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STABILIZATION OF LAMINATED BEAMS WITH
INTERFACIAL SLIP

ASSANE LO, NASSER-EDDINE TATAR

Abstract. We study a laminated beam consisting of two identical beams

of uniform thickness, which is modeled as Timoshenko beams. An adhesive

of small thickness is bonding the two layers and creating a restoring force
producing a damping. It has been shown that the interfacial slip between

the layers alone is not enough to stabilize the system exponentially to its

equilibrium state. Some boundary control has been used in the literature for
that purpose. In this paper, we show that for viscoelastic material there is no

need for any kind of internal or boundary control.

1. Introduction

Many structures in mechanical engineering, electrical engineering, civil engineer-
ing and aerospace engineering are formed by a single beam or a number of beams.
We can cite for instance, robot arms, rotor turbine and helicopter blades, turbo-
machineries, electronic equipment, antennas, missiles, panels, pipelines, buildings,
bridges, etc. There are mainly three important theories. The first one is named after
Euler and Bernoulli and the second one after Rayleigh. To alleviate the shortcom-
ings in these two theories, Timoshenko came up with a new theory which is better
suited for engineering practice and is nowadays widely used for moderately thick
beams. Both, rotatory inertia and the effect of shear forces are taken into account.
In his theory, Timoshenko also assumed that the plane cross-sections perpendicular
to the beam centerline remain plane but could become oblique after deformation.
An additional kinematics variable is added in the displacement assumptions. Inter-
nal and external forces like the weight of the beam, heavy loads, wind, earthquakes
and interaction with other bodies or materials are examples of some sources causing
high stresses accompanying unwanted vibration. These stresses not only bring some
discomfort, reduce the fatigue-life of the material and produce annoying noise but
also are harmful to the structure as they may cause significant damage or complete
destruction of the machine or equipment. Therefore, some ways and devices capa-
ble of enhancing dynamic stability must accompany these structures. To this end
various devices and energy dissipation mechanisms have been designed either in the
material itself such as smart materials (piezoelectric, pietzoceramic, viscoelastic),
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on its surface (viscoelastic layers, sandwich plates,. . . ) or at the boundary (or part
of the boundary). Some well-known dampers are: friction dampers, sensors and
actuators, special loads, viscoelastic dampers, tuned mass dampers, tuned liquid
dampers and tuned mass liquid dampers. Sometimes they are classified into active,
semi-active and passive control methods. In this paper, we would like to investigate
the case of two identical beams with an adhesive layer in the interface creating a
restoring force. It has been already shown that when this restoring force is pro-
portional to the amount of slip the created frictional damping is unable by itself
to stabilize the system exponentially. The first investigators have been forced to
control the system by an additional boundary feedback. We intend to seek other
ways and means, preferably less costly, less demanding and easy to implement, to
stabilize the system exponentially.

Statement of the problem. The original structure consists of a two-layered
beam with an adhesive layer bonding the two adjoining surfaces. The adhesive
layer creates a restoring force which is assumed proportional to the amount of slip.
Therefore, we are in the presence of a structural damping due to interfacial slip.
Moreover, we assume that the adhesive layer is of negligible thickness and mass so
that the contribution of its mass to the kinetic energy of the structure can be ig-
nored. The equations of motion modeling the system are derived using Timoshenko
theory and a third equation is coupled with the first two describing the dynamic of
the slip and containing the internal frictional (Kelvin-Voigt) damping. Namely, we
have the system

ρwtt +G(ψ − wx)x = 0,

Iρ(3stt − ψtt)−G(ψ − wx)−D(3sxx − ψxx) = 0,

3Iρstt + 3G(ψ − wx) + 4γs+ 4βst − 3Dsxx = 0,

supplemented by the initial data

(w,ψ, s)(x, 0) = (w0, ψ0, s0), (wt, ψt, st)(x, 0) = (w1, ψ1, s1)

and cantilever boundary conditions.
Here w,ψ, ρ,G, Iρ, D, γ, β are transverse displacement, rotation angle, density,

shear stiffness, mass moment of inertia, flexural rigidity, adhesive stiffness, adhesive
damping parameter and s is proportional to the amount of slip along the interface.
The expression ξ := 3s− ψ is the effective rotation angle.

