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OSCILLATION CRITERIA FOR EVEN-ORDER NONLINEAR
NEUTRAL DIFFERENCE EQUATIONS WITH CONTINUOUS

VARIABLES

SHUHUI WU, PARGAT SINGH CALAY, ZHANYUAN HOU

Abstract. In this article, we study the oscillatory behavior of solutions to

even-order nonlinear neutral difference equations of the form

∆m
τ (x(t)− px(t− r)) + f(t, x(g(t))) = 0.

Using an integral transformation, the Riccati transformation, and iteration,
we obtain sufficient conditions for all solutions to be oscillatory. Examples are

also given to illustrate the obtained criteria.

1. Introduction

Difference equations have attracted a great deal of attention of researchers in
mathematical, biological, physical sciences, and economy. This is specially due to
the applications in various problems of biology, physics, economy, and so on. The
topics studied for oscillation of the solutions have been investigated intensively and
the references [1]–[17] are just a few examples.

In this article, we study even-order nonlinear neutral difference equations with
continuous variable of the form

∆m
τ (x(t)− px(t− r)) + f(t, x(g(t))) = 0, (1.1)

where m is an even integer m ≥ 4, p ≥ 0, τ and r are positive constants, ∆τx(t) =
x(t + τ) − x(t), 0 < g(t) < t, g ∈ C1([t0,∞),R+), g′(t) > 0, and f ∈ C([t0,∞) ×
R,R). Throughout this article we assume that

g(t+ τ) ≥ g(t) + τ for t ≥ t0, (1.2)

f(t, u)/u ≥ q(t) > 0 for u 6= 0 and q ∈ C(R,R+). (1.3)

Let t∗0 = min{g(t0), t0 − r} and I0 = [t∗0, t0]. A function x is called the solution
of (1.3) with x(t) = ϕ(t) for t ∈ I0 and ϕ ∈ C(I0,R) if it satisfies (1.3) for t ≥ t0.

A solution x is called oscillatory if it has arbitrarily large zeros; otherwise it is
non-oscillatory. x is eventually positive if there exists t1 ≥ t0, such that x(t) > 0
for all t ≥ t1. Eventually negative definite is defined similarly.

This article is organized as follows. The main results is stated in section 2
and leave the proofs for section 5. Examples will be presented in section 3 to
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demonstrate the application of the obtained results. In section 4, some lemmas will
be given to be used in the proofs of the main results.

2. Statement of main results

The assumptions on g guarantee the existence and differentiability of its inverse
g−1. Let

q̄(t) = α min
t≤s≤t+mτ

{q(s)}
(

min
g(t)≤s≤g(t)+mτ

{(g−1(s))′}
)m

, (2.1)

where 0 < α < 1. The function q̄ will play an important role in the oscillatory
criteria for (1.3). Throughout this article, we use the symbol dae to denote the
smallest integer not less than a.

Theorem 2.1. Assume that for some t1 ≥ t0,
∞∑
i=0

q̄(t1 + iτ) =∞ . (2.2)

Then for every solution x(t) of (1.1), is either oscillatory, or for any T ≥ t0 there
exists a t2 > T such that |x(t2)| ≤ p|x(t2 − r)|.

Theorem 2.2. In addition to (2.2), we assume that 0 < p < 1 and there is a
positive integer k0 and a t1 ≥ t0 satisfying m1(n) = d(g(t1 +nτ)− t1 +k0r)/τe ≤ n
for all large enough n. Moreover, assume that there is a sequence {nk} → ∞ such
that

nk∑
i=m1(nk)

q̄(t1 + iτ) ≥ pk0(1− p)
1− pk0

(2.3)

for all k large enough. Then for every solution x(t) of (1.1), either x(t) or x(t)−
px(t− r) or both are oscillatory.

Corollary 2.3. In addition to (2.2), we assume that 0 < p < 1 and there is a
positive integer k0 and a t1 ≥ t0 satisfying m1(n) = d(g(t1 +nτ)− t1 +k0r)/τe ≤ n
for all sufficiently large n. Moreover, we assume that there is a sequence {nk} → ∞
such that

nk∑
i=m1(nk)

(i−m1 + 1)q̄(t1 + iτ) ≥ pk0(1− p)
1− pk0

(2.4)

for all k large enough. Then for every solution x(t) of (1.1), either x(t) or x(t)−
px(t− r) or both are oscillatory.

Remark 2.4. Note that the requirement (2.4) for q̄(t) is weaker than (2.3) since
(i−m1 + 1) ≥ 1 holds in (2.4).

