™) be the usual Hilbert space with the inner prod-
uct ( fo t)dt and the norm ||z|| = fo |2:(t)|2dt)'/2. Set
1 L
@(u)zi/ ()2 — plu(t) dt—/ Wt ult (4.4)
0

then ®(u) € C*(X, R), and its critical points are the classical solutions of (4.2)).
By direct computations, we know that the problem

—ii(t) = Au(t), u(0) =u(L) =0

possesses eigenvalues A= ( ”) ,j > 1, and the corresponding eigenfunctions are
uj; = cf;sin J ,1 <i<mn,ceR. Furthermore,
{6; smL 951112L Gsmgzt ., 1<i<n} (4.5)
is an orthogonal basis on both X and L? . Since
L I L
| topa =5 = [Cuora (16)

" L. L
writing vj; = , /L%\juji, we have ||v;;[|? = fo |oj:|2dt =1 =\ fo [v;:]2 dt.
Noticing that

+ 2k
p(pL2 )71_2 _ )\k—i-p o >\k7
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the functional satisfies all hypotheses of Theorem hence it has at least np
distinct pairs (u;, —u;) of critical points (1 < ¢ < np) . Consequently, in the way of
([@3), the extensions of +%;(t)(1 < i < np) are np distinct pairs of odd T-periodic
solutions of . O

Application ii. We are concerned with a class of Extended Fisher-Kolmogorov
type equations (see [4,/5,/14] and their references)

uM (@) = put) + Wy(t,ut)) 0<t<L (4.7)
with the boundary condition
u(0) = u(L) = u"(0) = u"(L) =0,
which appears in the formation of spatial patterns in bistable systems.

Theorem 4.3. Assume that there exists some k € N such that (%)4 < u<
(@)4. Let W (t,u) € C1([0, L] x R, R) satisfy the following conditions:

(W21) W(t,u) = W(t,—u) for allt € [0,L], u € R;
(W22) there exists K > 0 such that |W,(t,u)| < K for allt € [0,L],u € R;
4 4
W23) there exist p € N,M > 0,p > 0 such that if M > EFEL =K 74 4pep
P L

1
W(t,u) > 5M|u|2 vt € [0, L], [u| < p;

(W24) foru=csinf* | forall j > 1, c€ R, fOL W (t,u(t))dt — too as |c| — oo.
Then, [A7) has p distinct pairs (u(t), —u(t)) of classical solutions. If ()% < pu <
(@)4, then (W24) can be omitted.

Proof. Similarly to the proof of Theorem [41] we sketch it. Set

X = H?*(0,L) N Hy(0, L), (4.8)
by |5, Lemma 2.1], [jul| = fo |ii(t)|?dt)'/? is a norm of X, and
. gmt, L jm o\~
0j(t) = sin == (1 5 (4F)? ) (4.9)
is an orthogonal basis on X and L? such that
JT\4 .
lo;OIF =1 = () o B)llZe, 5> 1. (4.10)

In addition, the problem
u™® (t) = \u(t)

has eigenvalues \; = (j—”)‘l, j > 1, and the corresponding eigenfunctions are exactly

17
v;(t) in (4.9). Define the functional
1 L
<I>(u)=§/ |ii(t)| dt—iu/ \2dt—/ W(t,u(t))dt, uweX, (4.11)
0
then the critical points of ®(u) in are the classical solutions of the problem
(4.7). Therefore, by Theorem we have the statement in Theorem O
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