It has been shown in [31] that the frictional damping created by the interfacial
slip alone is not enough to stabilize the system exponentially to its equilibrium
state. Therefore, a natural question that can be asked is: what are the possible
additional damping that can ensure the exponential stability and other kinds of sta-
bility of the system? We suggest investigating the case of an additional viscoelastic
damping that acts on the effective rotation angle without resorting to any bound-
ary control. Viscoelastic material is very efficient in case there is no considerable
change of frequency or temperature in the structure [2]. The viscoelastic damping
is (according to the Boltzmann Principle) represented by a memory term in the
form of a convolution which arises in the constitutive equation between the stress
and the strain ∫ t

0

h(t− r)(3s− ψ)xx(r)dr.
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There are basically three main papers in this subject [3, 10, 31]. In [10], the
problem has been derived in details. The authors assumed that the adhesive layer
is of negligible thickness and mass and that the restoring force created by this layer
is proportional to the amount of slip at the interface.

In [31], the system is studied assuming that
√
G/ρ and

√
D/Iρ are two different

wave speeds. Putting ξ = 3s− ψ, they transformed the original system into

ρwtt +G(3s− ξ − wx)x = 0,

Iρξtt −G(3s− ξ − wx)−Dξxx = 0,

3Iρstt + 3G(3s− ξ − wx) + 4γs+ 4βst − 3Dsxx = 0

where 0 < x < 1 and t > 0. In addition to the well-posedness, the authors pointed
out that the frictional damping is enough to asymptotically stabilize the system.
However, it is not possible to have exponential stability. They justified their claim
by the fact that the eigenvalues of two branches are very close to the imaginary
axis as their moduli go to infinity. To achieve exponential decay of solutions they
implemented an additional boundary control

w(0, t) = ξ(0, t) = s(0, t) = 0,

ξx(1, t) = u1(t) := −k1ξt(1, t), sx(1, t) = 0,

3s(1, t)− ξ(1, t)− wx(1, t) = u2(t) := k2wt(1, t)

where t > 0. The same system but with the boundary control

ψ(0, t)− wx(0, t) = u1(t) := −k1wt(0, t)− w(0, t),

3sx(1, t)− ψx(1, t) = u2(t) := −k2ξt(1, t)− ξ(1, t),

has been studied in [3]. The authors proved an exponential stabilization result
in case k1 6=

√
ρ/G, k2 6=

√
Iρ/D and the dominant part of the system is itself

exponentially stable.
For the case of a single viscoelastic Timoshenko beam (therefore without in-

terfacial slip) there exist many papers in the literature. We can cite a few of
them [1,8, 11,15,16,19,20,21,22,23,24,28,29,30,32,33].

Here, we shall consider the system

ρwtt +G(ψ − wx)x = 0,

Iρ(3stt − ψtt)−G(ψ − wx)− (3s− ψ)xx +
∫ t

0

h(t− r)(3s− ψ)xx(r)dr = 0,

Iρstt +G(ψ − wx) +
4
3
γs+

4
3
αst − sxx = 0,

(1.1)

where 0 < x < 1 and t > 0, with the boundary conditions

ψ(0, t) = s(0, t) = 0,

sx(1, t) = ψx(1, t) = 0,

wx(0, t) = 0, w(1, t) = 0.
(1.2)

The well-posedness of the system has been addressed in [3,31] (see [4,5,7,9,17] for
the viscoelastic term). We have weak solutions in (V 1

∗ × L2)3 and strong solutions
in (V 2

∗ ×H1)3 where

V k∗ =
{
v : v ∈ Hk(0, 1) : v(0) = 0

}
, k = 1, 2.
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We shall discuss the case where the relaxation function h : R+ → R+ is a bounded
differentiable function satisfying the standard conditions (as we shall not be con-
cerned about finding the largest class of admissible kernels, see [6, 12, 13, 14, 18, 25,
26,27,28,29,30] for this matter)

− β0h ≤ h′ ≤ −β1h, (1.3)

for some positive constants β0 and β1. Moreover we assume that

ς := 1−
∫ ∞

0

h(r)dr > 0. (1.4)

For G we shall use the following assumption

(H1) If ςρ < γ
12 , then G < min{ςρ, 3ς

2 ,
2γ−2
√
γ2−9γςρ

9 }, and if γ
12 < ςρ < γ

9 then
assume G < min

{
ςρ, 3ς

2

}
.