Corollary 2.5. In addition to (2.2), we assume that 0 < p < 1 and that there is a
positive integer k0 and a t1 ≥ t0 satisfying m1(n) = d(g(t1 +nτ)− t1 +k0r)/τe ≤ n
for all sufficiently large n. Moreover, assume that there is a sequence {nk} → ∞,
and an integer l, 1 ≤ l < m such that

1
l!

nk∑
i=m1(nk)

(i−m1 + 1)(i−m1 + 2) . . . (i−m1 + l)q̄(t1 + iτ) ≥ pk0(1− p)
1− pk0

(2.5)

for all k large enough. Then for every solution x(t) of (1.1), either x(t) or x(t)−
px(t− r) or both are oscillatory.



EJDE-2015/128 OSCILLATION CRITERIA 3

Remark 2.6. Note that (2.5) coincides with (2.4) for l = 1. For l > 1,

(i−m1 + 1)(i−m1 + 2) . . . (i−m1 + l)
l!

≥ i−m1 + 1 ≥ 1 .

Thus, (2.5) is weaker than (2.4) and (2.3).

Theorem 2.7. In addition to (2.2), we assume that p = 1 and that there is a
positive integer k0 and a t1 ≥ t0 satisfying m1(n) = d(g(t1 +nτ)− t1 +k0r)/τe ≤ n
for all sufficiently large n. Moreover assume that there is a sequence {nk} → ∞
such that

n(k)∑
i=m1(nk)

q̄(t1 + iτ) ≥ 1
k0

(2.6)

for k large enough. Then for every solution x(t) of (1.1), either x(t) or x(t)−x(t−r)
or both are oscillatory.

Corollary 2.8. In addition to (2.2), we assume that p = 1 and that there is a
positive integer k0 and a t1 ≥ t0 satisfying m1(nk) = d(g(t1 +nτ)−t1 +k0r)/τe ≤ n
for all sufficiently large n. Moreover assume that there is a sequence {nk} → ∞
such that

nk∑
i=m1(nk)

(i−m1 + 1)q̄(t1 + iτ) ≥ 1
k0

(2.7)

for k large enough. Then for every solution x(t) of (1.1), either x(t) or x(t)−x(t−r)
or both are oscillatory.

Corollary 2.9. In addition to (2.2), we assume that p = 1 and that there is a
positive integer k0 and a t1 ≥ t0 satisfying m1(nk) = d(g(t1 +nτ)−t1 +k0r)/τe ≤ n
for all sufficiently large n. Moreover we assume that there is a sequence {nk} → ∞
and an integer l, 1 ≤ l ≤ m− 1 such that

1
l!

nk∑
i=m1(nk)

(i−m1 + 1)(i−m1 + 2) . . . (i−m1 + l)q̄(t1 + iτ) ≥ 1
k0

(2.8)

for k large enough. Then, for every solution x(t) of (1.1), either x(t) or x(t) −
x(t− r) or both are oscillatory.

Theorem 2.10. In addition to (2.2), we assume that p > 1 and that there is a
positive integer k0 and a t1 ≥ t0 satisfying m1(nk) = d(g(t1 +nτ)−t1 +k0r)/τe ≤ n
for all large enough n. Moreover assume that there is a sequence {nk} → ∞ such
that

nk∑
i=m1(nk)

q̄(t1 + iτ) ≥ pk0(1− p)
1− pk0

(2.9)

holds for all k large enough. Then, for every bounded solution x(t) of (1.1), either
x(t) or x(t)− px(t− r) or both are oscillatory.

Corollary 2.11. In addition to (2.2), we assume that p > 1 and that there is a
positive integer k0 and a t1 ≥ t0 satisfying m1(n) = d(g(t1 +nτ)− t1 +k0r)/τe ≤ n
for all large enough n. Moreover assume that there is a sequence {nk} → ∞ such
that

nk∑
i=m1(nk)

(i−m1 + 1)q̄(t1 + iτ) ≥ pk0(1− p)
1− pk0

(2.10)



4 S. WU, P. S. CALAY, Z. HOU EJDE-2015/128

holds for all k large enough. Then for every bounded solution x(t) of (1.1), either
x(t) or x(t)− px(t− r) or both are oscillatory.

Corollary 2.12. In addition to (2.2), we assume that p > 1 and that there is a
positive integer k0 and a t1 ≥ t0 satisfying m1(n) = d(g(t1 +nτ)− t1 +k0r)/τe ≤ n
for all sufficiently large n. Moreover assume that there is a sequence {nk} → ∞
and an integer l, 1 ≤ l < m, such that

1
l!

nk∑
i=m1(nk)

(i−m1 + 1)(i−m1 + 2) . . . (i−m1 + l) q̄(t1 + iτ) ≥ pk0(1− p)
1− pk0

(2.11)

holds for all k large enough. Then, for every bounded solution x(t) of equation
(1.1), either x(t) or x(t)− px(t− r) or both are oscillatory.

Remark 2.13. Note that
(i−m1 + 1)(i−m1 + 2) . . . (i−m1 + l − 1)

(l − 1)!
≥ i−m1 + 1 ≥ 1

holds. Thus, (2.11) is weaker that (2.10) and (2.9).

Corollary 2.14. In addition to (2.2), we assume that p > 1 and that there is a
positive integer k0 and a t1 ≥ t0 satisfying m1(n) = d(g(t1 +nτ)− t1 +k0r)/τe ≤ n
for all sufficiently large n. Moreover assume that there is a sequence {nk} → ∞
such that

1
(n− 1)!

nk∑
i=m1(nk)

(i−m1 + n− 1)!
(i−m1)!

q̄(t1 + iτ) ≥ pk0(1− p)
1− pk0

(2.12)

holds for all k large enough. Then, for every bounded solution x(t) of (1.1), either
x(t) or x(t)− px(t− r) or both are oscillatory.

3. Examples

Three illustrating examples are given here to demonstrate the applications of
the obtained oscillatory criteria.

Example 3.1. Consider the linear difference equation

∆2n
τ (x(t)− px(t− r)) +

1
t
x(t− σ

1 + βt
) = 0 (3.1)

for t > 0, where n is a positive integer, p ≥ 0, β ≥ 0, the constants r, τ and σ
are positive. Viewing (3.1) as (1.1), we have q(t) = 1/t and g(t) = t− σ/(1 + βt).
Then, according to (2.1), q̄(t) = α/(t+ 2nτ) for β = 0 and

q̄(t) =
α

t+ 2nτ

(
1− σβ

(1 + βt)2 + σβ

)2n

for β > 0. Since q̄2n(t) ≥ α′/(t+ 2nτ) for some α′ > 0 and all t ≥ 0, q̄2n satisfies
(2.2) with t1 = 0. By Theorem 2.1, for every solution x(t) of (3.1), either x(t) is
oscillatory or for any T ≥ t0 there exists a t2 > T such that |x(t2)| < p|x(t2 − r)|.
In particular, when p = 0, every solution of (3.1) is oscillatory.

Example 3.2. Consider the difference equation

∆2n
π (x(t)− px(t− π)) + 8x(t− π) +

8σ
1 + t2

x3(t− π) = 0, (3.2)
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where σ ≥ 0 is a constant. Regarding (3.2) as (1.1), we have τ = π, r = π,
g(t) = t− π and q(t) = 8. Then, for some α ∈ (0, 1), q̄2n = 8α by (2.1) so (2.2) is
satisfied. For p = 1, k0 = 1 and t1 = t, we have ml = l and

l∑
s=ml

(s+ 1−ml)q̄2n(t1 + sτ) = 8α > 1 =
1
k0

if α > 1/8. Also we have

l∑
s=ml

(s+ 1−ml)q̄2n(t1 + sτ) = 8α > p =
(1− p)pk0

1− pk0

if p ∈ (0, 1) ∪ (1, 8) and α > p/8. According to Theorems 2.2 and 2.7, for every
solution x(t) of (3.2), either x(t) or x(t) − px(t − r) is oscillatory if 0 < p ≤ 1.
Furthermore, by Theorem 2.10, for every bounded solution x(t) of (3.2), either x(t)
or x(t)− px(t− r) is oscillatory if 1 < p < 8.

Example 3.3. Consider the difference equation

∆2n
τ (x(t)− x(t− r)) + 22n+1x(t− 3) = 0, (3.3)

where τ and r are positive odd integers. Viewing (3.3) as (1.1), we have g(t) = t−3
and q(t) = 22n+1. Then, for some α ∈ (0, 1), q̄2n = α22n+1 by (2.1) so (2.2) is
satisfied. For p = 1, k0 = 1 and t1 = t, we have ml = l and

l∑
s=ml

(s+ 1−ml)q̄2n(t1 + sτ) = α22n+1 > 1 =
1
k0

if α > 2−(2n+1). According to Theorem 2.7, for every solution x(t) of (3.3), either
x(t) or x(t)− x(t− r) is oscillatory.

4. Related lemmas

In this section, we present the lemmas which will be needed in the proofs of the
main results. The following lemma can be found in [1, page 31].

Lemma 4.1. Let u(k) be defined on N(a), where a ∈ N , and u(k) > 0 with ∆mu(k)
of constant sign on N(a) for any positive integer m and not identically zero. Then,
there exists an integer h, 0 ≤ h ≤ m, with m + h odd for ∆mu(k) ≤ 0 or m + h
even for ∆mu(k) ≥ 0 such that

(i) h ≤ m− 1 implies (−1)h+i∆iu(k) > 0 for all k ∈ N(a), h ≤ i ≤ m− 1,
(ii) h ≥ 1 implies ∆iu(k) > 0 for all k ∈ N(a), 1 ≤ i ≤ h− 1.

By applying the above result to the difference with continuous variables, we have
the following lemma.