2. Uniform stabilization

The ‘modified’ energy of the system (1.1)–(1.2) is given by

E(t) =
1
2

[
ρ‖wt‖2 + Iρ‖3st − ψt‖2 + 3Iρ‖st‖2 +G‖ψ − wx‖2

+ (1−
∫ t

0

h(r)dr)‖3sx − ψx‖2 + 3‖sx‖2 + 4γ‖s‖2

+
∫ 1

0

(h�(3s− ψ)x)dx
]
,

(2.1)

for t ≥ 0, where ‖ · ‖ denotes the norm in L2(0, 1) and

(g�h)(t) :=
∫ t

0

g(t− s)|h(s)− h(t)|2ds, t ≥ 0.

Our result reads as follows.

Theorem 2.1. For the energy E(t) defined above, if ρ = GIρ and (H1) holds, then
there exist two positive constants K and κ0 such that

E(t) ≤ Ke−κ0t, t > 0.

We first give some lemmas that will serve as a support for the proof of this
theorem.

Lemma 2.2. If k and φ are two differentiable functions then

(k ∗ φ)(t)φ′(t) =
1
2

(k′�φ)(t) +
1
2
d

dt

[( ∫ t

0

k(s)ds
)
φ2(t)− (k�φ)(t)

]
− 1

2
k(t) φ2(t), t > 0

where ∗ stands for the usual convolution.

Proof. The statement of the this follows from the identity

d

dt
(k�φ)(t) = (k′�φ)(t) + 2

(∫ t

0

k(s)ds
)
φt(t)φ(t)− 2(k ∗ φ)(t)φt(t)

= (k′�φ)(t) +
d

dt

[( ∫ t

0

k(s)ds
)
φ2(t)

]
− k(t) φ2(t)

− 2(k ∗ φ)(t)φt(t), t > 0.
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Lemma 2.3. The energy E(t) given by (2.1) satisfies

d

dt
E(t) = −h(t)

2
‖(3s− ψ)x‖2 − 4α‖st‖2 +

1
2

∫ 1

0

(h′�(3s− ψ)x)dx, t > 0.

Proof. Multiplying the first equation of (1.1) by wt and integrating over (0, 1) we
obtain

ρ

2
d

dt

[
‖wt‖2

]
+G

∫ 1

0

(ψ − wx)xwtdx = 0

or
ρ

2
d

dt

[
‖wt‖2

]
−G

∫ 1

0

(ψ − wx)wxtdx+ [G(ψ − wx)wt]
1
0 = 0

and by our boundary conditions (1.2)

ρ

2
d

dt
[‖wt‖2]−G

∫ 1

0

(ψ − wx)wxtdx = 0, t > 0.

Note that

G

∫ 1

0

(ψ − wx)wxtdx = −G
∫ 1

0

(ψ − wx)(ψ − wx − ψ)tdx

= −G
2
d

dt
[‖ψ − wx‖2] +G

∫ 1

0

(ψ − wx)ψtdx.

Therefore,

1
2
d

dt
[ρ‖wt‖2 +G‖ψ − wx‖2]−G

∫ 1

0

(ψ − wx)ψtdx = 0, t > 0. (2.2)

Similarly multiplying the second equation of (1.1) by 3st−ψt and integrating over
(0, 1) we obtain

Iρ
2
d

dt
[‖3st − ψt‖2]−G

∫ 1

0

(ψ − wx)(3st − ψt)dx

−
∫ 1

0

(3s− ψ)xx(3st − ψt)dx+
∫ 1

0

(3st − ψt)
∫ t

0

h(t− r)(3s− ψ)xx(r) dr dx = 0

or, using integration by parts and the boundary conditions (1.2)

1
2
d

dt

[
Iρ‖3st − ψt‖2 + ‖3sx − ψx‖2

]
−G

∫ 1

0

(ψ − wx)(3st − ψt)dx

−
∫ 1

0

(3st − ψt)x
∫ t

0

h(t− r)(3s− ψ)x(r) dr dx = 0, t > 0.
(2.3)

By using Lemma 2.3 we see that∫ 1

0

(3st − ψt)x
∫ t

0

h(t− r)(3s− ψ)x(r) dr dx

=
1
2

(h′ �(3s− ψ)x)(t)− h(t)
2
‖3sx − ψx‖2

+
1
2
d

dt

[( ∫ t

0

h(s)ds
)
‖3sx − ψx‖2 − (h�(3s− ψ)x)(t)

]
, t > 0.