Lemma 4.2. Let y(t) be defined on [t0,+∞) where t0 ∈ R, and y(t) > 0 with
∆m
τ y(t) of constant sign on [t0,+∞) for any positive integer m and not identically

zero. Then, there exists an integer h, 0 ≤ h ≤ m, with m + h odd for ∆m
τ y(t) ≤

0 or m+ h even for ∆m
τ y(t) ≥ 0 such that

(i) h ≤ m− 1 implies (−1)h+i∆i
τy(t) > 0 for all t ∈ [t0,∞), h ≤ i ≤ m− 1,

(ii) h ≥ 1 implies ∆i
τy(t) > 0 for all t ∈ [t0,+∞), 1 ≤ i ≤ h− 1.
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Proof. Let t1 be any constant real number in [t0,+∞). For this fixed t1, by the
assumption, we have y(t1 + kτ) defined for any k ∈ {0, 1, . . . }, and y(t1 + kτ) > 0
with ∆m

τ y(t1 + kτ) of constant sign for any k ∈ {0, 1, . . . } and for any positive
integer m and not identically zero. Thus, by Lemma 4.1, the conclusion holds with
the replacement of t by t1 + kτ for all k ∈ N . Since t1 ∈ [t0,∞) is arbitrary, we
can see that the conclusion holds for t ∈ [t0,+∞). �

Lemma 4.3 ([1, page 289]). Let y(t) be an m times differentiable function on R+

of constant sign satisfying y(m)(t) 6≡ 0 and y(m)(t)y(t) ≤ 0 on [t1,∞). Then the
following statements hold.

(i) There exists a t2 ≥ t1 such that the functions y(j)(t), j = 1, 2, . . . ,m − 1,
are of constant sign on [t2,∞).

(ii) There exists an integer k < m which is odd (even) when m is even (odd),
such that

y(t)y(j)(t) > 0 for j = 0, 1, . . . , k, t ≥ t2,

(−1)m+j+1y(t)y(j)(t) > 0 for j = k + 1, . . . ,m, t ≥ t2.

Lemma 4.4 ([5, page 289]). Assume that y(t), y′(t), . . . , y(m−1)(t) are absolutely
continuous and of constant sign on the interval (t0,∞), and assume y(m)(t)y(t) ≥ 0.
Then either y(k)(t)y(t) ≥ 0, k = 0, 1, . . . ,m or there exists an integer l, 0 ≤ l ≤
m− 2, which is even (odd) when m is even (odd), such that

y(k)(t)y(t) ≥ 0, for k = 0, 1, . . . , l,

(−1)m+ky(k)(t)y(t) ≥ 0, for k = l + 1, . . . ,m.

Lemma 4.5. Assume that x(t) is an eventually positive (negative) solution of (1.1)
such that y(t) = x(t)− px(t− r) > 0 (< 0) eventually. Then ∆τy(t) > 0 (< 0) and
∆m−1
τ y(t) > 0 (< 0) hold eventually.

Proof. Suppose x(t) > 0 and y(t) > 0 hold eventually. Due to g(t) < t, g′(t) > 0
and (1.2), there exists a t1 > t0 such that x(g(t)) > 0 for all t ≥ t1. Further, (1.1)
becomes

∆m
τ y(t) + f(t, x(g(t))) = 0.

According to (1.3), f(t, x(g(t))) ≥ q(t)x(g(t)) > 0 for t ≥ t1 hold. Therefore,

∆m
τ y(t) ≤ −q(t)x(g(t)) < 0 (4.1)

for all large enough t, namely, ∆m
τ y(t) < 0 eventually. By Lemma 4.2, h could

be odd with 1 ≤ h ≤ m − 1. For all cases, we could obtain ∆τy(t) > 0 and
∆m−1
τ y(t) > 0 eventually. If x(t) < 0 and y(t) < 0 hold eventually, then (4.1)

becomes ∆m
τ y(t) ≥ −q(t)x(g(t)) > 0. Applying Lemma 4.2 to −y(t), we obtain

∆τy(t) < 0 and ∆m−1
τ y(t) < 0. �

Lemma 4.6. Let the hypothesis of Lemma 4.5 be satisfied. Moreover, let q̄(t) be
defined by (2.1). Set

u(t) =
∫ t+τ

t

dt1

∫ t1+τ

t1

dt2 . . .

∫ tm−2+τ

tm−2

dtm−1

∫ tm−1+τ

tm−1

y(θ) dθ.
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Then u satisfies u(m)(t) = ∆m
τ y(t) < 0 (> 0), u(t) > 0 (< 0), u′(t) > 0 (< 0),

u(m−1)(t) > 0 (< 0), ∆m−1
τ u(t) > 0 (< 0), and

∆m
τ u(t) + q̄(t)u(g(t)− kr)

k∑
i=0

pi ≤ 0 (≥ 0)

for each fixed number k and for all large enough t.

Proof. Suppose x(t) > 0 and y(t) > 0 hold eventually. According to the definition
of u(t) and (4.1), we can see that u(t) > 0, u(m)(t) = ∆m

τ y(t) < 0 and

∆m
τ y(t) + q(t)x(g(t)) ≤ 0 (4.2)

for sufficiently large t. Taking into account the definition of y(t), we have

∆m
τ y(t) + q(t)(y(g(t)) + px(g(t)− r)) ≤ 0.

By repeating the above process k times, we deduce

∆m
τ y(t) + q(t)

k∑
i=0

piy(g(t)− ir) + q(t)pk+1x(g(t)− (k + 1)r) ≤ 0.

Therefore, since q(t)pk+1x(g(t)− (k + 1)r) ≥ 0, it follows that

∆m
τ y(t) + q(t)

k∑
i=0

pi y(g(t)− ir) ≤ 0.

Furthermore,

u(m)(t) + q(t)
k∑
i=0

pi y(g(t)− ir) ≤ 0. (4.3)

Then, for large enough t, the assumptions on g and q give∫ t+τ

t

ds1

∫ s1+τ

s1

dsm−2 . . .

∫ sm−2+τ

sm−2

dsm−1

∫ sm−1+τ

sm−1

y(g(θ)− ir)q(θ) dθ

≥ min
t≤l≤t+mτ

{q(l)}
∫ t+τ

t

ds1

∫ s1+τ

s1

dsm−2 . . .

×
∫ sm−2+τ

sm−2

dsm−1

∫ sm−1+τ

sm−1

y(g(θ)− ir) dθ

≥ min
t≤l≤t+mτ

{q(l)}
∫ g(t+τ)

g(t)

(g−1(s1))′ds1
∫ g(g−1(s1)+τ)

s1

(g−1(s2))′ ds2 . . .

×
∫ g(g−1(sm−2)+τ)

sm−2

(g−1(sm−1))′dsm−1

∫ g(g−1(sm−1)+τ)

sm−1

y(θ − ir)(g−1(θ))′dθ

≥ min
t≤l≤t+mτ

{q(l)}
(

min
g(t)≤s≤g(t)+mτ

(g−1(s))′
)m ∫ g(t)+τ

g(t)

ds1

∫ s1+τ

s1

ds2 . . .

×
∫ sm−2+τ

sm−2

dsm−1

∫ sm−1+τ

sm−1

y(θ − ir)dθ

≥ min
t≤l≤t+mτ

{q(l)}
(

min
g(t)≤s≤g(t)+mτ

(g−1(s))′min)mu(g(t)− ir)

≥ q̄(t)u(g(t)− ir).
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Thus, integration on both sides of (4.3) gives

∆m
τ u(t) + q̄(t)

k∑
i=0

piu(g(t)− ir) ≤ 0. (4.4)

According to the definition of u(t), the equality

u′(t) =
∫ t+τ

t

dt2

∫ t2+τ

t2

dt3 . . .

∫ tm−2+τ

tm−2

dtm−1

∫ tm−1+τ

tm−1

∆τy(θ) dθ

holds. Then it follows from Lemma 4.5 that u′(t) > 0. Similarly, we have

u(m−1)(t) =
∫ t+τ

t

∆m−1
τ y(θ)dθ

so u(m−1)(t) > 0 from Lemma 4.5. Hence,

∆m−1
τ u(t) =

∫ t+τ

t

dt1

∫ t1+τ

t1

dt2 . . .

∫ tm−2+τ

tm−2

u(m−1)(θ)dθ > 0.

Further, (4.4) implies

∆m
τ u(t) + q̄(t)u(g(t)− kr)

k∑
i=0

pi ≤ 0

for each fixed natural number k and for all large enough t. If x(t) < 0 and y(t) < 0
hold eventually, then u(t) < 0, u(m)(t) = ∆m

τ y(t) > 0 and ∆m
τ y(t) + q(t)x(g(t)) ≥ 0

for large enough t. Moreover, (4.3) becomes

u(m)(t) + q(t)
k∑
i=0

piy(g(t)− ir) ≥ 0

and (4.4) becomes

∆m
τ u(t) + q̄(t)

k∑
i=0

piu(g(t)− ir) ≥ 0.

That u′(t) < 0 and u(m−1)(t) < 0 follow from ∆τy(t) < 0 and ∆m−1
τ y(t) < 0. Then

∆m−1
τ u(t) < 0 follows from the integration of u(m−1)(t). Since u(t) is decreasing,

each u(g(t)− ir) can be replaced by u(g(t)− kr) in the above inequality. �

5. Proofs of the main results

Proof of Theorem 2.1. Let x(t) be a solution of (1.1) satisfying x(t) > 0 and x(t)−
px(t− r) > 0 for all large t. Let y(t) be as in Lemma 4.5 and u(t) be as in Lemma
4.6. Furthermore, for any positive integer k, we have

∆m
τ u(t) + q̄(t)u(g(t)− kr)

k∑
i=0

pi ≤ 0,

where u(g(t)− kr) > 0. Define the Riccati transformation by

v(t) =
∆m−1
τ u(t)

u(g(t)− kr)
.