(2.4)
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Likewise, multiplying the third equation of (1.1) by st and integrating over (0, 1),
we obtain

1
2
d

dt

[
Iρ‖st‖2 +

4γ
3
‖s‖2 + ‖sx‖2

]
+G

∫ 1

0

(ψ − wx)stdx+
4α
3
‖st‖2 = 0, (2.5)

for t > 0. Now it is clear from (2.2)–(2.5) that

E′(t) = −4α‖st‖2 −
h(t)

2
‖(3s− ψ)x‖2 +

1
2

∫ 1

0

(h′�(3s− ψ)x)dx, t > 0.

This completes the proof. �

As h′(t) ≤ 0, we see that E′(t) ≤ 0 for all t > 0. Therefore the energy is
non-increasing and uniformly bounded above by E(0).

Next we shall construct a Lyapunov functional F satisfying the inequalities

λ1E(t) ≤ F (t) ≤ λ2E(t) and
d

dt
F (t) ≤ −κF (t)

for some positive constants λ1, λ2 and κ. The first two inequalities show that E(t)
and F (t) are equivalent. The second one gives the exponential decay of F (t) (and
therefore the exponential decay of E(t) as well). To this end, we define

F (t) = E(t) +
∑5

i=1
δiGi(t), δi > 0, i = 1, . . . , 5, t ≥ 0,

where

G1(t) = Iρ(st, s), G2(t) = −ρ(wt, w), G3(t) = Iρ(3st − ψt, 3s− ψ), t ≥ 0,

G4(t) = −4γρ
G

(wt,Θ)− 3ρ
G

(sx, wt) + 3Iρ(st, ψ − wx), t ≥ 0,

with Θ(x, t) =
∫ 1

x
s(ξ, t)dξ and

G5(t) = −Iρ
(

3st − ψt,
∫ t

0

h(t− r) [(3s− ψ)(t)− (3s− ψ)(r)] dr
)
, t ≥ 0.

Using the Cauchy-Schwarz inequality and the Poincaré inequality, one can easily
see that all the Gi(t), i = 1, . . . , 5 are bounded (above and below) by an expression
containing the existing terms in the energy E(t). This leads to the equivalence of
F (t) and E(t).

We shall now prove several lemmas with the purpose of creating negative coun-
terparts of the terms that appear in the energy in the estimations of the derivatives
of the above functionals.

Lemma 2.4. Along the solutions of (1.1)–(1.2), we have

G′1(t) ≤ −‖sx‖2 +
( G

4ε0
+ ε− 4

3
γ
)
‖s‖2 + ε0G‖ψ − wx‖2 +

(
Iρ +

4α2

9ε
)
‖st‖2,

for all t > 0 and some ε0, ε > 0.

Proof. Clearly,
G′1(t) = Iρ‖st‖2 + Iρ(stt, s), t > 0

and by the third equation in (1.1) we obtain that for t > 0,

G′1(t) = Iρ‖st‖2 − ‖sx‖2 −
4γ
3
‖s‖2 − 4α

3
(st, s)−G(ψ − wx, s)
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≤ Iρ‖st‖2 − ‖sx‖2 +
( G

4ε0
− 4γ

3
)
‖s‖2 + ε0G‖ψ − wx‖2 + ε‖s‖2 +

4α2

9ε
‖st‖2

≤ −‖sx‖2 +
( G

4ε0
+ ε− 4γ

3
)
‖s‖2 + ε0G‖ψ − wx‖2 +

(
Iρ +

4α2

9ε
)
‖st‖2.

�

Lemma 2.5. The derivative of G2(t) along solutions of (1.1)–(1.2) satisfies

G′2(t) ≤ −ρ‖wt‖2 + (G+ ε1)‖ψ − wx‖2 +
G

2ε1
‖ψx − 3sx‖2 +

9G
2ε1
‖sx‖2,

for all t > 0 and some ε1 > 0.

Proof. Using the first equation in (1.1) and the boundary conditions (1.2), we have
that for t > 0,

G′2(t) = −ρ‖wt‖2 − ρ(wtt, w)

= −ρ‖wt‖2 +G((ψ − wx)x, w)

= −ρ‖wt‖2 −G(ψ − wx, wx) +G [(ψ − wx)w]10
= −ρ‖wt‖2 +G(ψ − wx, ψ − wx)−G(ψ − wx, ψ)

≤ −ρ‖wt‖2 +G‖ψ − wx‖2 + ε1G‖ψ − wx‖2 +
G

4ε1
‖ψx‖2

≤ −ρ‖wt‖2 + (G+ ε1)‖ψ − wx‖2 +
G

2ε1
‖ψx − 3sx‖2 +

9G
2ε1
‖sx‖2.

�

Lemma 2.6. The derivative of G3(t) along solutions of (1.1)–(1.2) satisfies

G′3(t) ≤ Iρ‖3st − ψt‖2 − (ς − G

4ε2
− ε)‖3sx − ψx‖2 + ε2G‖ψ − wx‖2

+
1− ς

4ε

∫ 1

0

(h�(3sx − ψx))dx, t > 0

for ε2 > 0, ε > 0.

Proof. Using the second equation in (1.1) we find that

Iρ
d

dt
(3st − ψt, 3s− ψ) = Iρ‖3st − ψt‖2 − ‖3sx − ψx‖2

+ [(3sx − ψx)(3s− ψ)]10 +G((ψ − wx), (3s− ψ))

+
(∫ t

0

h(t− r)(3sx − ψx)(r)dr, 3sx − ψx
)
, t > 0.

Then

G′3(t) ≤ Iρ‖3st − ψt‖2 − ‖3sx − ψx‖2 + ε2G‖ψ − wx‖2 +
G

4ε2
‖3sx − ψx‖2

+
(∫ t

0

h(t− r) [(3sx − ψx)(r)− (3sx − ψx)(t)] dr, 3sx − ψx
)

+
(∫ t

0

h(r)dr
)

((3sx − ψx, 3sx − ψx)
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for ε2 > 0, or

G′3(t) ≤ Iρ‖3st − ψt‖2 − ‖3sx − ψx‖2 + ε2G‖ψ − wx‖2

+
G

4ε2
‖3sx − ψx‖2 + ε‖3sx − ψx‖2 +

1− ς
4ε

∫ 1

0

(h�(3sx − ψx))dx

+ (1− ς)‖(3sx − ψx)‖2,
for ε > 0. Hence

G′3(t) ≤ Iρ‖3st − ψt‖2 − (ς − G

4ε2
− ε)‖3sx − ψx‖2 + ε2G‖ψ − wx‖2

+
1− ς

4ε

∫ 1

0

(h�(3sx − ψx))dx, t > 0.

�

Lemma 2.7. The derivative of G4(t) is estimated as follows

G′4(t) ≤ −(3G− ε1)‖ψ − wx‖2 + ε1(1 + ε)Iρ‖3st − ψt‖2 + ε1‖wt‖2

+
[4γ2ρ2

ε1G2
+

4α2

ε1
+ (9 +

1
ε

+
9

4ε1
)Iρ
]
‖st‖2, t > 0,

for ε1, ε > 0 provided that Iρ = ρ
G .

Proof. Using the first and third equations in (1.1),

G′4(t) = −4γρ
G

(wtt,Θ)− 4γρ
G

(wt,Θt)−
3ρ
G

(sxt, wt)−
3ρ
G

(sx, wtt)

+ 3Iρ(stt, ψ − wx) + 3Iρ(st, ψt − wxt) .
Then we find that

G′4(t) = 4γ((ψ − wx)x,Θ)− 4γρ
G

(wt,Θt)−
3ρ
G

(sxt, wt) + 3(sx, (ψ − wx)x)