Notice that v(t) > 0. Moreover we deduce

∆τv(t) = v(t+ τ)− v(t)
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=
∆m−1
τ u(t+ τ)

u(g(t+ τ)− kr)
− ∆m−1

τ u(t)
u(g(t)− kr)

=
u(g(t)− kr)∆m−1

τ u(t+ τ)− u(g(t+ τ)− kr)∆m−1
τ u(t)

u(g(t+ τ)− kr)u(g(t)− kr)

=
u(g(t)− kr)∆m−1

τ u(t+ τ) + u(g(t+ τ)− kr)(∆m
τ u(t)−∆m−1

τ u(t+ τ))
u(g(t+ τ)− kr)u(g(t)− kr)

≤ ∆m
τ u(t)

u(g(t)− kr)
− ∆m−1

τ u(t+ τ)∆τu(g(t)− kr)
u(g(t)− kr)u(g(t+ τ)− kr)

≤ −q̄(t)
k∑
i=0

pi − v(t+ τ)
∆τu(g(t)− kr)
u(g(t)− kr)

≤ −q̄(t)
k∑
i=0

pi.

Therefore, there exists a t1 > t0 such that

∆τv(t1 + jτ) + q̄(t1 + jτ)
k∑
i=0

pi ≤ 0. (5.1)

Summing both sides of (5.1) from 0 to n, we have

v(t1 + (n+ 1)τ)− v(t1) +
k∑
i=0

pi
n∑
j=0

q̄(t1 + jτ) ≤ 0.

Thus
k∑
i=0

pi
n∑
j=0

q̄(t1 + jτ) < v(t1) <∞,

which leads to a contradiction to (2.2). If x(t) is a solution of (1.1) satisfying
x(t) < 0 and y(t) < 0 eventually, from Lemmas 4.5 and 4.6, the above argument
about v(t) is still valid and also leads to a contradiction. Therefore, the conclusion
of the theorem holds. �

Proof of Theorem 2.2. According to Theorem 2.1, if (2.2) holds, we have that every
solution x(t) of (1.1) is either oscillatory or for any T ≥ t0, there exists one t2 > T
such that |x(t2)| ≤ p|x(t2 − r)|.

Assume that (1.1) has an eventually positive solution x(t) such that y(t) =
x(t)−px(t− τ) is not oscillatory. Then from Theorem 2.1, we deduce that y(t) < 0
for all large enough t. Let z(t) = −y(t). Therefore, z(t) > 0 and

∆m
τ z(t)− f(t, x(g(t))) = 0.

Moreover,
∆m
τ z(t) ≥ q(t)x(g(t)) > 0

so
∆m
τ z(t)− q(t)x(g(t)) ≥ 0. (5.2)

For z(t), according to Lemma 4.2, h is even. So ∆i
τz(t) > 0 for all even number

i with 2 ≤ i ≤ m− 2, and |∆j
τz(t)| > 0 for all odd number j with 1 ≤ j ≤ m− 1.
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We show that ∆τz(t) < 0. Indeed, if ∆τz(t) > 0, then, since ∆2
τz(t) > 0, we

may assume ∆τz(t1 + kτ) > l > 0 for a large enough t1 and all k ∈ N . Then
d∑
i=0

∆τz(t1 + iτ) = z(t1 + (d+ 1)τ)− z(t1) ≥ (d+ 1)l.

Let d → ∞, then z(t1 + (d + 1)τ) → +∞. We have limt→∞ x(t) = 0 by repeating
x(t) < px(t−r) for 0 < p < 1. Thus, by the definition of z(t), we have limt→∞ z(t) =
0 which contradicts z(t1 + dτ)→ +∞ as d→∞. Thus, ∆τz(t) < 0.

So, according to Lemma 4.2 again, h = 0. Thus, ∆i
τz(t) > 0 for all even number

i with 2 ≤ i ≤ m− 2, and ∆j
τz(t) < 0 for all odd number j with 1 ≤ j ≤ m− 1.

Notice x(t) = (x(t+ r) + z(t+ r))/p. Hence, from (5.2), it follows that

∆m
τ z(t)−

q(t)
p
z(g(t) + r)− q(t)

p
x(g(t) + r) ≥ 0,

and further

∆m
τ z(t)− q(t)

k∑
i=1

1
pi
z(g(t) + ir)− q(t)

pk
x(g(t) + kr) ≥ 0.

So,

∆m
τ z(t)− q(t)

k∑
i=1

1
pi
z(g(t) + ir) > 0 (5.3)

since x(g(t) + kr) > 0. Let

u(t) =
∫ τ

0

ds1

∫ s1+τ

s1

ds2 . . .