+ 3(−G(ψ − wx)− 4γ
3
s− 4α

3
st + sxx, ψ − wx) + 3Iρ(st, ψt − wxt),

for t > 0. Next, by the definition of Θ and the assumption Iρ = ρ
G , we obtain

G′4(t) = −4γρ
G

(wt,Θt)− 3G‖ψ − wx‖2 − 4α(st, ψ − wx) + 3Iρ(st, ψt),

for t > 0. Now, clearly

4γρ
G

(wt,Θt) ≤ ε1‖wt‖2 +
4γ2ρ2

ε1G2
‖st‖2,

4α(st, ψ − wx) ≤ ε1‖ψ − wx‖2 +
4α2

ε1
‖st‖2,

3(st, ψt) ≤ ε1‖ψt‖2 +
9

4ε1
‖st‖2

≤ ε1(1 + ε)‖3st − ψt‖2 + (9 +
1
ε

+
9

4ε1
)‖st‖2

lead to

G′4(t) ≤ ε1‖wt‖2 +
4γ2ρ2

ε1G2
‖st‖2 − 3G‖ψ − wx‖2 + ε1‖ψ − wx‖2 +

4α2

ε1
‖st‖2

+ ε1(1 + ε)Iρ‖3st − ψt‖2 + (9 +
1
ε

+
9

4ε1
)Iρ‖st‖2
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or

G′4(t) ≤ −(3G− ε1)‖ψ − wx‖2 + ε1(1 + ε)Iρ‖3st − ψt‖2 + ε1‖wt‖2

+
[4γ2ρ2

ε1G2
+

4α2

ε1
+
(
9 +

1
ε

+
9

4ε1

)
Iρ
]
‖st‖2, t ≥ 0.

�

For the next lemma we need to get away from zero to ensure strict positivity of∫ t
0
h(r)dr. So for that t ≥ t0 > 0 we have

∫ t
0
h(r)dr ≥

∫ t0
0
h(r)dr = h0 > 0.

Lemma 2.8. For the functional G5(t) we have

G′5(t) ≤ Gε‖ψ − wx‖2 + (G+ 4ε+ 2− ς)1− ς
4ε

∫ 1

0

(h �(3s− ψ)x)dx

+ (2− ς)ε‖3sx − ψx‖2 + Iρ(ε− h0)‖3st − ψt‖2

+
Iρh(0)

4ε

∫ 1

0

(|h′|�(3s− ψ)x)dx, t ≥ t0 > 0

for ε > 0.

Proof. We recall that

G5(t) = −Iρ
(

3st − ψt,
∫ t

0

h(t− r)[(3s− ψ)(t)− (3s− ψ)(r)]dr
)
, t > 0

and therefore

G′5(t) = −Iρ(3stt − ψtt,
∫ t

0

h(t− r)[(3s− ψ)(t)− (3s− ψ)(r)]dr)

− Iρ
(

3st − ψt,
∫ t

0

h′(t− r)[(3s− ψ)(t)− (3s− ψ)(r)]dr
)

− Iρ
(∫ t

0

h(r)dr
)
‖3st − ψt‖2, t > 0.

In view of the second equation in (1.1) and the boundary conditions (1.2) we write

G′5(t) = −
(
G(ψ − wx) + (3s− ψ)xx,

∫ t

0

h(t− r)[(3s− ψ)(t)− (3s− ψ)(r)]dr
)

+
(∫ t

0

h(t− r)(3s− ψ)xx(r)dr,
∫ t

0

h(t− r)[(3s− ψ)(t)− (3s− ψ)(r)]dr
)

− Iρ
(

3st − ψt,
∫ t

0

h′(t− r)[(3s− ψ)(t)− (3s− ψ)(r)]dr
)

− Iρ
(∫ t

0

h(r)dr
)
‖3st − ψt‖2, t > 0.

(2.6)
It is easy to see that for t > 0,

−G
(
ψ − wx,

∫ t

0

h(t− r) [(3s− ψ)(t)− (3s− ψ)(r)] dr
)

≤ Gε‖ψ − wx‖2 +
G(1− ς)

4ε

∫ 1

0

(h �(3s− ψ)x)dx,
(2.7)
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(3s− ψ)xx,

∫ t

0

h(t− r) [(3s− ψ)(t)− (3s− ψ)(r)] dr
)

= −
(

(3s− ψ)x,
∫ t

0

h(t− r) [(3s− ψ)x(t)− (3s− ψ)x(r)] dr
)

≤ ε‖3sx − ψx‖2 +
1− ς

4ε

∫ 1

0

(h�(3s− ψ)x)dx,

(2.8)

and(∫ t

0

h(t− r)(3s− ψ)xx(r)dr,
∫ t

0

h(t− r)[(3s− ψ)(t)− (3s− ψ)(r)]dr
)

= ‖
∫ t

0

h(t− r)[(3s− ψ)x(t)− (3s− ψ)x(r)]dr‖2

−
(∫ t

0

h(r)dr
)(

(3s− ψ)x,
∫ t

0

h(t− r)[(3s− ψ)x(t)− (3s− ψ)x(r)]dr
)

≤ ‖
∫ t

0

h(t− r)[(3s− ψ)x(t)− (3s− ψ)x(r)]dr‖2 + (1− ς)
{
ε‖3sx − ψx‖2

+
1
4ε
‖
∫ t

0

h(t− r)[(3s− ψ)x(t)− (3s− ψ)x(r)]dr‖2
}

≤ (1 +
1− ς

4ε
)(1− ς)

∫ 1

0

(h �(3s− ψ)x)dx+ ε(1− ς)‖3sx − ψx‖2,

(2.9)

for t > 0. Further

Iρ(3st − ψt,
∫ t

0

h′(t− r)[(3s− ψ)(t)− (3s− ψ)(r)]dr)

≤ εIρ‖3st − ψt‖2 +
Iρh(0)

4ε

∫ 1

0

(|h′|�(3s− ψ)x)dx, t > 0.
(2.10)

Taking into account estimates (2.7)–(2.10), in (2.6) and considering t ≥ t0 > 0, we
obtain

G′5(t) ≤ Gε‖ψ − wx‖2 +
G(1− ς)

4ε

∫ 1

0

(h �(3s− ψ)x)dx+ ε‖3sx − ψx‖2

+
1− ς

4ε

∫ 1

0

(h�(3s− ψ)x)dx+ (1 +
1− ς

4ε
)(1− ς)

∫ 1

0

(h �(3s− ψ)x)dx

+ ε(1− ς)‖3sx − ψx‖2 + εIρ‖3st − ψt‖2

+
Iρh(0)

4ε

∫ 1

0

(|h′|�(3s− ψ)x)dx− Iρh0‖3st − ψt‖2

or, for t ≥ t0 > 0

G′5(t) ≤ Gε‖ψ − wx‖2 + (G+ 4ε+ 2− ς)1− ς
4ε

∫ 1

0

(h �(3s− ψ)x)dx

+ (2− ς)ε‖3sx − ψx‖2 + Iρ(ε− h0)‖3st − ψt‖2

+
Iρh(0)

4ε

∫ 1

0

(|h′|�(3s− ψ)x)dx.

The proof is complete. �
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Using the previous lemmas we now give the proof of our main result.

Proof of Theorem 2.1. Gathering the estimates in the previous lemmas we find that

F ′(t) = E′(t) +
∑5

i=1
δiG
′
i(t) ≤ −4α‖st‖2 −

h(t)
2
‖(3s− ψ)x‖2

+
1
2

∫ 1

0

(h′�(3s− ψ)x)dx− δ1‖sx‖2 + δ1(
G

4ε0
+ ε− 4

3
γ)‖s‖2

+ δ1ε0G‖ψ − wx‖2 + δ1(Iρ +
4α2

9ε
)‖st‖2 − δ2ρ‖wt‖2

+ δ2(G+ ε1)‖ψ − wx‖2 +
Gδ2
2ε1
‖3sx − ψx‖2 +

9Gδ2
2ε1
‖sx‖2

+ δ3Iρ‖3st − ψt‖2 − δ3(ς − G

4ε2
− ε)‖3sx − ψx‖2 + δ3ε2G‖ψ − wx‖2

+ δ3
1− ς

4ε

∫ 1

0

(h�(3sx − ψx))dx− δ4(3G− ε1)‖ψ − wx‖2

+ δ4ε1(1 + ε)Iρ‖3st − ψt‖2 + δ4[
4γ2ρ2

ε2G2
+

4α2

ε1
+ (9 +

1
ε

+
9

4ε1
)Iρ]‖st‖2

+ ε1δ4‖wt‖2 + δ5Gε‖ψ − wx‖2 + δ5ε(2− ς)‖3sx − ψx‖2

+ δ5(G+ 4ε+ 2− ς)1− ς
4ε

∫ 1

0

(h �(3s− ψ)x)dx

+ δ5Iρ(ε− h0)‖3st − ψt‖2 + δ5
Iρh(0)