∫ sm−2+τ

sm−2

dsm−1

∫ t+sm−1+τ

t+sm−1

z(θ)dθ.

Then we have u(m)(t) > 0 and u(t) > 0. Since

u′(t) =
∫ τ

0

ds1

∫ s1+τ

s1

ds2 . . .

∫ sm−2+τ

sm−2

∆τz(t+ sm−1)dsm−1,

then ∆τz(t) < 0 implies u′(t) < 0. Moreover, u(i)(t) > 0 for all even number i with
2 ≤ i ≤ m− 2, and u(j)(t) < 0 for all odd number j with 1 ≤ j ≤ m− 1.

Integrating (5.3) and from the proof of Lemma 4.6 replacing y(t) by z(t), we
have

∆m
τ u(t)− q̄(t)

k∑
i=1

1
pi
u(g(t) + ir) > 0,

which leads to

∆m
τ u(t)− q̄(t)u(g(t) + kr)

k∑
i=1

1
pi
> 0.

Due to
∑k
i=1 1/pi = (1− pk)/(pk(1− p)), we deduce that

∆m
τ u(t) ≥ 1− pk

pk(1− p)
q̄(t)u(g(t) + kr) > 0.

Replacing k by k0 and t by t1 + iτ in the above inequalities yield

∆m
τ u(t1 + iτ) ≥ 1− pk0

pk0(1− p)
q̄(t1 + iτ)u(g(t1 + iτ) + k0r).
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Summing up both sides of the above inequality for i from s to n and since u′(t) < 0,
we have

∆m−1
τ u(t1+(n+1)τ)−∆m−1

τ u(t1+sτ) ≥ 1− pk0
pk0(1− p)

u(g(t1+nτ)+k0r)
n∑
i=s

q̄(t1+iτ),

which implies

−∆m−1
τ u(t1 + sτ) >

1− pk0
pk0(1− p)

u(g(t1 + nτ) + k0r)
n∑
i=s

q̄(t1 + iτ) (5.4)

due to ∆m−1
τ u(t) < 0. For the above inequality, we will reduce the order of ∆j

τu(t1+
sτ) by rewriting it as ∆j−1

τ u(t+ (s+ 1)τ)−∆j−1
τ u(t+ sτ) for j = 1, 2, . . . , n− 1.

Taking into account the fact that all even terms are positive and all odd terms are
negative, we will write off all the negative terms from the left hand side of this
inequality. It yields

u(t1 + sτ) >
1− pk0
pk0(1− p)

u(g(t1 + nτ) + k0r)
n∑
i=s

q̄(t1 + iτ).

Since g(t1 +nτ) +k0r ≤ t1 +m1τ and u is decreasing, by taking s = m1, we obtain

u(t1 +m1τ) > u(t1 +m1τ)
1− pk0
pk0(1− p)

n∑
i=m1

q̄(t1 + iτ),

i.e.,
n∑

i=m1

q̄(t1 + iτ) <
pk0(1− p)

1− pk0
.

This inequality contradicts (2.3). If x(t) is an eventually negative solution such
that y(t) is not oscillatory, then y(t) > 0 holds eventually. The above reasoning
with an obvious minor modification also leads to a contradiction. Therefore, for
every solution x(t), either x(t) or y(t) is oscillatory. �

Proof of Corollary 2.3. Without loss of generality, we suppose (1.1) has an eventu-
ally positive solution x(t) such that y(t) = x(t) − px(t − r) is not oscillatory. The
proof is the same as that of Theorem 2.2 up to (5.4). By the same technique we
reduce the order of the difference on the left hand side of this inequality down to
the second order and it yields

∆2
τu(t1 + sτ) >

1− pk0
pk0(1− p)

u(g(t1 + nτ) + k0r)
n∑
i=s

q̄(t1 + iτ).

Summing the above inequality for s from m1 to n, we have

∆τu(t1+(n+1)τ)−∆τu(t1+m1τ) >
1− pk0
pk0(1− p)

u(g(t1+nτ)+k0r)
n∑

s=m1

n∑
i=s

q̄(t1+iτ).

Due to ∆τu(t) < 0, it follows from the above inequality that

−∆τu(t1 +m1τ) >
1− pk0
pk0(1− p)

u(g(t1 + nτ) + k0r)
n∑

s=m1

n∑
i=s

q̄(t1 + iτ),
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so

u(t1 +m1τ) >
1− pk0
pk0(1− p)

u(g(t1 + nτ) + k0r)
n∑

s=m1

n∑
i=s

q̄(t1 + iτ).

According to g(t1 + nτ) + k0r ≤ t1 +m1τ and u is decreasing, it follows that

u(t1 +m1τ) >
1− pk0
pk0(1− p)

u(t1 +m1τ)
n∑

i=m1

(i−m1 + 1)q̄(t1 + iτ),

i.e.,
n∑

i=m1

(i−m1 + 1)q̄(t1 + iτ) <
pk0(1− p)

1− pk0
.