4ε

∫ 1

0

(|h′|�(3s− ψ)x)dx, t ≥ t0 > 0

or

F ′(t) ≤ −
{

4α− δ1(Iρ +
4α2

9ε
)− δ4

[
(9 +

1
ε

+
9

4ε1
)Iρ +

4α2

ε1
+

4γ2ρ2

ε2G2

]}
‖st‖2

− (δ1 −
9Gδ2
2ε1

)‖sx‖2 + δ1(
G

4ε0
+ ε− 4

3
γ)‖s‖2

− [δ4(3G− ε1)− δ1ε0G− δ2(G+ ε1)− δ3ε2G− δ5Gε] ‖ψ − wx‖2

−
{
δ3(ς − G

4ε2
− ε)− Gδ2

2ε1
− δ5ε(2− ς)

}
‖3sx − ψx‖2

− (δ2ρ− ε2δ4)‖wt‖2 + Iρ [δ3 + δ4ε1(1 + ε) + δ5(ε− h0)] ‖3st − ψt‖2

−
{β1

2
− δ3

1− ς
4ε
− δ5(G+ 4ε+ 2− ς)1− ς

4ε

− δ5
β0Iρh(0)

4ε

}∫ 1

0

(h �(3s− ψ)x)dx.

(2.11)
Our strategy for selecting the different coefficients and parameters is as follows:

all the δi, i = 1, . . . 5 will be determined in terms of only one of them (here δ1). This
δ1 will be accountable in front of α and β1 in the coefficients of the first and the last
term in (2.11). From the beginning, we have managed in our estimations to balance
the largest coefficients (here 1/ε) on the terms that appear in the derivative of the
energy. This will allow us to ignore ε at the beginning of the process of selection.
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Let us ignore for the moment the first and the last terms in (2.11). We shall, at
the same time, ignore the terms having coefficients in ε. The focus will be on

δ1 −
9G
2ε1

δ2 > 0,
G

4ε0
− 4

3
γ < 0,

δ4(3G− ε1)− δ1ε0G− δ2(G+ ε1)− δ3ε2G > 0,

δ3(ς − G

4ε2
)− G

2ε1
δ2 > 0,

δ2ρ− ε2δ4 > 0, δ3 + δ4ε1 − δ5h0 < 0,

or
9G
2ε1

δ2 < δ1,
G

4ε0
<

4
3
γ,

δ1ε0G+ δ2(G+ ε1) + δ3ε2G < δ4(3G− ε1),
G

2ε1
δ2 < δ3(ς − G

4ε2
),

ε2δ4 < δ2ρ, δ3 + δ4ε1 < δ5h0.

(2.12)

Let ε0 = G
4γ so that the second inequality in (2.12) is satisfied. Put ε2 = G

2ς , ε1 = G

and ignore the last inequality (we will take δ5 large enough as it does not appear
elsewhere), we will be left with

9
2
δ2 < δ1,

δ1
G

4γ
+ 2δ2 + δ3

G

2ς
< 2δ4,

δ2 < ςδ3,
G

2ς
δ4 < δ2ρ.

(2.13)

Note that 2δ2 < δ4 <
2ς
G δ2ρ is valid if G < ςρ and δ4 = G+ςρ

G δ2. Therefore (2.13)
reduces to

9
2
δ2 < δ1,

δ1
G

4γ
+ δ3

G

2ς
<
G+ ςρ

G
δ2,

δ2 < ςδ3.

By assumption (H1) we may have

δ1
G

4γ
<
G+ ςρ

2G
δ2 <

G+ ςρ

9G
δ1, δ3

G

2ς
<
G+ ςρ

2G
δ2 <

G+ ςρ

2G
ςδ3.

These inequalities ensure the possibility of selecting (for instance) δ2 and δ3 in terms
of δ1. It is now possible to select δ5 (satisfying the last relation in (2.12)) in terms
of δ1 and then ε. Finally, δ1 is chosen so small that the coefficients of the first and
the last terms in (2.11) are satisfied. We end up with an inequality of the form

F ′(t) ≤ −CF (t), t ≥ t0 > 0.

This gives the exponential decay of F (t) on [t0,∞). The exponential decay of the
energy follows from the equivalence with F (t) and the statement of the theorem for
t ≥ 0 is clear. The proof is complete. �
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Remark. It would be nice to remove the conditions on G although ρ = GIρ (equal
wave speeds) seems natural as we have a similar one in the theory of Timoshenko
beams. The assumption (H1) looks technical and we believe that it may be im-
proved considerably through a better choice of the functionals and adequate es-
timations. Investigations on other boundary conditions would also be of great
importance.
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