This inequality contradicts (2.4). Thus conclusion holds. �

Proof of Corollary 2.5. The proof is the same as that of Theorem 2.2 up to (5.4).
We reduce the order of the difference at the left hand of this inequality down to
the lth order as we did in the proof of Theorem 2.2. Since 1 ≤ l < m, l is odd, we
obtain

−∆l
τu(t1 + sτ) >

1− pk0
pk0(1− p)

u(g(t1 + nτ) + k0r)
n∑
i=s

q̄(t1 + iτ),

and if l is even,

∆l
τu(t1 + sτ) >

1− pk0
pk0(1− p)

u(g(t1 + nτ) + k0r)
n∑
i=s

q̄(t1 + iτ).

We can reach the same conclusion for the above two cases. Thus, we only give the
details of the proof when l is odd. Summing up the above inequality for s from ml

to n, we have

−∆l−1
τ u(t1 + (n+ 1)τ) + ∆l−1

τ u(t1 +mlτ)

>
1− pk0
pk0(1− p)

u(g(t1 + nτ) + k0r)
n∑

s=ml

n∑
i=s

q̄(t1 + iτ).

Since ∆l−1
τ u(t) > 0, the above inequality implies

∆l−1
τ u(t1 +mlτ) >

1− pk0
pk0(1− p)

u(g(t1 + nτ) + k0r)
n∑

s=ml

n∑
i=s

q̄(t1 + iτ).

By repeating the above procedure, we obtain

u(t1 +m1τ) >
1− pk0
pk0(1− p)

u(g(t1 + nτ) + k0r)
n∑

m2=m1

n∑
m3=m2

· · ·
n∑

s=ml

n∑
i=s

q̄(t1 + iτ).

Because g(t1 + nτ) + k0r ≤ t1 +m1τ and u is decreasing, we have

1 >
1− pk0
pk0(1− p)

n∑
m2=m1

n∑
m3=m2

· · ·
n∑

s=ml

n∑
i=s

q̄(t1 + iτ)

=
1− pk0
pk0(1− p)

( n∑
m2=m1

n∑
m3=m2

. . .
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×
n∑

i=ml−1

1
2!

(i−ml−1 + 1)(i−ml−1 + 2)q̄(t1 + iτ)
)

. . .

=
1− pk0
pk0(1− p)

( n∑
i=m1

q̄(t1 + iτ)
i∑

m2=m1

1
(l − 1)!

(i−m2 + 1)(i−m2 + 2)

× . . . (i−m2 + (l − 1))
)

=
1− pk0
pk0(1− p)

( n∑
i=m1

1
l!

(i−m1 + 1)(i−m1 + 2)× . . . (i−m1 + l)q̄(t1 + iτ)
)
,

i.e.,
1
l!

n∑
i=m1

(i−m1 + 1) . . . (i−m1 + l)q̄(t1 + iτ) <
pk0(1− p)

1− pk0
.

This inequality contradicts (2.5). Thus the conclusion holds. �

Proof of Theorem 2.7. The proof is similar to that of Theorem 2.2. However, the
proof of the feature of z(t) is different from that of Theorem 2.2 due to p = 1. We,
hence, just give the proof about the feature of z(t). For z(t), by Lemma 4.2, we
notice h could be even with 2 ≤ h ≤ m − 2. So ∆i

τz(t) > 0 for all even number i
with 2 ≤ i ≤ m− 2, and |∆j

τz(t)| > 0 for all odd number j with 1 ≤ j ≤ m− 1.
If ∆τz(t) > 0, from the proof of Theorem 2.2 we have z(t1+dτ)→ +∞ as d→∞

for some t1 ≥ t0. Since p = 1, from 0 < x(t) < x(t−r), we know that x(t) is bounded
on [t0,∞). Thus, z(t) is bounded on [t0,∞). This contradicts z(t1 + dτ) → +∞
as d → ∞. Thus, ∆τz(t) < 0. So, according to Lemma 4.2 again, h = 0. Thus,
∆i
τz(t) > 0 for all even number i with 2 ≤ i ≤ m − 2 and ∆j

τz(t) < 0 for all odd
number j with 1 ≤ j ≤ m− 1.

The rest of the proof is as in Theorem 2.2, replacing pk0(1 − p)/(1 − pk0) by
1/k0. �

The proofs of the following corollaries are very similar to those of Corollaries
2.3-2.5 except minor changes. Thus, we omit them.

Proof of Theorem 2.10. Suppose that x(t) is a bounded eventually positive solution
of (2.2). The proof of Theorem 2.2 is then still valid for Theorem 2.10 subject to
a few obvious minor changes. Therefore, we omit the proof of the results following
equation (1.1) with p > 1. �
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